2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Giant Cell Arteritis and Takayasu Arteritis

Giant Cell Arteritis (GCA)

Imaging, laboratory tests, and monitoring

- **PICO question 1:** In patients with suspected GCA, what is the impact of unilateral versus bilateral temporal artery biopsy on diagnostic accuracy, disease-related outcomes, and tissue biopsy-related adverse events?
- Critical Outcomes: Diagnostic accuracy, disease activity, clinical symptoms, damage from disease (e.g., visual loss), pain, scarring, injury to tissue biopsied.
- 1. In patients with suspected GCA, what is the impact of unilateral versus bilateral temporal artery biopsy on diagnostic accuracy, disease-related outcomes, and tissue biopsy-related adverse events?

Outcomes	Author,	Study type	Duration of follow	Population	Intervention	Results	Comments
	year		up				
Rate of discordant temporal artery	Durling, 2014	Prospective case-series	Not reported	250 patients	Initial bilateral	GCA was confirmed in 24.2% (62 of the 250).	-There were 11 unilaterally positive biopsies, representing 17.7% of the
biopsy					temporal	Rate of discordant	total biopsy positive group and 4.4% of
					artery	biopsy was 4.4% (11	the total biopsy population.
					biopsies.	unilateral positive biopsies)	-Discordance between the localization of symptoms and the side of positive biopsy occurred in 3 patients (i.e., 3 patients had left-sided symptoms, yet a positive right-sided biopsy).
Tissue Biopsy Related Adverse Events	Durling, 2014	Prospective case-series	Not reported	250 patients	Initial bilateral temporal artery biopsies	0.8% (2 patients returned for minor irritation) 0% had no observed cases of infection, unusual bleeding, or seventh nerve injury relating to the biopsy.	 Limited follow-up on patients/ Lack of follow-up time may underestimate rate of TAB related complications. Patients were all given specific instructions to call and/or return if they had any concerns. Only 2 patients in follow-up returned for temporary minor irritation related to the incision.

- Patient important outcomes:

*Study includes both	*Study includes both arms but not in a comparative manner.							

• References:

- Randomized controlled trials:

None

- Comparative observational studies/Single arm:

Author	Year	Title
Durling, B	2014	Incidence of discordant temporal artery biopsy in the diagnosis of giant cell arteritis

- Studies reviewed and excluded:

Author	Year	Title	Comments
		Comparison of magnetic resonance angiography and (18)F-	
		fluorodeoxyglucose positron emission tomography in large-	
K. A. Quinn	2018	vessel vasculitis	Mixed patients. No TAB used. Exclude
		(18) F-Fluorodeoxyglucose-Positron Emission Tomography As	
		an Imaging Biomarker in a Prospective, Longitudinal Cohort of	Biopsy performed in one patient only.
P. C. Grayson	2018	Patients With Large Vessel Vasculitis	Exclude
			No patient important outcomes. Not
A. T.			enough data for diagnostic accuracy
Cristaudo	2016	The impact of temporal artery biopsy on surgical practice	outcome. Exclude
			No patient important outcomes. Not
		The effect of temporal artery biopsy on the treatment of	enough data for diagnostic accuracy
K. Le	2015	temporal arteritis	outcome. Exclude
A. Cetinkaya	2008	Intraoperative predictability of temporal artery biopsy results	No outcomes of interest. Exclude
			No patient important outcomes. Not
			enough data for diagnostic accuracy
E. W. Chong	2005	Is temporal artery biopsy a worthwhile procedure?	outcome. Exclude

			No patient important outcomes. Not
		Increase in the length of superficial temporal artery biopsy	enough data for diagnostic accuracy
C. P. Au	2016	over 14 years	outcome. Exclude
			No patient important outcomes. Not
		Rate of discordant findings in bilateral temporal artery biopsy	enough data for diagnostic accuracy
G. S. Breuer	2009	to diagnose giant cell arteritis	outcome. Exclude
			No patient important outcomes. Not
			enough data for diagnostic accuracy
J. K. Hall	2003	The role of unilateral temporal artery biopsy	outcome. Exclude
			No patient important outcomes. Not
H. V. Danesh-		Low diagnostic yield with second biopsies in suspected giant	enough data for diagnostic accuracy
Meyer	2000	cell arteritis	outcome. Exclude
			No patient important outcomes for this
0.		Giant cell arteritis in Iceland. An epidemiologic and	PICO. Not enough data for diagnostic
Baldursson	1994	histopathologic analysis	accuracy outcome. Exclude
M. A.			No patient important outcomes for this
Gonzalez-		Temporal arteritis in a northwestern area of Spain: study of 57	PICO. Not enough data for diagnostic
Gay	1992	biopsy proven patients	accuracy outcome. Exclude
			Study does not specify if biopsies were
R. B. Kent	1990	Temporal artery biopsy	unilateral or bilateral. Exclude
			Study does not distinguish between
S. Hall	1983	The therapeutic impact of temporal artery biopsy	unilateral and bilateral biopsies. Exclude
		The value of FDG-PET in the diagnosis of large-vessel vasculitis	Irrelevant intervention – no biopsies.
Ma Walter	2005	and the assessment of activity and extent of disease	Exclude

- **PICO question 2:** In patients with suspected GCA, what is the impact of a short segment temporal artery biopsy (less than 1 cm) versus a longer biopsy (greater than 1cm) on diagnostic accuracy, disease-related outcomes, and tissue biopsy-related adverse events?
- Critical Outcomes: Disease activity, diagnostic accuracy, clinical symptoms, damage from disease (e.g., visual loss), pain, scarring, injury to tissue biopsied.

- 2. In patients with suspected GCA, what is the impact of a short segment temporal artery biopsy (less than 1 cm) versus a longer biopsy (greater than 1cm) on diagnostic accuracy, disease-related outcomes, and tissue biopsy-related adverse events?
 - No Comparative Data
- 3. In patients with suspected GCA, what is the impact of a short segment temporal artery biopsy (less than 1 cm) on diagnostic accuracy, disease-related outcomes, and tissue biopsy-related adverse events?
 - No Data Available
- 4. In patients with suspected GCA, what is the impact a long biopsy (greater than 1 cm) on diagnostic accuracy, disease-related outcomes, and tissue biopsy-related adverse events?
 - No Direct Evidence Available; Indirect Evidence Below:

Outcomes	Author, year	Study type	Duration of follow up	Population	Intervention used in relevant population	Results	Comments
Damage from disease: Ischemic Optic Neuropathy; Clinical Symptoms: Vision Loss, Headache	Roth, A 1984	Retrospective Case-Series	Not Reported	51 patients Divided into 3 specimen groups. Group 1à7 patients (13.7%) with abnormal biopsy specimens and clinically responsive to RX. Group 2à 11 patients (21.6%) normal biopsy and clinically responsive to RX. Group 3- 33 (64.7) normal biopsy and clinically unresponsive to RX.	TAB & Steroids (Clinical responsive defined as responsive to steroids with resolution of symptoms within 48 hours and reduction of ESR within three weeks after treatment)	ION in Group 1, 2, 3à 14% [1/7]; 9% [1/11]; 18%[6/33]. Decreased vision: highest in group 3 24% [8/22] vs. Group 1 and 2 14%[1/7] and 18% [2/11], respectively. Headache: 43% [3/7] Group 1; 18% [2/11] Group 2; 45% [15/33] Group 3.	Indirect evidence. All three groups have a mean biopsy length of greater than 1 cm. Group 3 included the group with the highest rate of ION, headache, and vision loss with normal biopsy and no response to treatment (most likely not GCA patients) Since all three groups included a wide range of lengths; [6-25]; [6-28]; [4-24] biopsy length not related to clinical outcomes.
Abnormal Temporal Biopsy	Roth, A 1984	Retrospective Case-Series	Not Reported	As Above	TAB and Steroids.	-Group with biopsy proven abnormalities had the shortest mean specimen length. (Group 1àThe abnormal biopsy group clinically responsive to treatment included a mean length of specimen of 12mm and a range of 6-25 mm.	Indirect evidence, since all three patient groups were suspected of GCA include a mean of >12mm/ "greater than 1 CM"; specimen length not strongly related to diagnostic accuracy of disease vs. response to treatment.

		Group 2à The normal biopsy group with a mean of 17.2 mm and range of 6-28.)
		-7/51 patients with suspected GCA had abnormal biopsy results. Mean lengthà 12mm; range (6-25)

- References:
- Randomized Controlled Trials: None
- Comparative Observational Studies:

None

- Included Single Arm studies:

Author	Year	Title
Roth, A	1984	The ultimate diagnoses of patients undergoing temporal artery biopsies

- Studies reviewed and excluded:

Some studies assess short segment biopsy but do not present test accuracy results by comparing a short temporal artery biopsy to a reference test, and do not present patient important outcome (like Papadakis et al suggested by the core team: *Papadakis, Marios et al. Temporal artery biopsy in the diagnosis of giant cell arteritis: Bigger is not always better. The American Journal of Surgery, Volume 215, Issue 4, 647 - 650,* where there is information TAB +/- but not data into the length, it's an average length that is very close to 1, so some patients were >1 And some have <1).

Author	Year	Title	Comments
		Diagnosis of giant cell arteritis: when should we biopsy the	No patient important outcomes. Not enough data for
O. Hussain	2016	temporal artery?	diagnostic accuracy outcome. Exclude
		The effect of temporal artery biopsy on the treatment of	No patient important outcomes. Not enough data for
K. Le	2015	temporal arteritis	diagnostic accuracy outcome. Exclude
A.		Intraoperative predictability of temporal artery biopsy results	No outcomes of interest. Exclude
Cetinkaya	2008		

		Increase in the length of superficial temporal artery biopsy over	No patient important outcomes. Not enough data for
C. P. Au	2016	14 years	diagnostic accuracy outcome. Exclude
E.	2016		No patient important outcomes. Not enough data for
Ypsilantis	2011	Importance of specimen length during temporal artery biopsy	diagnostic accuracy outcome. Exclude
R. Taylor- Gjevre	2005	Temporal artery biopsy for giant cell arteritis	No patient important outcomes. Not enough data for diagnostic accuracy outcome. Exclude
N. Ray- Chaudhuri	2002	Effect of prior steroid treatment on temporal artery biopsy findings in giant cell arteritis	Outomes were not measured by length of biopsies. Exclude
H. V. Danesh- Meyer	2000	Low diagnostic yield with second biopsies in suspected giant cell arteritis	No patient important outcomes. Not enough data for diagnostic accuracy outcome. Exclude
O. Baldursson	1994	Giant cell arteritis in Iceland. An epidemiologic and histopathologic analysis	No patient important outcomes for this PICO. Not enough data for diagnostic accuracy outcome. Exclude
R. B. Kent	1990	Temporal artery biopsy	Outomes were not measured by length of biopsies. Exclude
R. W. Ikard	1988	Clinical efficacy of temporal artery biopsy in Nashville, Tennessee	No patient important outcomes. Not enough data for diagnostic accuracy outcome. Exclude
Ma Walter	2005	The value of FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease	Irrelevant intervention – no biopsies. Exclude

- **PICO question 3:** In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy within two weeks of starting oral glucocorticoids versus after two weeks of initiating glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?
- **Critical Outcomes:** Diagnostic Accuracy, Disease activity, Clinical symptoms, Damage from Disease (e.g., visual loss), Serious Adverse Effects, Toxicity Leading to Drug Discontinuation, Pain, Scarring, Injury to tissue biopsied.
- 5. In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy within two weeks of starting oral glucocorticoids versus after two weeks of initiating glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?
 - No Comparative Data Avaliable

6. In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy **within** two weeks of starting oral glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population	Intervention	Results	Comments
Diagnostic Accuracy treatment within 2 weeks of treatment	Allison, M 1984	Retrospective observational	1 week	Group 1: 51 documented GCA patients received Rx + TAB in 1 week or less. Group 2: 20 received TX + Rx after 1 week.	TAB + Oral Glucocorticoids	 82% of 61 patients [group 1 and 2] biopsied before treatment had active histological inflammation. Percentage falls to 60% in the first week of treatment and 10% thereafter. 26/51 (52%) biopsies positive within the first week of treatment. 21/51 (40%) negative within one week of treatment. 4/51 (8%) positive biopsy for atypical arteritis with absent giant 	Of the 20 patients in group 2 who had been on prednisolone for more than a week 7/20 were biopsied in the second week.
	Burry, D 2012	Retrospective observational	< 2 weeks	Group 1: 57 GCA patients 63% (36/57) on steroids for less than 2 weeks at time of TAB. Refined sample: 27/57 GCA patients aged > 50 years with erythrocyte sedimentation rate (ESR) > 50 mm/h at time of TAB. 70% (19/27) on steroids for < 2 weeks.	TAB+ Oral Glucocorticoids	cells. Group 1: (15/36) positivity of biopsy for those on steroids for < [less than] 2 weeks. Stratified sample: 51.9% (11/27) positivity of biopsy group overall. 57% increase in positivity rate (11/19) among steroid patients for less than two weeks. (Use of the American College of Rheumatology criteria better stratifies the likelihood of a positive diagnosis.) -No FP and FN data available; repeat biopsies not done.	For the refined sample: Of the five criteria ACR criteria, they took the two for which we had data (age >50 years and ESR >50 mm/h) and looked at the rates of positive biopsy in the group on steroids for <2 weeks at the time of the biopsy.
	Achkar, 1994	Case series	<2 weeks	535 patients who had a TAB at Mayo Clinic between 1988 and 1991	TAB for GCA (3-4 cm section), 2nd side biopsied if	+TAB findings in 9/32	

	frozen section negative. Retrospectively evaluated prior exposure. Used standardized da collection to record information.	CS	

7. In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy **after** two weeks of initiating glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population	Intervention	Results	Comments
Number of positive TABs (After 4 weeks of treatment)	Chaudhuri, N. 2002	Prospective Observationa I; Case Series	1 week; at 2- 3 weeks; or after 4 weeks	11 Patients meeting the American College of Rheumatology criteria for diagnosis of GCA	Temporal artery biopsy within 1 week, at 2–3 weeks, or after 4 weeks of corticosteroid treatment.	 -9 of 11 (82%) patients had positive temporal artery biopsies. 6 of 7 (86%) biopsies performed after 4 or more weeks of steroid treatment were positive. -6/9 (67%) patients had a positive biopsy after 25 days or more of corticosteroids. -The longest steroid to biopsy interval was 45. 	All patients were subsequently confirmed to have GCA clinically on the basis of their presentation, response to steroid treatment, and clinical course.
	Achkar, 1994	Case series	<2 weeks	535 patients who had a TAB at Mayo clinic between 1988 and 1991	TAB for GCA (3-4 cm section), 2nd side biopsied if frozen section negative. Retrospectively evaluated prior CS exposure. Used standardized data collection to record information	+TAB findings in 47/117	

• References:

- Randomized controlled trials:
 - o None
- Comparative observational studies:
 - \circ None
- Single Arm studies:

Author	Year	Title
Chaudhuri, N	2002	Effect of prior steroid treatment on temporal artery biopsy findings in giant cell arteritis
Allison, M	1984	Temporal artery biopsy and corticosteroid treatment
Burry, D	2012	Does preoperative steroid treatment affect the histology in giant cell (cranial) arteritis?
Ashkar, A	1994	How Does Previous Corticosteroid Treatment Affect the Biopsy Findings in Giant Cell (Temporal) Arteritis?

- **PICO question 3:** In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy within two weeks of starting oral glucocorticoids versus after two weeks of initiating glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?
- Critical Outcomes: Diagnostic Accuracy, Disease activity, Clinical symptoms, Damage from Disease (e.g., visual loss), Serious Adverse Effects, Toxicity Leading to Drug Discontinuation, Pain, Scarring, Injury to tissue biopsied.
- 8. In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy within two weeks of starting oral glucocorticoids versus after two weeks of initiating glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?
 - No Comparative Data Avaliable
- 9. In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy **within** two weeks of starting oral glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population	Intervention	Results	Comments
Diagnostic Accuracy treatment within 2 weeks of treatment	Allison, M 1984	,		Group 1: 51 documented GCA patients received Rx + TAB in 1 week or less. Group 2: 20 received TX + Rx after 1 week.	TAB + Oral Glucocorticoids	 82% of 61 patients [group 1 and 2] biopsied before treatment had active histological inflammation. Percentage falls to 60% in the first week of treatment and 10% thereafter. 26/51 (52%) biopsies positive within the first week of treatment. 21/51 (40%) negative within one week of treatment. 4/51 (8%) positive biopsy for atypical arteritis with absent giant cells. 	Of the 20 patients in group 2 who had been on prednisolone for more than a week 7/20 were biopsied in the second week.
	Burry, D 2012	Retrospective observational	< 2 weeks	Group 1: 57 GCA patients 63% (36/57) on steroids for less than 2 weeks at time of TAB. Refined sample: 27/57 GCA patients aged > 50 years with erythrocyte sedimentation rate (ESR) > 50 mm/h at time of TAB. 70% (19/27) on steroids for < 2 weeks.	TAB+ Oral Glucocorticoids	Group 1: (15/36) positivity of biopsy for those on steroids for < [less than] 2 weeks. Stratified sample: 51.9% (11/27) positivity of biopsy group overall. 57% increase in positivity rate (11/19) among Steroid patients for less than two weeks. (Use of the American College of Rheumatology criteria better stratifies the likelihood of a positive diagnosis.) -No FP and FN data available; repeat biopsies not done.	For the refined sample: Of the five criteria ACR criteria, they took the two for which we had data (age >50 years and ESR >50 mm/h) and looked at the rates of positive biopsy in the group on steroids for <2 weeks at the time of the biopsy.
	Achkar, 1994	Case series	<2 weeks	535 patients who had a TAB at Mayo Clinic between 1988 and 1991	TAB for GCA (3-4 cm section), 2nd side biopsied if frozen section negative. Retrospectively	+TAB findings in 9/32	

10. In patients with suspected GCA, what is the impact of obtaining the temporal artery biopsy **after** two weeks of initiating glucocorticoids on diagnostic accuracy, disease-related outcomes, treatment-related adverse events, and tissue biopsy-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population	Intervention	Results	Comments
Number of positive TABs (After 4 weeks of treatment)	Chaudhuri, N. 2002	Prospective Observationa I; Case Series	1 week; at 2- 3 weeks; or after 4 weeks	11 Patients meeting the American College of Rheumatology criteria for diagnosis of GCA	Temporal artery biopsy within 1 week, at 2–3 weeks, or after 4 weeks of corticosteroid treatment.	 -9 of 11 (82%) patients had positive temporal artery biopsies. 6 of 7 (86%) biopsies performed after 4 or more weeks of steroid treatment were positive. -6/9 (67%) patients had a positive biopsy after 25 days or more of corticosteroids. -The longest steroid to biopsy interval was 45. 	All patients were subsequently confirmed to have GCA clinically on the basis of their presentation, response to steroid treatment, and clinical course.
	Achkar, 1994	Case series	<2 weeks	535 patients who had a TAB at Mayo Clinic between 1988 and 1991	TAB for GCA (3-4 cm section), 2nd side biopsied if frozen section negative. Retrospectively evaluated prior CS exposure. Used standardized data collection to record information.	+TAB findings in 47/117	

- References:
- Randomized controlled trials:
 - o None
- Comparative observational studies:

- o None
- Single Arm studies:

Author	Year	Title
Chaudhuri, N	2002	Effect of prior steroid treatment on temporal artery biopsy findings in giant cell arteritis
Allison, M	1984	Temporal artery biopsy and corticosteroid treatment
Burry, D	2012	Does preoperative steroid treatment affect the histology in giant cell (cranial) arteritis?
Ashkar, A	1994	How Does Previous Corticosteroid Treatment Affect the Biopsy Findings in Giant Cell (Temporal) Arteritis?

Imaging, laboratory tests, and monitoring

- **PICO question 4:** In patients with suspected GCA, what is the impact of utilizing temporal artery ultrasound versus temporal artery biopsy on diagnostic accuracy, disease-related outcomes, and tissue biopsy related-adverse events?
- Critical Outcomes: Diagnostic accuracy, Disease activity, Clinical symptoms, Damage from disease (e.g., visual loss, strokes), Pain, Scarring, Injury to tissue biopsied.
- 11. In patients with suspected GCA, what is the impact of utilizing temporal artery ultrasound versus temporal artery biopsy on diagnostic accuracy, disease-related outcomes, and tissue biopsy related-adverse events?

	Certainty assessment							atients	Effect	t	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Color- Duplex Sonography Guided TAB	Standard TAB	Relative (95% Cl)	Absolute (95% CI)	Certainty Importance

Positive Biopsy Rate in GCA With Classic Transmural Inflammation

1	randomised trials	not serious	serious	serious ^a	not serious	none	17/50 (34.0%)	10/55 (18.2%)	OR 1.06 (0.47 to 2.39)	9 more per 1,000 (from 87 fewer to 165 more)	
---	----------------------	-------------	---------	----------------------	-------------	------	---------------	---------------	-------------------------------	--	--

CI: Confidence interval; OR: Odds ratio

Explanations

a. This study utilizes ultrasound-guided TAB vs standard TAB

- 12. In patients with suspected GCA, what is the impact of utilizing temporal artery ultrasound on diagnostic accuracy, disease-related outcomes, and tissue biopsy related-adverse events?
 - **Test Accuracy Results:** Ultrasound [Halo Sign Alone] of Temporal Artery in GCA cases [based on TAB]:

Author, year	Patient Selection	Risk of bias	Index Test	Risk of bias	Reference Standard	Risk of bias	Flow and timing Rsk of bias	ТР	FN	FP	TN	Sens	Spec	PPV/NPV
Reinhard, 2004	Forty-eight patients underwent biopsy of the temporal artery following ultrasound examination.	Low	Standardized ultrasound of temporal artery was performed by one investigator	Not specified if the sonographer was aware of biopsy result	TAB; Unilateral temporal artery was performed in 48 patients.	Not specified if the sonographer was aware of biopsy result	High. Not all patients underwent biopsy	22	11	1	14	67% (22/33)	93% (14/15)	PPV= 96% (22/23); NPV= 56% (14/25)
Black, 2013	50 GCA patients , retrospective chart review	low	75% of cases, ultrasound was performed by one sonographer	Not specified if the sonographer was aware of biopsy result	Temporal artery biopsy was only performed in 21 patients	Not specified if the sonographer was aware of biopsy result	High. Not all patients underwent biopsy	2	3	3	13	40%	81%	PPV = 40% and NPV= 81%
Luqmani	381 patients with newly suspected GCA	low	Biopsy	Low	2-week and 6- month clinical diagnosis	high	low	101	156	0	124	39%	100%	PPV = 100% and NPV = 44%

13. In patients with suspected GCA, what is the impact of temporal artery biopsy on diagnostic accuracy, disease-related outcomes, diagnostic testing-related adverse events, and tissue biopsy-related adverse events?

- Patient important outcomes:

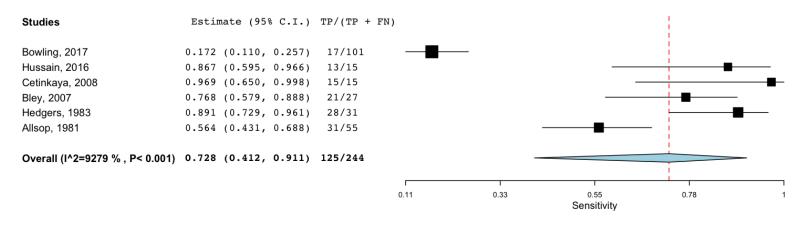
Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results
Operative complications	Cetinkaya, 2008	Retrospective Single center,	Nov 2002- June 2007	108 patients undergoing TAB for suspected	,	"There were no surgery-related complications."
(390 patients in	2000	one provider	June 2007	TAB for suspected		

4 studies had no complications				GCA(mean age 72.4y, 78		
from the temporal artery biopsy, the results are	Yuksel,Retrospective,Jan 2011 –2017single centerDec 2016			42 patients with GCA diagnosis (ACR 1990 criteria) who underwent TAB (20F, mean age 66y)	Temporal artery biopsy, unilateral in all but 2 patients	"No complications were observed postoperatively."
consistent)	Hedgers, 1983	Retrospective, Jan 1968 - single center Dec 1978		193 patients who underwent TAB.	Temporal artery biopsy, at least 1cm artery (no specifics on unilaterality)	"No complications occurred from any of the biopsy procedures done on patients in the study group, and we are unaware of any occurring in the 193 patients who underwent a biopsy."
	Goslin, 2011	Retrospective, single center	Jul 1997-Jun 2007	47 patients underwent 53 TAB	Mean length 1.42cm	"There were not complications with short term, in-hospital follow up."

- Test Accuracy results:

Sensitivity	0.73 (95% CI: 0.41 to 0.91)				Desug	1	р/ БО Д/			
Specificity	0.94 (95% CI: 0.68 to 0.99)				Preva	lence 20	% 50%			
				Factors that r	nay decrease ce	rtainty of evide	ence	Effect per 1,000) patients tested	Test accuracy CoE
Outcome	№ of studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 50%	
True positives (patients with Giant cell arteritis	6 studies 244 patients	cohort & case-control type studies	serious ^a	not serious	very serious ^b	very serious	none	146 (82 to 182)	364 (206 to 456)	€ VERY LOW
False negatives (patients incorrectly classified as having Giant cell arteritis)	not							54 (18 to 118)	136 (44 to 294)	
True negatives (patients without Giant cell arter	6 studies 324 patients	cohort & case-control type studies	serious ^a	not serious	very serious ^d	serious ^e	none	752 (547 to 793)	470 (342 to 496)	
False positives (patients incorrectly classified as having Giant cell arteritis)								48 (7 to 253)	30 (4 to 158)	

- Explanations


- a. the index test results were interpreted with knowledge of the results of the reference standard, the reference standard results were interpreted with knowledge of the results of the index test

- b. The pooled sensitivity does not cross the confidence interval in Bowling, 2017. the measure of heterogeneity I2= 93%.

- c. The pooled sensitivity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.

- d. The pooled specificity does not cross the confidence interval in Hussein, 2016. the measure of heterogeneity I2= 91%.

- e. The pooled specificity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.

Studies	Estimate (95% (C.I.)	TN/(FP + TN)				
Bowling, 2017	0.917 (0.378, 0	.995)	5/5				
Hussain, 2016	0.531 (0.422, 0	.636)	43/81				
Cetinkaya, 2008	0.973 (0.912, 0	.992)	91/93				
Bley, 2007	0.917 (0.378, 0	.995)	5/5				
Hedgers, 1983	0.992 (0.882, 0	.999)	60/60				
Allsop, 1981	0.975 (0.906, 0	.994)	78/80				
Overall (I^2=9080 % , P< 0.001)	0.940 (0.684, 0	.991)	282/324				
				r	1	1	T
				0.38	0.53	0.69 Specificity	0.84

• References:

- Randomized controlled trials:

Author	Year	Title
Germano, G.	2015	Is colour duplex sonography-guided temporal artery biopsy useful in the diagnosis of giant cell arteritis? A
		randomized study

- Comparative observational studies: None
- Single arm and Test Accuracy studies:

|--|

Test accuracy	Bowling	2017	Temporal artery biopsy in the diagnosis of giant cell arteritis: Does the end justify the means?
, results	Hussain	2016	Diagnosis of giant cell arteritis: when should we biopsy the temporal artery?
	Bley	2007	
			Diagnostic value of high-resolution MR imaging in giant cell arteritis
	Allsop	1981	Temporal artery biopsy in giant-cell arteritis. A reappraisal
	Black, R.	2013	The use of temporal artery ultrasound in the diagnosis of giant cell arteritis in routine practice
	Reinhard, M	2004	Color-coded sonography in suspected temporal arteritis-experiences after 83 cases
	Luqmani	2016	The Role of Ultrasound Compared to Biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study
Patients important	Yuksel	2017	Clinical correlation of biopsy results in patients with temporal arteritis
outcomes	Goslin	2011	Temporal artery biopsy as a means of diagnosing giant cell arteritis: is there over- utilization?
	Cetinkaya	2008	Intraoperative predictability of temporal artery biopsy results
	Hedges	1983	The clinical value of negative temporal artery biopsy specimens

Studies reviewed and excluded:

Author	Year	Title	Comment
		Incidence and predictors of large-artery complication (aortic	Exclude. Incidence study. Does
D. M.		aneurysm, aortic dissection, and/or large-artery stenosis) in patients	not address any arm of PICO
Nuenninghoff	2003	with giant cell arteritis: a population-based study over 50 years	question
A. W.			
Stanson	2000	Imaging findings in extracranial (giant cell) temporal arteritis	Exclude. Review article
		Positron emission tomography in giant cell arteritis and polymyalgia	Exclude. Study did not specify GCA
D. Blockmans	2000	rheumatica: evidence for inflammation of the aortic arch	and PMR results
			Exclude. Does not address any
A. Brack	1999	Disease pattern in cranial and large-vessel giant cell arteritis	arm of PICO question

			Exclude. Temporal arteriography
		Combined temporal arteriography and selective biopsy in suspected	is not utilized anymore in clinical
J. R. Sewell	1980	giant cell arteritis	practice

- **PICO question 5:** In patients with suspected GCA, what is the impact of temporal artery MRI versus temporal artery biopsy on diagnostic accuracy, disease-related outcomes, diagnostic testing-related adverse events, and tissue biopsy-related adverse events?
- **Critical Outcomes:** Disease activity, clinical symptoms, damage from disease (e.g., visual loss, strokes), pain, scarring, injury to tissue biopsied, adverse reaction to contrast exposure (e.g., Gadolinium).
- 14. In patients with suspected GCA, what is the impact of temporal artery MRI versus temporal artery biopsy on diagnostic accuracy, disease-related outcomes, diagnostic testing-related adverse events, and tissue biopsy-related adverse events?
 - No comparative data available
- 15. In patients with suspected GCA, what is the impact of temporal artery MRI on diagnostic accuracy, disease-related outcomes, diagnostic testing-related adverse events, and tissue biopsy-related adverse events?
 - Test Accuracy results: Reference test is clinical diagnosis

Sensitivity	0.73 (95% CI:	.73 (95% Cl: 0.60 to 0.83)			Broy		2/					
Specificity	0.88 (95% CI:	.88 (95% CI: 0.82 to 0.92)				Prevalence 55%						
Orthoma			Chudu dasisa	Factors that may decrease certainty of evidence					Effect per 1,000 patients tested	Test accuracy		
Outcome		patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 55%	CoE		
True positives (patients with Giant Cell arteritis)		7 studies 216 patients	cohort & case-control type studies	not serious	not serious	serious ^a	serious ^b	none	403 (329 to 459)			
False negatives (patients incorrectly classified as Giant Cell arteritis)	(patients incorrectly classified as not having								147 (91 to 221)			
True negatives (patients without Giant Cell arteritis)		7 studies 179 patients	cohort & case-control type studies	not serious	not serious	not serious	very serious c	none	395 (367 to 414)			
False positives (patients incorrectly classified as having Giant Cell arteritis)									55 (36 to 83)			

- Explanations

- a. The pooled sensitivity does not cross the confidence interval in Guinoi, 2008. the measure of heterogeneity I2= 63%.
- b. The pooled sensitivity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.
- c. The pooled specificity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.

- Test Accuracy results: Reference test is temporal artery biopsy

Sensitivity	0.82 (95% CI: 0.64 to 0.93)				Draw							
Specificity	0.74 (95% CI:	0.74 (95% CI: 0.63 to 0.82)				Prevalence 55%						
Outcomo	Nº of studies (№ of		Study design		Factors that may decrease certainty of evidence Effect per 1,000 patient tested					Test accuracy		
Outcome		patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 55%	CoE		
True positives (patients with Giant Cell arteritis	True positives (patients with Giant Cell arteritis)		cohort & case-control type studies	not serious	not serious	serious ^a	serious ^b	none	454 (349 to 510)			
False negatives (patients incorrectly classified as Giant Cell arteritis)	not having								96 (40 to 201)			
True negatives (patients without Giant Cell arteritis)		6 studies 85 patients	cohort & case-control type studies	not serious	not serious	not serious	very serious	none	332 (284 to 369)			
False positives (patients incorrectly classified as having Giant Cell arteritis)									118 (81 to 166)			

- Explanations

- a. The pooled sensitivity does not cross the confidence interval in Guinoi, 2008. the measure of heterogeneity I2= 69%.
- b. The pooled sensitivity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.
- c. The pooled specificity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.

16. In patients with suspected GCA, what is the impact of temporal artery biopsy on diagnostic accuracy, disease-related outcomes, diagnostic

testing-related adverse events, and tissue biopsy-related adverse events?

- Patient important outcomes:

Outcomes	Author,	Study type	Duration of	Population (number and	Intervention used in relevant	Results
	year		follow up	description)	population (Describe the	
					intervention)	
Operative	Cetinkaya,	Retrospective	Nov 2002-	108 patients undergoing	Temporal artery biopsy, all	"There were no surgery-related
complications	2008	Single center,	June 2007	TAB for suspected	unilateral	complications."
(390 patients in		one provider		GCA(mean age 72.4y, 78		
4 studies had no				F)		

complications from the temporal artery	Yuksel, 2017	Retrospective, single center	Jan 2011 – Dec 2016	42 patients with GCA diagnosis (ACR 1990 criteria) who underwent	Temporal artery biopsy, unilateral in all but 2 patients	"No complications were observed postoperatively."
biopsy, the results are consistent)	Hedgers, 1983	Retrospective, single center	Jan 1968 - Dec 1978	TAB (20F, mean age 66y) 193 patients who underwent TAB.	Temporal artery biopsy, at least 1cm artery (no specifics on unilaterality)	"No complications occurred from any of the biopsy procedures done on patients in the study group, and we are unaware of any occurring in the 193 patients who underwent a biopsy."
	Goslin, 2011	Retrospective, single center	Jul 1997-Jun 2007	47 patients underwent 53 TAB	Mean length 1.42cm	"There were not complications with short term, in-hospital follow up."

- Test Accuracy results:

Sensitivity	0.73 (95% CI: 0.41 to 0.91)	.73 (95% Cl: 0.41 to 0.91)					9/ 5.09/			
Specificity	0.94 (95% CI: 0.68 to 0.99)				Prevalence 20% 50%					
				Factors that may decrease certainty of evidence Effect per 1,000 patients tested) patients tested	_
Outcome	№ of studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 50%	Test accuracy CoE
True positives (patients with Giant cell arteritis)	0 studies patients	cohort & case-control type studies	serious ^a	not serious	very serious ^b	very serious	none	146 (82 to 182)	364 (206 to 456)	
False negatives (patients incorrectly classified as having Giant cell arteritis)	not							54 (18 to 118)	136 (44 to 294)	
True negatives (patients without Giant cell arter	0 studies itis) patients	cohort & case-control type studies	serious ^a	not serious	very serious ^d	serious ^e	none	752 (547 to 793)	470 (342 to 496)	
False positives (patients incorrectly classified as having Giant cell arteritis)								48 (7 to 253)	30 (4 to 158)	

- Explanations

- a. The index test results were interpreted with knowledge of the results of the reference standard, the reference standard results were interpreted with knowledge of the results of the index test

- b. The pooled sensitivity does not cross the confidence interval in Bowling, 2017. the measure of heterogeneity I2= 93%.

- c. The pooled sensitivity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.

- d. The pooled specificity does not cross the confidence interval in Hussein, 2016. the measure of heterogeneity I2= 91%.

- e. The pooled specificity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth.

- References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies and test accuracy studies:

	Author	Year	Title
Test accuracy	Bowling	2017	Temporal artery biopsy in the diagnosis of giant cell arteritis: Does the end justify the means?
results	Hussain	2016	Diagnosis of giant cell arteritis: when should we biopsy the temporal artery?
	Klink	2014	Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial
	Hauenstein	2012	Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis
	Ghinoi	2008	1T magnetic resonance imaging in the diagnosis of giant cell arteritis: comparison with ultrasonography and physical examination of temporal arteries
	Bley	2007	Diagnostic value of high-resolution MR imaging in giant cell arteritis
	Bley	2005	Assessment of the cranial involvement pattern of giant cell arteritis with 3T magnetic resonance imaging
	Allsop	1981	Temporal artery biopsy in giant-cell arteritis. A reappraisal
	Bley	2008	Comparison of duplex sonography and high-resolution magnetic resonance imaging in the diagnosis of giant cell (temporal) arteritis
Patients important	Yuksel	2017	Clinical correlation of biopsy results in patients with temporal arteritis
outcomes	Goslin	2011	Temporal artery biopsy as a means of diagnosing giant cell arteritis: is there over-utilization?

Cetinkaya	2008	Intraoperative predictability of temporal artery biopsy results
Hedges	1983	The clinical value of negative temporal artery biopsy specimens

- **PICO question 6:** In patients with suspected GCA, what is the impact of imaging the large vessels versus clinical assessment alone on diagnostic accuracy, disease-related outcomes, and diagnostic testing-related complications?
- **Critical Outcomes:** Disease activity, clinical symptoms, damage from disease (e.g., Ischemic limbs), adverse reaction to contrast exposure including nephrotoxicity, death
- 17. In patients with suspected GCA, what is the impact of imaging the large vessels versus clinical assessment alone on diagnostic accuracy, diseaserelated outcomes, and diagnostic testing-related complications?
 - No Comparative Data Available
- 18. In patients with suspected GCA, what is the impact of imaging the large vessels on diagnostic accuracy, disease-related outcomes, and diagnostic testing-related complications?
 - Patient Important Outcomes:

Outcomes	Author, year	Study type	Duratio n of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Disease activity; Ultrasound	Schmid t, 2008	Case-control	9 years	176 GCA patients	Ultrasound of temporal artery, axillary artery, subclavian artery, proximal brachial artery	30% of patients showed ultrasound changes. Temporal artery (62%), Axillary artery (98%), subclavian artery (61%), proximal brachial artery (21%). Findings were bilateral in 79%.	
Diagnostic accuracy; FDG- PET vs US	Pfaden hauer, 2011	Observationa I cohort	Not reporte d	46 GCA patients	FDG-PET imaging of vertebral arteries as	33% (15/46) of GCA patients with abnormal PET findings	Extracranial vertebral arteries are a

					compared to ultrasound and biopsy	had high FDG uptake within the vertebral artery. Ultrasonography found 22% (10/46) PET is superior to ultrasound in detecting vertebral artery abnormalities in active GCA	good target for PET imaging.
Disease Activity; FDG- PET/CT; MRI MRA 2 studies used FDG-PET at baseline/befor e treatment. FDG-PET	Blockm ans, 2006	Retrospectiv e	3 years	35 GCA patients	FDG-PET before treatment, 3 mos after treatment, 6 mos after treatment	FDG uptake noted in 83% of patients. Subclavian (74%), thoracic aorta (51%), abdominal aorta (54%), Femoral artery (37%)	Total vascular score (TVC) decreased significantly after 3 months of steroid treatment (p<0.0005). but did not further decrease at 6 months
included a higher sensitivity in patients with high CRP vs ESR. MRA and FDG-PET overall agreement is 72%. Steroids significantly reduces the diagnostic	Aide, 2017	Retrospectiv e, chart review	62 months	25 GCA patients with positive FDG PET/CT at baseline	FDG PET/CT were done at baseline, then after 3 months of clinically controlled disease	On follow up second scan showed: 16% (4/25) had negative scan, 32% (8/25) had decreased uptake, 40% (10/25) had unchanged uptake, 12% (3/25) had worsening uptake. In total, 21/25 (84%) of patients FDG PET/CT remained positive on repeat scan despite clinically controlled disease with glucocorticoids	
accuracy of FDG-PET after 10 days of treatment with	Walter, 2005	Prospective observational	24 months	20 consecutive GCA patients, classified using ACR criteria	FDG PET, visually graded using four-point scale	Analysis in those with a high ESR revealed a sensitivity of 78.6% for patients suffering from GCA.	Study mostly combined the data on GCA and TAK.

a diagnostic window of 3 days.						Analysis in those with a high CRP revealed a sensitivity of 93.7%f or patients suffering from GCA.	Only presented sensitivity data separately on GCA and TAK
	Both, 2008	Observationa l, cross sectional	Cross sectiona I	25 GCA patients with complicated course of disease despite immunosuppressi ve therapy	MRI, thoracic FDG-PET and whole body FDG- PET	Active disease as detected by MRI in 88% (22/25), thoracic FDG-PET 56% (14/25), and whole body FDG-PET 80% (20/25) patients. There was no concordance with MRI and BVAS.2 (R ₂ = - 0.064, p= 0.76), weak correlation of whole body PET with BVAS.2 (R ₂ =0.258, p=0.21)	Enrolled GCA patients had persistent disease despite treatment
	Quinn, 2018	Prospective, observational cohort	Not indicate d	84 patients w LVV, but only 35 patients with GCA	MRA, FDG-PET	GCA patients: Overall agreement between MRA and FDG-PET is 72%, Cohen's kappa=0.27	
	Nielsen , 2017	Prospective	2 years	24 newly diagnosed GCA patients. Patient were treated with prednisone 60 mg	FDG-PET	Large vessel GCA was accurately diagnosed in 10/10 patients after 3 days of treatment, but only in 5/14 patients after 10 days of treatment (p< 0.001)	Diagnostic window of 3 days vs. a dramatic decline in 10 days.

Activity; New i, 2018 multi	pective, sicenter, itudinal y	187 GCA pts	Type of imaging study was MRA (72%), CTA (27%) and conventional angiography (1%) 50 patients (27%) were enrolled in the AGATA clinical trial with regular imaging per protocol.	66% of patients with GCA had at least one arterial lesion on first imaging study. By 2 years, 33% of patients had developed a new arterial lesion. -Use of immunosuppressive therapy at entry into the cohort was associated with lower risk of new arterial lesions (p=0.038). -All of the new lesions in this study occurred among patients who had abnormalities on first imaging. Only 40–50% of visits with a new lesion had any symptoms of active disease in the preceding months	For the longitudinal study, the decision regarding timing and type of imaging study was left to the discretion of the treating physician.
-----------------------------	--	-------------	---	--	--

- **Test Accuracy Results:** Ultrasound [Halo Sign Alone] of Temporal Artery in GCA cases [based on TAB]:

Author, year	Patient Selection	Risk of bias	Index Test	Risk of bias	Reference Standard	Risk of bias	Flow and timing Rsk of bias	ТР	FN	FP	TN	Sens	Spec	ΡΡΥ/ΝΡ
Reinhard, 2004	Forty-eight patients underwent biopsy of the temporal artery following	Low	Standardized ultrasound of temporal artery was performed	Not specified if the sonographer was aware of biopsy result	TAB; Unilateral temporal artery was performed in 48 patients.	Not specified if the sonographer was aware	High. Not all patients underwent biopsy	22	11	1	14	67% (22/33)	93% (14/15)	PPV= 96% (22/23); NPV=

	ultrasound examination.		by one investigator			of biopsy result								56% (14/25)
Black, 2013	50 GCA patients, retrospective chart review	low	75% of cases, ultrasound was performed by one sonographer	Not specified if the sonographer was aware of biopsy result	Temporal artery biopsy was only performed in 21 patients	Not specified if the sonographer was aware of biopsy result	High. Not all patients underwent biopsy	2	3	3	13	40%	81%	PPV = 40% and NPV= 81%

- **Test Accuracy Results:** CT/PET of Temporal Artery in GCA cases [based on TAB]:

Sammel, 2019	This is a study of 64 patients who underwent TAB, 12 were positive on pathology. 21 had clinical dx of GCA.	Low	Patients underwent CT/PET	Low, double blinded	Temporal artery biopsy was performed in 58 patients	Low, double blinded	High. Not all patients underwent biopsy	11	1	7	39	92%	85%	PPV = 61% And NPV = 98%
Fuchs, 2012	30 patients with suspected large vessel Vasculitis (24 GCA, 6 TAK)	Low	18F-FDG PET	Low	Expert panel assessment based on ACR criteria from 1990	High	Low	22	8	5	26	73.3%	83.3%	PPV = 88% And NPV = 77%

19. In patients with suspected GCA, what is the impact of clinical assessment alone on diagnostic accuracy, disease-related outcomes, and diagnostic testing-related complications?

- No single arm or test accuracy data available
- References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies and test accuracy studies:

Patient	Author	Year	Title
Important	Quinn, K.	2018	Comparison of magnetic resonance angiography and (18)F-fluorodeoxyglucose positron
Outcomes			emission tomography in large-vessel vasculitis

	Kermani, T.	2018	Arterial lesions in giant cell arteritis: A longitudinal study
	Nielsen, B.	2017	Three days of high-dose glucocorticoid treatment attenuates large-vessel 18F-FDG
			uptake in large-vessel giant cell arteritis but with a limited impact on diagnostic accuracy
	Pfadenhauer,	2011	Vertebral arteries: a target for FDG-PET imaging in giant cell arteritis? Clinical,
	К.		ultrasonographic and PET study in 46 patients
	Schmidt, W.	2008	Ultrasound of proximal upper extremity arteries to increase the diagnostic yield in large-
			vessel giant cell arteritis
	Blockmans, D.	2006	Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis:
			a prospective study of 35 patients
	Aide, H.	2017	Repetitive (18)F-FDG-PET/CT in patients with large-vessel giant-cell arteritis and
			controlled disease
	Walter, M.	2005	The value of FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of
			activity and extent of disease
	Both, M	2008	MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in
			complicated courses of giant cell arteritis
	Black, R.	2013	The use of temporal artery ultrasound in the diagnosis of giant cell arteritis in routine
			practice
	Reinhard, M	2004	Color-coded sonography in suspected temporal arteritis-experiences after 83 cases
Test			
Accuracy	Sammel, A	2019	Diagnostic Accuracy of Positron Emission Tomography/Computed Tomography of the
, local acy			Head, Neck, and Chest for Giant Cell Arteritis: A Prospective, Double-Blind, Cross-
			Sectional Study.
	Fuchs	2012	The impact of 18F-FDG PET on the management of patients with suspected large vessel
		-	vasculitis

- Studies reviewed and excluded:

Author	Year	Title	Comments
		(18) F-Fluorodeoxyglucose-Positron Emission	Exclude. Test accuracy study were done
		Tomography As an Imaging Biomarker in a Prospective,	collectively for "Large Vessel Vasculitis
		Longitudinal Cohort of Patients With Large Vessel	(GCA+TAK)." Not able to determine the
P. C. Grayson	2018	Vasculitis	outcome for GCA specifically.
			Exclude. Study was done collectively for
			"Large Vessel Vasculitis (GCA+TAK)." Not
		3D-black-blood 3T-MRI for the diagnosis of thoracic	able to determine the outcome for GCA
K. M. Treitl	2017	large vessel vasculitis: A feasibility study	specifically.

			Exclude. Test accuracy study were done
			collectively for "Large Vessel Vasculitis
		Association of vascular physical examination findings	(GCA+TAK)." Not able to determine the
P. C. Grayson	2012	and arteriographic lesions in large vessel vasculitis	outcome for GCA specifically.
		[18F] FDG-PET/CT as a new and sensitive imaging	Exclude. Mostly descriptive data only. No
J. C. Henes	2007	method for the diagnosis of large vessel vasculitis	outcome analysis done.
C. Lavado-		(18)F-FDG PET/CT for the detection of large vessel	Exclude. Wrong population. Study on PMR
Perez	2015	vasculitis in patients with polymyalgia rheumatica	patients
		Incidence and predictors of large-artery complication	
		(aortic aneurysm, aortic dissection, and/or large-artery	
D. M.		stenosis) in patients with giant cell arteritis: a	Exclude. Incidence study. Does not address
Nuenninghoff	2003	population-based study over 50 years	any arm of PICO question
A. W.		Imaging findings in extracranial (giant cell) temporal	
Stanson	2000	arteritis	Exclude. Review article
		Positron emission tomography in giant cell arteritis	
		and polymyalgia rheumatica: evidence for	Exclude. Study did not specify GCA and PMR
D. Blockmans	2000	inflammation of the aortic arch	results
		Disease pattern in cranial and large-vessel giant cell	Exclude. Does not address any arm of PICO
A. Brack	1999	arteritis	question
		Combined temporal arteriography and selective biopsy	Exclude. Temporal arteriography is not
J. R. Sewell	1980	in suspected giant cell arteritis	utilized anymore in clinical practice
		Temporal arteriography. Analysis of 21 cases and a	Exclude. Temporal arteriography is not
L. F. Layfer	1978	review of the literature	utilized anymore in clinical practice
		Temporal arteriography and immunofluorescence as	Exclude. Temporal arteriography is not
H. M. Horwitz	1977	diagnostic tools in temporal arteritis	utilized anymore in clinical practice
		Large artery involvement in giant cell (temporal)	Exclude. Does not address any arm of PICO
R. G. Klein	1975	arteritis	question
		[18F] FDG-PET/CT as a new and sensitive imaging	Exclude. Mostly descriptive data only. No
J. C. Henes	2008	method for the diagnosis of large vessel vasculitis	outcome analysis done.
		The efficacy of selective unilateral temporal artery	Exclude. Does not address any arm of PICO
		biopsy versus bilateral biopsies for diagnosis of giant	6. More appropriate for PICO on Temporal
T. Ponge	1988	cell arteritis	artery biopsy

- **PICO question 7:** In patients with <u>suspected GCA and a negative temporal artery biopsy</u>, what is the impact of large vessel imaging versus clinical assessment alone on diagnostic accuracy, disease-related outcomes, and diagnostic-tested related adverse events?
- **Critical Outcomes**: Disease activity, clinical symptoms, damage from disease (e.g., visual loss, strokes), serious adverse effects, adverse reaction to contrast exposure including nephrotoxicity
- 20. In patients with suspected GCA and a negative temporal artery biopsy, what is the impact of large vessel imaging versus clinical assessment alone on diagnostic accuracy, disease-related outcomes, and diagnostic-tested related adverse events?
 - No Comparative Data Available.
- 21. In patients with suspected <u>GCA and a negative temporal artery biopsy</u>, what is the impact of large vessel imaging on diagnostic accuracy, disease-related outcomes, and diagnostic-tested related adverse events?
 - Patient important outcomes:

Outcomes (Name + Summary)	Author, year	Study type	Duratio n of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Ability of PET to diagnosis GCA in pts with neg TA bx	Ray B, 2019	Retrospectiv e study in a cohort of patients with suspected GCA and negative TAB who underwent an ¹⁸ F-FDG PET-CT.	f/u of at least 18 months 2007 - 2017		Ten vascular segments were studied using a visual score and a semi-quantitative method based on SUVmax ratio with respect to liver uptake. The diagnosis of GCA was established during a mean follow-up of 42 months, based on the presence of clinical symptoms, laboratory results, and imaging	63 patients (30 men and 33 women, aged 67 ± 12 years) included. F-FDG PET-CT showed large vessel involvement in 22 pts, 14 of whom were diagnosed with GCA. Forty-one pts were ¹⁸ F-FDG PET-CT negative, 9 of whom were diagnosed with GCA	A significant number of patients were treated by corticosteroids before ¹⁸ F-FDG PET- CT. However, corticosteroid therapy did not impact significantly the diagnostic performance, although there was a trend to a lower sensitivity in patients receiving

		data compatible with GCA, good response to corticosteroid therapy, and no differential diagnosis after a follow-up of at least 18 months.		corticosteroid therapy for more than 3 days. Importantly, corticosteroid therapy can negatively affect the sensitivity of -FDG PET-CT in large vessel vasculitis. If treatment has to be started -FDG PET-CT should be performed as soon as possible (ideally within 3 days of treatment) to lessen the risk of false- negative results.
--	--	---	--	--

- 22. In patients with suspected <u>GCA and a negative temporal artery biopsy</u>, what is the impact of clinical assessment alone on diagnostic accuracy, disease-related outcomes, and diagnostic-tested related adverse events?
 - Patient important outcomes:

Outcomes	Author,	Study type	Duration	Population)	Intervention used in relevant	Results
	year		of follow		population	
			up			
	Le K,	Retrospective	Not	237 patients with	Evaluation of positive or negative	Biopsy results had no significant impact on
	2015	analysis, single	specified	suspected GCA who	biopsies in suspected GCA. Looked at	subsequent treatment in 69% of patients who met
		center 2003-		underwent TAB. Sx's	association with length of biopsy,	clinical criteria. Among 56% of patients who met
		2010		included new onset	pre-op steroids, and decision to treat	criteria for clinical diagnosis of TA, only 22%
				HA (75%), auricular		demonstrated a positive biopsy.
Disease Activity				tenderness/jaw claud		93% sensitivity of diagnosis of GCA using ACR
				(32%), ESR>50 (60%),		criteria not including results of TAB.
				3 or more ACR		
				criteria (56%)		

	Hall S, 1983	Retrospective study of 134 patients in olmstead county who underwent TAB between 1965- 1980	Medial follow up of 70 months (1-192)	134 patients underwent TAB, 46 were positive, 88 were negative, 8 of the 88 neg TAB diagnosed with GCA and tx's with long term steroids	Neg TAB patients were comparable with + group in clinical features (PMR, malaise, fevers, weight loss, HA, visual disturbance.	Hx of jaw pain or claudication or clinically abnormal TA, more common in positive biopsy group. In 8 patients with neg TAB, dx of GCA made based on pathologic/radiologic or convincing clinical evidence. Other dx included infection, CTD, malignancy. Of 8 negative TAB pts diagnosed with GCA, 62% (5/8) satisfied at least 4 other ACR criteria and treated with regular steroid course. 1 had repeat biopsy 8 months later positive; 1 patients treated with NSAIDS for 15 months, then found to have LV involvement; 1 patient developed TAA treated with high dose CS and then died of aortic rupture.
Clinical Symptoms	Breuer G, 2008	Retrospective review of 58 biopsy negative suspected GCA patients	6 months after biopsy	58 patients with negative TAB included.	Biopsy negative GCA diagnosed when classification criteria was met: symptoms improved within 3 days of steroid therapy, and no other condition relevant to the patients sx's diagnosed during a 6 month follow up.	Headaches were more common in biopsy negative GCA patients (91% compared to only 40% of non GCA patients). Biopsy negative GCA diagnosed in 19% (11/58), 7 had other rheumatologic diseases, 60% had non- rheumatologic disease.
	Sorenson S, 1977	Retrospective Study	1-24 months	63 patients with GCA or PMR. Collected over 10 year period (1964-73)	Histologic examination of 58 patients with symptoms.	Histologic examination of 58 patients revealed arteritis in 46. Biopsy negative findings found in 19% (12/63) of which 91.6% (11/12) had Myalgia without local symptoms of temporal arteritis and 1 patient with local symptoms of TA without myalgia.
Complications of RX in Negative TAB GCA Examples include fractures, DM, pulmonary infections as well as peptic ulcer disease.	Gonzalez -Gay M, 2001	Retrospective study of an unselected population of patients with GCA diagnosed at the reference hospital between 1981- 1998.	From time of diagnosis until death or October 1999. All patients observed for at least 1 year *median duration 3.5 years	190 patients with GCA, 29 (15.3%) had negative TAB. No change in diagnosis.	Neg TAB GCA patients evaluated for therapeutics, side effects and duration of treatment	No case of blindness after treatment started Severe side effects (fracture 2/2 osteoporosis, DM or pulmonary infections occurred in 6/29

			(range 1- 14)			
Disease-Related Complications in TAB negative GCA	Hedgers T, 1983	Retrospective study of 193 patients who had TAB at one center between 1968-1978 with available clinical data in 91 cases.	At least 2 years	70% (63/91) patients had negative TAB	All TAB specimens reviewed for e/o granulomatous inflammation, re- reviewed and scored for atherosclerotic changes and various clinical and lab findings compared between groups	Diabetes occurred in 20% of patients without arteritis and 10% of those with arteritis. Of 42 patients with both negative and positive biopsy specimens treated for 1 or more months with steroids, 12% (5/42) developed peptic ulcer disease and 1 had a compression fracture.

- References:
- Randomized controlled trials:

None

- Comparative observational studies:

None

- Single arm studies:

	Author	Year	Title
	Le, K	2015	The effect of temporal artery biopsy on the treatment of temporal arteritis
	Breuer, G	2008	Negative temporal artery biopsies: eventual diagnoses and features of patients with biopsy- negative giant cell arteritis compared to patients without arteritis
Patient	Gonzalez- Gay, M	2001	Biopsy-negative giant cell arteritis: clinical spectrum and predictive factors for positive temporal artery biopsy
important Outcomes	Hall, S	1983	The therapeutic impact of temporal artery biopsy
Outcomes	Hedges, T.	1983	The clinical value of negative temporal artery biopsy specimens
	Sorensen,	1977	Giant-cell arteritis, temporal arteritis and polymyalgia rheumatica. A retrospective study of 63
	Ρ.		patients
	Ray B	2019	Diagnostic performance of (18)F-FDG PET-CT for large vessel involvement assessment in patients with suspected giant cell arteritis and negative temporal artery biopsy

- Studies reviewed and excluded:

		EXCLUDE: Describes LV involvement
	Association of vascular physical examination findings and	arteriography findings vs physical
2012	arteriographic lesions in large vessel vasculitis	exam, but not TAB
	Cyclophosphamide for large vessel vasculitis: assessment of	EXCLUDE: only includes 6 GCA
2011	response by PET/CT	patients
1999	Disease pattern in cranial and large-vessel giant cell arteritis	Exclude: Does not answer PICO
1995	Clinical usefulness of biopsy in giant cell arteritis	Exclude: Does not answer PICO
	The use of clinical characteristics to predict the results of temporal artery biopsy among patients with suspected giant	
1995	cell arteritis	Exclude: Does not answer PICO
	Plasma viscosity or erythrocyte sedimentation rate in the	
1991	diagnosis of giant cell arteritis?	Exclude: Does not answer PICO
1990	Temporal artery biopsy	Exclude: Does not answer PICO
1000		Exclude: Does not answer PICO and
1989		only 8 negative TAB patients
1989		Exclude: does not answer PICO
1505		Exclude: Test accuracy for clinical sx's
1987	Clinical usefulness of temporal artery biopsy	vs TAB
		Exclude: Group 2 with 11 pts had neg
		TAB but still dx'd with GCA. Did not
		discuss outcomes of this group but
		looked at predictive factors
1984	biopsies	(myalgias/PMR)
	The clinical nictures of giant cell arteritis. Temporal arteritis	
1980	polymyalgia rheumatica, and fever of unknown origin	Exclude: does not answer PICO
	2011 1999 1995 1995 1995 1991 1990 1989 1989 1989 1987 1984	2012arteriographic lesions in large vessel vasculitis2011Cyclophosphamide for large vessel vasculitis: assessment of2011response by PET/CT1999Disease pattern in cranial and large-vessel giant cell arteritis1995Clinical usefulness of biopsy in giant cell arteritis1995Clinical usefulness of biopsy among patients with suspected giant1995cell arteritis1995Plasma viscosity or erythrocyte sedimentation rate in the1991diagnosis of giant cell arteritis?1990Temporal artery biopsy1980Too few, too late. Temporal artery biopsy in cranial arteritis:1989Too few, too late. Temporal artery biopsy in cranial arteritis: a five year survey1987Clinical usefulness of temporal artery biopsy1984The ultimate diagnoses of patients undergoing temporal artery biopsies1984The clinical pictures of giant cell arteritis. Temporal arteritis, Temporal arteritis

- **PICO question 8:** In patients with suspected GCA what is impact of diagnostic confirmation by temporal artery biopsy versus clinical diagnosis alone on sustaining a diagnosis of GCA after one year of management and tissue biopsy-related adverse events?
- Critical Outcomes: Disease activity, clinical symptoms, damage from disease, pain, scarring, injury to tissue biopsied.
- 23. In patients with suspected GCA what is impact of diagnostic confirmation by temporal artery biopsy versus clinical diagnosis alone on sustaining a diagnosis of GCA after one year of management and tissue biopsy-related adverse events?
 - No comparative data available
- 24. In patients with suspected GCA what is impact of diagnostic confirmation by temporal artery biopsy on sustaining a diagnosis of GCA after one year of management and tissue biopsy-related adverse events?
 - Patient important outcomes:

Outcomes	Author,	Study type	Duration	Population (number	Intervention used in	Results	Comments
	year		of follow up	and description)	relevant population (Describe the intervention)		
Symptoms at first and second TAB (the frequency of symptoms at TAB at 1 year was similar to the frequency at initial TAB)	Malesze wski, 2017	Prospective case-series	12 months	40 patients with GCA at start. Final cohort totals were: 3 months (n=10); 6 months (n=12); 9 months (n=9); 12 months (n=9)	First and second TABs with 12 months apart. Treatment after first TAB included high daily dose prednisone, median dose 60 mg/day (range 30- 80mg/day), gradually reduced by an average of 10% of the daily dose every two weeks.	Headache: 28 patients at the beginning (70%), 12- month follow-up cohort 4/9 (44%) Jaw Claudication: 26 patients at the beginning (65%), 12-month follow-up cohort 4/9 (44%) Scalp Tenderness: 18 patients at the beginning (45%), 12-month follow-up cohort 5/9 (55%) Ischemic Optic Neuropathy: 6 patients at the beginning (15%), 12-month follow-up cohort 1/9 (11%) Systemic Symptoms: 19 patients at the beginning (48%), 12-month follow-up cohort 6/9 (67%) PMR: 15 patients at the beginning (38%), 12-month follow-up cohort 2/9 (22%)	

- Test Accuracy results:

Sensitivity 0.84 (95% CI: 0.72 to 0.92)				Drov	100	4				
Specificity	0.99 (95% CI: 0.91 to 1.00)				Prevalence 40%					
Outcome		№ of studies (№ of	Study design		Factors that may decrease certainty of evidence				Effect per 1,000 patients tested	Test accuracy
		patients)		Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 40%	CoE
True positives (patients with Giant Cell arteritis)		1 studies 54 patients	case-control type accuracy study	serious ^a	serious ^b	not serious	serious ^c	none	338 (290 to 368)	
False negatives (patients incorrectly classified as not having Giant Cell arteritis)									62 (32 to 110)	
True negatives (patients without Giant Cell arteritis)		1 studies 80 patients	case-control type accuracy study	serious ^a	serious ^b	not serious	not serious	none	596 (545 to 600)	
False positives (patients incorrectly classified as having Giant Cell arteritis)									4 (0 to 55)	

Explanations

a. Bias in patients selection: case-control design not avoided

b. The reference test was done at 70 months, giving indirectness in answering the PICO

c. pooled sensitivity has a broad confidence interval. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

25. In patients with suspected GCA what is impact of clinical diagnosis alone on sustaining a diagnosis of GCA after one year of management and tissue biopsy-related adverse events?

No single arm data available

- References:
- Randomized controlled trials:

None

- Comparative observational studies:

None

- Single arm studies and test accuracy studies :

Author	Year	Title
Maleszewski	2017	Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients
Hall	1983	The therapeutic impact of temporal artery biopsy

- Studies reviewed and excluded:

Author	Year	Title	Comments
		Temporal artery biopsy in the diagnosis of giant cell arteritis:	
K. Bowling	2017	Does the end justify the means?	Not enough data. Exclude
		Diagnosis of giant cell arteritis: when should we biopsy the	
O. Hussain	2016	temporal artery?	Not enough data. Exclude
		The effect of temporal artery biopsy on the treatment of	Doesn't have one-year management
K. Le	2015	temporal arteritis	timeline. Exclude
			No biopsies done, no
P. C.		Association of vascular physical examination findings and	management/treatments described.
Grayson	2012	arteriographic lesions in large vessel vasculitis	Exclude
		Intraoperative predictability of temporal artery biopsy results	Doesn't have one-year management
			timeline. Compares surgeon's impression
Α.			of arteries at dissection with TAB results.
Cetinkaya	2008		Exclude
D. Daval		Temporal headache and jaw claudication may be the key for	Not enough data. Doesn't have one-year
B. Peral-	2018	the diagnosis of giant cell arteritis	management timeline. Exclude
Cagigal	2018	Clinical correlation of biopsy results in patients with temporal	Not enough data. Doesn't have one-year
V. Yuksel	2017	arteritis	management timeline. Exclude
	-		
J. G. Jones	1981	Prognosis and management of polymyalgia rheumatica	PMR population.
	4070	Temporal arteriography. Analysis of 21 cases and a review of	DMD secondation
L. F. Layfer	1978	the literature	PMR population.
S.		Giant-cell arteritis, temporal arteritis and polymyalgia	
Sorensen	1977	rheumatica. A retrospective study of 63 patients	TA and PMR population.

Giant Cell Arteritis (GCA)

Imaging, laboratory tests, and monitoring

- **PICO question 9:** In patients with GCA, what is the impact of routine monitoring (such as every 6-12 months) with non-invasive vascular imaging versus not performing routine monitoring with non-invasive vascular imaging on disease-related outcomes and diagnostic testing-related adverse events?
- **Critical Outcomes:** Disease activity, clinical symptoms, damage from disease (e.g., Ischemia limbs), relapse, death, adverse reaction to contrast exposure including nephrotoxicity (e.g., Gadolinium or CT contrast).
- 1. In patients with GCA, what is the impact of routine monitoring (such as every 6-12 months) with non-invasive vascular imaging versus not performing routine monitoring with non-invasive vascular imaging on disease-related outcomes and diagnostic testing-related adverse events?

Certainty assessment						№ of patients		Effect	:			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	routine monitoring (such as every 6-12 months) with non-invasive vascular imaging [intervention]	not performing routine monitoring with non-invasive vascular imaging	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance

Number of patients with Relapse

1	observational studies	not serious	not serious	not serious	very serious ^a	none	14/29 (48.3%)	4/6 (66.7%)	OR 0.47 (0.07 to 2.96)	182 fewer per 1,000 (from 544 fewer to 189 more)		
---	--------------------------	-------------	-------------	-------------	---------------------------	------	---------------	-------------	---------------------------	--	--	--

Death

1	observational studies	not serious	not serious	not serious	very serious ^a	none	2/29 (6.9%)	1/6 (16.7%)	OR 0.37 (0.03 to 4.90)	98 fewer per 1,000 (from 161 fewer to 328 more)		
---	--------------------------	-------------	-------------	-------------	---------------------------	------	-------------	-------------	---------------------------	---	--	--

CI: Confidence interval; OR: Odds ratio

Explanations

a. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision

- References:
- Randomized controlled trials:

None

Comparative observational studies:

Author	Year	Title
D. Blockmans	2006	Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell
D. DIOCKITIATIS		arteritis: a prospective study of 35 patients

Giant Cell Arteritis (GCA)

Imaging, laboratory tests, and monitoring

- **PICO question 10:** In patients with GCA in apparent remission off of immunosuppressive therapy what is the impact of long-term routine clinical monitoring (such as every 3-6 months) versus no routine clinical monitoring on disease-related outcomes?
- Critical Outcomes: Disease activity, relapse, death, damage from disease
- 26. In patients with GCA in apparent remission off of immunosuppressive therapy what is the impact of long-term routine clinical monitoring (such as every 3-6 months) versus no routine clinical monitoring on disease-related outcomes?
 - No data available
- 27. In patients with GCA in apparent remission off of immunosuppressive therapy what is the impact of long-term routine clinical monitoring (such as every 3-6 months) on disease-related outcomes?
 - Patient important outcomes:

Outcomes	Author,	Study type	Duration	Population (number	Intervention used in	Results	Comments
	year		of follow	and description)	relevant population		
			up		(Describe the intervention)		
Angiographic	Grayson,	Cross	NA	Both Takayasu (n=68)	No intervention.	Using multivariable analysis	Included Takayasu's
changes	2012	sectional		and GCA (n=32)		to determine the	patients as well. Not able to
(physical exam				meeting ACR criteria		prevalence ratio between	get pertinent information
findings had a				were included. North		physical exam findings and	on exclusively GCA
positive				American Cohort.		angiographic abnormalities:	patients. Study does not
correlation						absent pulses 2.38 (1.69-	directly address the PICO
with						3.38;p<0.001); bruits 1.51	question.
angiographic						(1.08-2.13;p=0.0174); ≥	
findings in						15mmHg difference in BP	
patients with						1.18(0.86-1.63;p=0.3133)	

GCA (32) and			
Takayasu (68)			

- 28. In patients with GCA in apparent remission off of immunosuppressive therapy what is the impact of no routine clinical monitoring on diseaserelated outcomes? No single arm data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies and test accuracy studies:

Author	Year	Title
		Association of vascular physical examination findings and arteriographic lesions in large
Grayson	2012	vessel vasculitis

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 11:** In patients with newly diagnosed GCA without manifestations of cranial ischemia, what is the impact of pulse IV glucocorticoids versus high dose oral glucocorticoids on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Activity of disease, Clinical symptoms, disease related damage, relapse, serious adverse events, infection, toxicity.
- 29. In patients with newly diagnosed GCA without manifestations of cranial ischemia, what is the impact of pulse IV glucocorticoids versus high dose oral glucocorticoids on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?

30.

			Certainty as	sessment			Nº of p	atients	Effec	t	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pulse IV Glucocorticoids	High Dose Oral Glucocorticoids	Relative (95% Cl)	Absolute (95% Cl)	Certainty
Infection	5										
11	randomised trials	serious ^{1,a}	not serious	not serious	serious ^b	none	10/50 (20.0%)	6/53 (11.3%)	OR 1.77 (0.69 to 4.50)	71 more per 1,000 (from 32 fewer to 252 more)	⊕⊕⊖⊖ Low
Death											
11	randomised trials	serious ^{1,a}	not serious	not serious	very serious ^b	none	3/50 (6.0%)	0/53 (0.0%)	OR 7.41 (0.39 to 139.97)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	⊕○○○ VERY LOW
Remissio	n at week 36						I	I		L L	
1 ²	randomised trials	not serious	not serious	serious ^{2,c}	very serious ^b	none	10/14 (71.4%)	2/13 (15.4%)	OR 13.75 (2.05 to 92.04)	560 more per 1,000 (from 118 more to 790 more)	⊕○○○ VERY LOW
Remissio	n at week 52									_	
1 ²	randomised	not serious	not serious	serious ^{2,c}	very serious	none	11/14 (78.6%)	2/13 (15.4%)	OR 20.17	632 more	000

1 ²	randomised	not serious	not serious	serious ^{2,c}	very serious	none	11/14 (78.6%)	2/13 (15.4%)	OR 20.17	632 more	$\oplus O O O$
	trials				b				(2.80 to	per 1,000	VERY LOW
									145.30)	(from 184	
										more to	
										810 more)	

Remission at week 78

Relapses

12	randomised trials	not serious	not serious	serious ^{2,c}	serious ^b	none	14/21 (66.7%)	13/37 (35.1%)	OR 3.69 (1.19 to 11.44)	315 more per 1,000 (from 41 more to 510 more)	⊕⊕⊖⊖ Low
----	----------------------	-------------	-------------	------------------------	----------------------	------	---------------	---------------	----------------------------	---	-------------

Explanations

a. Allocation concealment not mentioned; No blinding of participants; No blinding of personnel; No blinding of outcome assessment.

b. Treatment would differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision.

c. RCT of IV methylprednisolone or IV saline for 3 consecutive days. Also, all patients were started on 40 mg/day prednisone and followed the same tapering schedule as long as disease activity was controlled.

References

1. Chevalet, . 2000. 2. Mazlumzadeh, . . 2006.

• References:

- Randomized controlled trials:

Author	Year	Title
Chevalet, P	2000	A randomized, multicenter, controlled trial using intravenous pulses of methylprednisolone in the
		initial treatment of simple forms of giant cell arteritis: a one year follow up study of 164 patients
Mazlumzadeh,	2006	Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: a double-
М		blind, placebo-controlled, randomized prospective clinical trial

Giant Cell Arteritis (GCA) Medical Treatment

- **PICO question 11:** In patients with newly diagnosed GCA without manifestations of cranial ischemia, what is the impact of pulse IV glucocorticoids versus high dose oral glucocorticoids on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Activity of disease, Clinical symptoms, disease related damage, relapse, serious adverse events, infection, toxicity.
- 31. In patients with newly diagnosed GCA without manifestations of cranial ischemia, what is the impact of pulse IV glucocorticoids versus high dose oral glucocorticoids on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- 32.

	Certainty assessment						Nº of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pulse IV Glucocorticoids	High Dose Oral Glucocorticoids		Absolute (95% Cl)	Certainty

Infections

			Certainty as	ssessment			Nº of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pulse IV Glucocorticoids	High Dose Oral Glucocorticoids		Absolute (95% Cl)	Certainty
11	randomised trials	serious ^{1,a}	not serious	not serious	serious ^b	none	10/50 (20.0%)	6/53 (11.3%)	OR 1.77 (0.69 to 4.50)	71 more per 1,000 (from 32 fewer to 252 more)	⊕⊕⊖⊖ Low

Death

11	randomised trials	serious ^{1,a}	not serious	not serious	very serious ^b	none	3/50 (6.0%)	0/53 (0.0%)	OR 7.41 (0.39 to 139.97)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	⊕⊖⊖⊖ VERY LOW
----	----------------------	------------------------	-------------	-------------	------------------------------	------	-------------	-------------	--------------------------------	---	------------------

Remission at week 36

Remission at week 52

12	randomised trials	not serious	not serious	serious ^{2,c}	very serious	none	11/14 (78.6%)	2/13 (15.4%)	OR 20.17 (2.80 to 145.30)	632 more per 1,000 (from 184 more to 810 more)	⊕⊖⊖⊖ VERY LOW
----	----------------------	-------------	-------------	------------------------	--------------	------	---------------	--------------	---------------------------------	--	------------------

Remission at week 78

Relapses

1 ²	randomised trials	not serious	not serious	serious ^{2,c}	serious ^b	none	14/21 (66.7%)	13/37 (35.1%)	OR 3.69 (1.19 to 11.44)	315 more per 1,000 (from 41 more to 510 more)	⊕⊕⊖⊖ Low
----------------	----------------------	-------------	-------------	------------------------	----------------------	------	---------------	---------------	----------------------------	---	-------------

Cl: Confidence interval; OR: Odds ratio

Explanations a. Allocation concealment not mentioned; No blinding of participants; No blinding of personnel; No blinding of outcome assessment.

b. Treatment would differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision.

c. RCT of IV methylprednisolone or IV saline for 3 consecutive days. Also, all patients were started on 40 mg/day prednisone and followed the same tapering schedule as long as disease activity was controlled.

References

1. Chevalet, 2000. 2. Mazlumzadeh, 2006.

• References:

- Randomized controlled trials:

Author	Year	Title
Chevalet, P	2000	A randomized, multicenter, controlled trial using intravenous pulses of methylprednisolone in the
		initial treatment of simple forms of giant cell arteritis: a one year follow up study of 164 patients
Mazlumzadeh,	2006	Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: a double-
Μ		blind, placebo-controlled, randomized prospective clinical trial

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 13:** In patients with newly diagnosed GCA, what is the impact of using daily aspirin (81 to 325 mg) versus not using aspirin on disease-related outcomes and treatment-related adverse events?
- Critical Outcomes: Clinical symptoms, disease related damage, death, serious adverse events (e.g., bleeding), toxicity leading to discontinuation.
- 33. In In patients with newly diagnosed GCA, what is the impact of using daily aspirin (81 to 325 mg) versus not using aspirin on disease-related outcomes and treatment-related adverse events?

			Certainty	assessment			Nº of p	№ of patients		t	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Antiplatelet	No Antiplatelet Therapy	Relative (95% Cl)	Absolute (95% Cl)	Certainty
Relapse (no. of patients)										
11	observational studies	not serious	not serious	not serious	not serious	none	18/37 (48.6%)	48/84 (57.1%)	OR 0.71 (0.33 to 1.54)	85 fewer per 1,000 (from 266 fewer to 101 more)	⊕⊕⊖O LOW

			Certainty	assessment			Nº of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Antiplatelet	No Antiplatelet Therapy	Relative (95% Cl)	Absolute (95% Cl)	Certainty

Severe Ischemic Complications at Presentation (no. of patients)

87 more)		2 ^{1,2}	observational studies	not serious	not serious	not serious	not serious	none	12/73 (16.4%)	65/223 (29.1%)	OR 0.45 (0.13 to 1.48)	135 fewer per 1,000 (from 241 fewer to 87 more)	⊕⊕⊖⊖ Low
----------	--	------------------	--------------------------	-------------	-------------	-------------	-------------	------	---------------	-------------------	---------------------------	---	-------------

Cumulative Prednisone Dose (g)

11	observational studies	not serious	not serious	not serious	not serious	none	37	84	-	MD 1.7 lower (3.98 lower to 0.58 higher)	⊕⊕⊖⊖ low
----	--------------------------	-------------	-------------	-------------	-------------	------	----	----	---	--	-------------

Duration of Therapy

Severe Ischemic Complications on Follow-up (no. of patients)

12	observational not s studies	ot serious not serious	not serious	not serious	none	2/73 (2.7%)	12/93 (12.9%)	OR 0.19 (0.04 to 0.88)	102 fewer per 1,000 (from 123 fewer to 14 fewer)	⊕⊕⊖⊖ Low
----	--------------------------------	------------------------	-------------	-------------	------	-------------	---------------	---------------------------	--	-------------

CI: Confidence interval; OR: Odds ratio; MD: Mean difference

References

1. Narvaez, 2008. 2. Nesher, 2004.

- References:
- Randomized controlled trials:

 \circ None

- Comparative observational studies:

Author	Year	Title
Narvaez, J	2008	Impact of antiplatelet therapy in the development of severe ischemic complications and in the outcome of patients with giant cell arteritis
Nesher, G	2004	Low-dose aspirin and prevention of cranial ischemic complications in giant cell arteritis

Giant Cell Arteritis (GCA) Medical Treatment

- **PICO question 14:** In patients with newly diagnosed GCA without cranial ischemic manifestations, what is the impact of initial high dose oral glucocorticoids versus moderate dose oral glucocorticoids on disease-related outcomes, cumulative glucocorticoid dose, and treatment-related adverse events?
- Critical Outcomes: Activity of Disease, Clinical Symptoms, Disease Related Damage, Relapse, Serious Adverse Events, Infection, Toxicity.
- 34. In patients with newly diagnosed GCA without cranial ischemic manifestations, what is the impact of initial high dose oral glucocorticoids versus moderate dose oral glucocorticoids on disease-related outcomes, cumulative glucocorticoid dose, and treatment-related adverse events?

			Certainty ass	sessment			Nº of I	patients	Effec	t	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Moderate Dose	High Dose Glucocorticoids	Relative (95% CI)	Absolute (95% Cl)	Certainty

Relapses (no of patients)

Death

1 ³	observational studies	not serious	not serious	not serious	serious	none	1/53 (1.9%)	3/50 (6.0%)	OR 0.30 (0.03 to 3.00)	41 fewer per 1,000 (from 58 fewer to 101 more)	⊕○○○ VERY LOW
----------------	--------------------------	-------------	-------------	-------------	---------	------	-------------	-------------	---------------------------	--	------------------

			Certainty ass	sessment			Nº of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Moderate Dose	High Dose Glucocorticoids	Relative (95% CI)	Absolute (95% CI)	Certainty

GC-related Adverse Events (no of patients)

3 ^{1,2,3}	observational not serie studies	rious not serious	not serious	not serious	none	50/129 (38.8%)	97/129 (75.2%)	OR 0.19 (0.07 to 0.48)	386 fewer per 1,000 (from 577 fewer to 159 fewer)	⊕⊕⊖⊖ Low
--------------------	------------------------------------	-------------------	-------------	-------------	------	-------------------	-------------------	---------------------------	--	-------------

Infections (Serious)

		1 ³	observational studies	serious ^{3,a}	not serious	not serious	serious	none	6/53 (11.3%)	3/50 (6.0%)	OR 2.00 (0.47 to 8.47)	53 more per 1,000 (from 31 fewer to 291 more)	⊕⊖⊖⊖ VERY LOW
--	--	----------------	--------------------------	------------------------	-------------	-------------	---------	------	--------------	-------------	---------------------------	---	------------------

GCA-related complications

2 ^{1,3}	observational studies	not serious	not serious	not serious	serious	none	8/106 (7.5%)	12/75 (16.0%)	OR 0.46 (0.15 to 1.35)	79 fewer per 1,000 (from 132 fewer to 45 more)	⊕○○○ VERY LOW
------------------	--------------------------	-------------	-------------	-------------	---------	------	--------------	---------------	---------------------------	--	------------------

Serious GC related Side Effects

1 ²	observational not se studies	serious not serious	not serious	not serious	none	5/23 (21.7%)	33/54 (61.1%)	OR 0.18 (0.06 to 0.55)	391 fewer per 1,000 (from 525 fewer to 148 fewer)	⊕⊕⊖⊖ Low
----------------	---------------------------------	---------------------	-------------	-------------	------	--------------	---------------	---------------------------	--	-------------

Remission

11	observational studies	serious ^a	not serious	not serious	serious	none	29/53 (54.7%)	11/25 (44.0%)	OR 1.54 (0.59 to 4.01)	108 more per 1,000 (from 123 fewer to 319 more)	⊕○○○ VERY LOW
----	--------------------------	----------------------	-------------	-------------	---------	------	---------------	---------------	---------------------------	---	------------------

CI: Confidence interval; OR: Odds ratio; MD: Mean difference

Explanations

a. Not explicit that these are newly diagnosed

References

Delecoeuillerie, 1988.
 Nesher, 1997.
 Les, 2015.

- References:
- Randomized controlled trials:
 - \circ None
- Comparative observational studies:

Author	Year	Title
Les, I	2015	Effectiveness and safety of medium-dose prednisone in giant cell arteritis: a retrospective cohort
		study of 103 patients
Nesher, G	1997	Efficacy and adverse effects of different corticosteroid dose regimens in temporal arteritis: a
		retrospective study
Delecoeullerie,	1988	Polymyalgia rheumatica and temporal arteritis: a retrospective analysis of prognostic features and
G		different corticosteroid regimens (11 year survey of 210 patients)

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 15:** In patients with newly diagnosed GCA, what is the impact of oral glucocorticoids with non-glucocorticoid immunosuppressive therapy versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Activity of disease, Clinical symptoms, Disease Related Damage, Relapse, Serious Adverse Events, Infection, Toxicity, Malignancy, Death
- 35. In patients with newly diagnosed GCA, what is the impact of oral glucocorticoids with non-glucocorticoid immunosuppressive therapy versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?

			Certainty ass	essment			Nº of pati	ents			
Nº d studi	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	considerations	Oral glucocorticoids w/ non- glucocorticoid immunosuppressive therapy	oral glucocorticoids	Relative (95% Cl)	Absolute (95% Cl)	Certainty

Relapse at 1 year

7 1,2,3,4,5,6,7,8,a	randomised trials	not serious	not serious	not serious	not serious	none	91/166 (54.8%)	102/156 (65.4%)	OR 0.87 (0.73 to 1.04)	32 fewer per 1,000 (from 74 fewer to 9 more)	⊕⊕⊕⊕ ніGн
------------------------	----------------------	----------------	-------------	-------------	-------------	------	----------------	--------------------	------------------------------	---	--------------

SAE

6 2,3,4,7,9,10	randomised trials	not serious	not serious	not serious	serious ^b	none	40/152 (26.3%)	48/141 (34.0%)	OR 0.81 (0.54 to 1.20)	46 fewer per 1,000 (from 122 fewer to 42 more)	⊕⊕⊕⊖ MODERATE
----------------	----------------------	----------------	-------------	-------------	----------------------	------	----------------	-------------------	------------------------------	---	------------------

Infections

7 1,2,3,5,7,9,10	randomised trials	not serious	not serious	serious	serious ^b	none	104/164 (63.4%)	77/148 (52.0%)	OR 1.25 (0.87 to 1.79)	55 more per 1,000 (from 35 fewer to 140 more)	⊕⊕⊖⊖ Low
---------------------	----------------------	----------------	-------------	---------	----------------------	------	-----------------	-------------------	------------------------------	--	-------------

Serious infections

4 3,6,7,9	randomised trials	not serious	not serious	not serious	serious ^b	none	9/155 (5.8%)	13/148 (8.8%)	OR 0.69 (0.29 to 1.64)	26 fewer per 1,000 (from 61 fewer to 49 more)	⊕⊕⊕⊖ MODERATE
-----------	----------------------	----------------	-------------	-------------	----------------------	------	--------------	---------------	------------------------------	--	------------------

Relapses during the 3 month follow-up phase (15 months)

1 ²	randomised trials	not serious	not serious	not serious	not serious	none	2/8 (25.0%)	9/9 (100.0%)	RR 0.29 (0.10 to 0.85)	710 fewer per 1,000 (from 900 fewer	⊕⊕⊕⊕ HIGH
									0.037	to 150 fewer)	

Malignancy

2 ^{1,3} randomise trials	not serious		not serious	very serious ^b	none	2/40 (5.0%)	2/25 (8.0%)	OR 0.74 (0.11 to 4.99)	20 fewer per 1,000 (from 71 fewer to 223 more)	⊕⊕⊖⊖ Low
--------------------------------------	----------------	--	-------------	------------------------------	------	-------------	-------------	------------------------------	---	-------------

			Certainty ass	essment			№ of pati	ients		Effect	
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	considerations	Oral glucocorticoids w/ non- glucocorticoid immunosuppressive therapy	oral glucocorticoids	Relative (95% Cl)	Absolute (95% Cl)	Certainty
Relapse at 4	48 weeks (Leflun	omide + G	GC)								

1 ^{11,c}	observational studies	not serious	not serious	not serious	not serious	none	4/30 (13.3%)	18/46 (39.1%)	OR 0.24 (0.07 to 0.80)	258 fewer per 1,000 (from 348 fewer to 52 fewer)	⊕⊕⊖⊖ Low
-------------------	--------------------------	----------------	-------------	-------------	-------------	------	--------------	---------------	------------------------------	---	-------------

CI: Confidence interval; OR: Odds ratio; RR: Risk ratio

Explanations

a. Koster, 2001. This case control study provides data about relapse that can't be pooled with the other studies, but provides similar results. RR comparing relapse rates before and after MTX initiation/index date were significantly reduced in both cases (RR 0.32, 95% CI 0.24–0.41) and controls (RR 0.60, 95% CI 0.43–0.86). The decrease in relapse rate was significantly greater in patients taking MTX than in those taking GC alone (p = 0.004)

b. Wide CI might cross clinical decision threshold that dictates recommending versus not recommending Oral glucocorticoids with non-glucocorticoid immunosuppressive therapy.

c. Open-Label Study

References

- 1. Spiera, R. 2001.
- 2. Martinez, T. 2007.
- 3. Hoffman, G. 2007.
- 4. Langford, C. 2007.
- 5. Jover, J. 2001.
- 6. Hoffman, G. 2002.
- 7. Seror, 2014.
- 8. Koster, 2001.
- 9. Stone, 2017.
- 10. Villiger, 2016.
- 11. Hocevar, 2019.

• References:

- Randomized controlled trials:

Author Year Title

		A prospective, double-blind, randomized, placebo-controlled trial of methotrexate in the
Spiera, R	2001	treatment of giant cell arteritis
-		A randomized controlled trial of salmon calcitonin to prevent bone loss in corticosteroid-treated
Martinez, T	2007	temporal arteritis and polymyalgia rheumatica
		Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a
Hoffman, G	2007	randomized trial
		Combined treatment of giant-cell arteritis with methotrexate and prednisone. a randomized,
Jover, J	2001	double-blind, placebo-controlled trial
		A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate
Hoffman, G	2002	treatment for giant cell arteritis
		Adalimumab for steroid sparing in patients with giant-cell arteritis: results of a multicentre
Serror, R	2014	randomised controlled trial
Stone	2017	Trial of Tocilizumab in Giant-Cell Arteritis
		Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2,
Villger	2016	randomised, double-blind, placebo-controlled trial
Alojzija Hočevar	2019	Does leflunomide have a role in giant cell arteritis? An open-label study
		Efficacy of Methotrexate in Real-world Management of Giant Cell Arteritis: A Case-control Study.
Matthew J.		The Journal of Rheumatology May 2019, 46 (5) 501-508; DOI:
Koster	2001	https://doi.org/10.3899/jrheum.180429

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 16:** In patients with newly diagnosed GCA, what is the impact of oral glucocorticoids with tocilizumab versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- **Critical Outcomes:** Activity of disease, Clinical symptoms, disease related damage, relapse, death, serious adverse events (e.g., bowel perforation), infection, toxicity.
- 36. In patients with newly diagnosed GCA, what is the impact of oral glucocorticoids with tocilizumab versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
 - Weekly Tocilizumab:

			- Cert	ainty assessment			Nº of p	atients	Effect	:		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with tocilizumab	oral glucocorticoids alone	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance

SF-36 PCS, weekly TCZ at 52 weeks (assessed with: higher scores representing better function; Scale from: 0 to 100)

1ª	randomised trials	not serious	not serious	not serious	very serious ^b	none	100	50	-	MD 4.38 higher (1.58 lower to 10.34 higher)			
----	----------------------	-------------	-------------	-------------	---------------------------	------	-----	----	---	--	--	--	--

SF-36 MCS, weekly TCZ at 52 weeks (assessed with: higher scores representing better function; Scale from: 0 to 100)

1 ^a	randomised trials	not serious	not serious	not serious	very serious ^b	none	100	50	-	MD 0.61 higher (5.86 lower to 7.08 higher)			
----------------	----------------------	-------------	-------------	-------------	---------------------------	------	-----	----	---	---	--	--	--

VAS weekly TCZ at 52 week (assessed with: higher scores indicating greater disease activity; Scale from: 0 to 100)

1ª	randomised not ser trials	serious not serious	not serious	very serious ^b	none	100	50	-	MD 15.6 lower (34.3 lower to 3.1 higher)		
----	------------------------------	---------------------	-------------	---------------------------	------	-----	----	---	---	--	--

First relapse

1 ^c	randomised trials	not serious	not serious	not serious	serious ^b	none	1/20 (5.0%)	5/10 (50.0%)	RR 0.10 (0.01 to 0.75)	450 fewer per 1,000 (from 495 fewer to 125 fewer)			
----------------	----------------------	-------------	-------------	-------------	----------------------	------	-------------	--------------	----------------------------------	---	--	--	--

SAE, weekly TCZ, 52 week

2 ^{a,c}	randomised trials	not serious	not serious	not serious	very serious ^b	none	22/120 (18.3%)	16/60 (26.7%)	RR 0.69 (0.40 to 1.19)	83 fewer per 1,000 (from 160 fewer to 51 more)			
------------------	----------------------	-------------	-------------	-------------	---------------------------	------	----------------	---------------	----------------------------------	--	--	--	--

Serious Infections, weekly TCZ, 52 weeks

Remission at 52 weeks, weekly TCZ

1 ^a	randomised trials	not serious	not serious	not serious	very serious ^b	none	56/100 (56.0%)	7/50 (14.0%)	RR 4.00 (1.97 to 8.12)	420 more per 1,000 (from 136 more to 997 more)			
----------------	----------------------	-------------	-------------	-------------	---------------------------	------	----------------	--------------	----------------------------------	--	--	--	--

			- Cert	tainty assessment			Nº of p	atients	Effect	:		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with tocilizumab	oral glucocorticoids alone	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
1ª	randomised trials	not serious	not serious	not serious	serious ^b	none	23/100 (23.0%)	34/50 (68.0%)	RR 0.34 (0.23 to 0.51)	449 fewer per 1,000 (from 524 fewer to 333 fewer)		

CI: Confidence interval; MD: Mean difference; RR: Risk ratio

Explanations

a. J. H. Stone, 2017, "Trial of Tocilizumab in Giant-Cell Arteritis"

b. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

c. P. M. Villiger, 2016, "Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomized, double-blind, placebo-controlled trial"

- Bi-weekly Tocilizumab:

	- Certainty assessment							№ of patients		Effect		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with tocilizumab	oral glucocorticoids alone	Relative (95% CI)	Absolute (95% Cl)	Certainty	Importance

SF-36 PCS, bi-weekly TCZ at 52 weeks (assessed with: higher scores representing better function; Scale from: 0 to 100)

SF-36 MCS, bi-weekly TCZ at 52 weeks (assessed with: higher scores representing better function; Scale from: 0 to 100)

1 ^a	randomised trials	not serious	not serious	not serious	very serious ^b	none	49	50	-	MD 0.56 lower (7.64 lower to 6.52 higher)			
----------------	----------------------	-------------	-------------	-------------	---------------------------	------	----	----	---	--	--	--	--

VAS bi-weekly TCZ at 52 week (assessed with: higher scores indicating greater disease activity; Scale from: 0 to 100)

1 ^a	randomised trials	not serious	not serious	not serious	serious ^b	none	49	50	-	MD 21.9 lower (42.4 lower to 1.4 lower)			
----------------	----------------------	-------------	-------------	-------------	----------------------	------	----	----	---	--	--	--	--

SAE, bi-weekly TCZ, 52 week

			- Cert	ainty assessment			Nº of p	atients	Effect			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with tocilizumab	oral glucocorticoids alone	Relative (95% CI)	Absolute (95% Cl)	Certainty	Importance
1 ª	randomised trials	not serious	not serious	not serious	very serious ^b	none	7/49 (14.3%)	11/50 (22.0%)	RR 0.65 (0.27 to 1.54)	77 fewer per 1,000 (from 161 fewer to 119 more)		

Serious Infections, bi-weekly TCZ, 52 weeks

Remission at 52 weeks, bi-weekly TCZ

1 ª	randomised trials	not serious	not serious	not serious	very serious ^b	none	26/49 (53.1%)	7/50 (14.0%)	RR 3.79 (1.82 to 7.91)	391 more per 1,000 (from 115 more to 967 more)		
-----	----------------------	-------------	-------------	-------------	---------------------------	------	---------------	--------------	----------------------------------	--	--	--

Flares, bi-weekly TCZ

CI: Confidence interval; MD: Mean difference; RR: Risk ratio

Explanations

a. J. H. Stone, 2017, "Trial of Tocilizumab in Giant-Cell Arteritis"

b. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

• References:

- Randomized controlled trials:

Author	Year	Title
		Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised,
P. M. Villiger	2016	double-blind, placebo-controlled trial
J. H. Stone	2017	Trial of Tocilizumab in Giant-Cell Arteritis

- Studies reviewed and excluded:

- The suggested Stone, J. H., Tuckwell, K., Dimonaco, S., Klearman, M., Aringer, M., Blockmans, D., Brouwer, E., Cid, M. C., Dasgupta, B., Rech, J., Salvarani, C., Schulze-Koops, H., Schett, G., Spiera, R., Unizony, S. H. and Collinson, N. (2019), Glucocorticoid Doses and Acute-Phase Reactants at Giant Cell Arteritis Flare in a Randomized Trial of Tocilizumab. Arthritis Rheumatol. Accepted Author Manuscript. doi:10.1002/art.40876, has the same data as Stone 2017, for which data was abstracted already.
- The suggested Vibeke Strand et. al, Health-related quality of life in patients with giant cell arteritis treated with tocilizumab in a phase 3 randomised controlled trial. <u>Arthritis Research & Therapy</u>. 2019;21(1):1-9 DOI <u>10.1186/s13075-019-1837-7</u>, has the same data as Stone 2017, for which data was abstracted already.

Giant Cell Arteritis (GCA) Medical Treatment

- **PICO question 17:** In patients with newly diagnosed GCA, what is the impact of oral glucocorticoids with abatacept versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Activity of disease, Clinical symptoms, disease related damage, relapse, death, serious adverse events, infection, toxicity.
- 37. In patients with newly diagnosed GCA, what is the impact of oral glucocorticoids with abatacept versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?

0		,										
			38. Certain	ty assessment			Nº of p	atients	Effect	:		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with abatacept	oral glucocorticoids alone	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
complete r	emission											
1	randomised trials	not serious	not serious	not serious	very serious ^a	none	10/20 (50.0%)	7/21 (33.3%)	OR 2.00 (0.57 to 7.06)	167 more per 1,000 (from 112 fewer to 446 more)		
serious adv	verse events											
1	randomised trials	not serious	not serious	not serious	very serious ^a	none	10/20 (50.0%)	8/21 (38.1%)	OR 1.63 (0.47 to 5.63)	120 more per 1,000 (from 157 fewer to 395 more)		
deaths												
1	randomised trials	not serious	not serious	not serious	not serious ^a	none	0/20 (0.0%)	0/21 (0.0%)	not estimable sir	ice no deaths hap	opened in both groups	

relapses

	38. Certainty assessment							Nº of patients Effect				
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with abatacept	oral glucocorticoids alone	Relative (95% CI)	Absolute (95% Cl)	Certainty	Importance
1	randomised trials	not serious	not serious	not serious	very serious ^a	none	10/20 (50.0%)	14/21 (66.7%)	OR 0.50 (0.14 to 1.77)	167 fewer per 1,000 (from 448 fewer to 113 more)		

CI: Confidence interval; OR: Odds ratio

Explanations

a. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

- References:
- Randomized controlled trials:

Author	Year	Title
C. A. Langford,	2017	A Randomized, Double-Blind Trial of Abatacept (CTLA-4lg) for the Treatment of Giant Cell Arteritis

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 18:** In patients with newly diagnosed GCA, what is the impact of alternate day oral glucocorticoids versus daily oral glucocorticoids on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Activity of disease, Clinical symptoms, disease related damage, relapse, serious adverse events, infection, toxicity.
- 39. In patients with newly diagnosed GCA, what is the impact of alternate day oral glucocorticoids versus daily oral glucocorticoids on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- 40.

Certainty Impo		Certainty assessment						№ of patients		Effect			
№ of studies Study design Risk of bias Inconsistency Indirectness Imprecision Other considerations alternate day oral gluccorticoids daily oral gluccorticoids Relative (95% CI) Absolute	Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	alternate day oral glucocorticoids	daily oral glucocorticoids	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance

remission at 4 weeks

			Certainty a	issessment			Nº of p	atients	Effect	:		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	alternate day oral glucocorticoids	daily oral glucocorticoids	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
1	randomised trials	serious ^a	not serious	not serious	serious ^b	none	6/20 (30.0%)	16/20 (80.0%)	OR 0.11 (0.03 to 0.46)	494 fewer per 1,000 (from 693 fewer to 152 fewer)		

Hypercortisonism at 4 weeks

1	randomised trials	serious ^a	not serious	not serious	serious ^b	none	2/20 (10.0%)	7/20 (35.0%)	OR 0.21 (0.04 to 1.16)	248 fewer per 1,000 (from 329 fewer to 34 more)	
										more)	

CI: Confidence interval; OR: Odds ratio

Explanations

a. Blinding of participants and personnel (performance bias) not done, blinding of outcome assessment (detection bias) not done b. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

- References:
- Randomized controlled trials:

Author	Year	Title
		Daily and alternate-day corticosteroid regimens in treatment of giant cell arteritis: comparison in a
G. G. Hunder	1975	prospective study

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 19:** In patients with newly diagnosed GCA, what is the impact of statin use versus not using a statin on cardiovascular events, disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Disease related damage, death, patient reported outcomes, serious adverse events, toxicity.

41. In patients with newly diagnosed GCA, what is the impact of statin use versus not using a statin on cardiovascular events, disease-related outcomes, and treatment-related adverse events?

			42. Certaint	ty assessment			Nº of p	patients	Effec	t		Importance
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Statin	not using Statin	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Visual man	ifestations											
2 ^a	observational studies	not serious	serious ^b	not serious	very serious ^c	none	11/47 (23.4%)	28/128 (21.9%)	OR 1.03 (0.47 to 2.25)	5 more per 1,000 (from 102 fewer to 168 more)		
Fever												
2 ª	observational studies	not serious	not serious	not serious	very serious ^c	none	8/47 (17.0%)	20/128 (15.6%)	OR 0.97 (0.37 to 2.51)	4 fewer per 1,000 (from 92 fewer to 161 more)		
Headache												
2 ^a	observational studies	not serious	not serious	not serious	very serious ^c	none	43/47 (91.5%)	116/128 (90.6%)	OR 1.17 (0.35 to 3.85)	13 more per 1,000 (from 134 fewer to 68 more)		
Relapse fire	st year ^e											
2 ª	observational studies	not serious	not serious	not serious	very serious ^c	none	23/47 (48.9%)	52/128 (40.6%)	OR 1.71 (0.81 to 3.59)	133 more per 1,000 (from 50 fewer to 304 more)		
Cardiovasc	ular hospitalizatio	'n		•								
1 ^d	observational studies	not serious	not serious	not serious	serious ^c	none	0/28 (0.0%)	18/75 (24.0%)	OR 0.06 (0.01 to 1.01)	221 fewer per 1,000 (from 237 fewer to 2 more)		

Cl: Confidence interval; OR: Odds ratio

Explanations

a. Narvaez, 2007 and Garcia, 2004

b. The effect estimate (OR) in Narvaez,2007 does not meet with the confidence interval of the OR in Garcia, 2004

c. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

d. Pugnet, 2016

e. Shmidt, 2013 could not be pooled but had consistent results, it showed that while not statistically significant, statin users may be more likely to experience a first relapse (HR: 1.40; 95% CI: 0.96, 2.03; p=0.07).

- References:
- Randomized controlled trials:

None

- Comparative observational studies:

Author	Year	Title
J. Narvaez	2007	Statin therapy does not seem to benefit giant cell arteritis
A. Garcia-		Treatment with statins does not exhibit a clinically relevant corticosteroid-sparing effect in patients with giant cell
Martinez	2004	arteritis
		Predictors of Cardiovascular Hospitalization in Giant Cell Arteritis: Effect of Statin Exposure. A French Population-based
G. Pugnet	2016	Study.
J. Schmidt	2013	Statin Use in Giant Cell Arteritis: A Retrospective Study. https://doi.org/10.3899/jrheum.121150

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 20:** In patients with GCA on glucocorticoids, what is the impact of tapering glucocorticoids off by 6 months versus tapering glucocorticoids off over a period longer than 6 months on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- **Critical Outcomes:** Activity of disease, Clinical symptoms, disease related damage, relapse, patient reported outcomes, death, serious adverse events, infection, toxicity.

43. In patients with GCA on glucocorticoids, what is the impact of tapering glucocorticoids off by 6 months versus tapering glucocorticoids off over a period longer than 6 months on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?

			Certainty a	issessment			Nº of p	atients	Effect			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	tapering glucocorticoids off by 6 months	tapering glucocorticoids off over a period longer than 6 months	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Remission												
1	randomised trials	not serious	not serious	not serious	very serious ^a	none	7/50 (14.0%)	9/51 (17.6%)	RR 0.79 (0.32 to 1.97)	37 fewer per 1,000 (from 120 fewer to 171 more)		
Flares												
1	randomised trials	not serious	not serious	not serious	serious ª	none	34/50 (68.0%)	25/51 (49.0%)	RR 1.39 (0.99 to 1.95)	191 more per 1,000 (from 5 fewer to 466 more)		

Serious adverse events 52 week

1	randomised trials	not serious	not serious	not serious	very serious ^a	none	11/50 (22.0%)	13/51 (25.5%)	RR 0.86 (0.43 to 1.74)	36 fewer per 1,000 (from 145 fewer to	
										189 more)	

Serious Infections, 52 weeks

1	randomised trials	not serious	not serious	not serious	very serious ^a	none	2/50 (4.0%)	6/51 (11.8%)	RR 0.34 (0.07 to 1.61)	78 fewer per 1,000 (from 109 fewer to 72 more)		
---	----------------------	-------------	-------------	-------------	---------------------------	------	-------------	--------------	---------------------------	--	--	--

Any Infection, 52 weeks

1	randomised trials	not serious	not serious	not serious	serious ^a	none	38/50 (76.0%)	33/51 (64.7%)	RR 1.17 (0.91 to 1.52)	110 more per 1,000 (from 58 fewer to 336 more)		
---	----------------------	-------------	-------------	-------------	----------------------	------	---------------	---------------	---------------------------	--	--	--

CI: Confidence interval; RR: Risk ratio

Explanations

a. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

- References:
- Randomized controlled trials:

Author	Year	Title
J. H. Stone	2017	Trial of Tocilizumab in Giant-Cell Arteritis

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 21:** In patients with GCA with extra-cranial large vessel involvement, what is the impact of oral glucocorticoids with a non-glucocorticoid immunosuppressive agent versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?
- **Critical Outcomes:** Activity of disease, Clinical symptoms, disease related damage, relapse, serious adverse events, infection, malignancy, toxicity.
- 44. In patients with GCA with extra-cranial large vessel involvement, what is the impact of oral glucocorticoids with a non-glucocorticoid immunosuppressive agent versus oral glucocorticoids alone on cumulative glucocorticoid dose, disease-related outcomes, and treatment-related adverse events?

			45. Certain	ty assessment			Nº of pa	tients	Effect	:		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with a non- glucocorticoid immunosuppressive agen	oral glucocorticoids alone	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
Relapse at 2	1 year											
3 ^{a,b,c}	randomised trials	not serious	serious ^d	serious ^e	serious ^f	none	60/98 (61.2%)	73/101 (72.3%)	RR 0.84 (0.62 to 1.14)	116 fewer per 1,000 (from 275 fewer to 101 more)		
SAE	·											
1 ^a	randomised trials	not serious	not serious	serious ^e	serious ^f	none	5/27 (18.5%)	17/35 (48.6%)	RR 0.38 (0.16 to 0.90)	301 fewer per 1,000 (from 408 fewer to 49 fewer)		

Infections

	45. Certainty assessment							Nº of patients		t		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	oral glucocorticoids with a non- glucocorticoid immunosuppressive agen	oral glucocorticoids alone	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
2 ^{a,c}	randomised trials	not serious	serious ^g	serious ^e	serious ^f	none	28/47 (59.6%)	21/54 (38.9%)	RR 1.37 (0.45 to 4.14)	144 more per 1,000 (from 214 fewer to 1,000 more)		

Serious infections

2 ^{a,b}	randomised trials	not serious	not serious	serious ^e	serious ^f	none	4/78 (5.1%)	10/82 (12.2%)	RR 0.48 (0.16 to 1.43)	63 fewer per 1,000 (from 102 fewer to 52 more)		
------------------	----------------------	-------------	-------------	----------------------	----------------------	------	-------------	---------------	---------------------------	--	--	--

CI: Confidence interval; RR: Risk ratio

Explanations

a. Seror, 2014

b. Hoffman, 2002

c. Jover, 2001

d. The effect estimate (OR) in Jover, 2001 does not cross the confidence interval of the 2 other studies. the measure of heterogeneity I2= 55%.

e. It's not specified is all the GCA patients have extra-cranial large vessel involvement

f. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth

g. The effect estimates of the 2 included studies do not cross each other's confidence intervals. the measure of heterogeneity I2=85%.

• References:

- Randomized controlled trials:

Author	Year	Title
		Adalimumab for steroid sparing in patients with giant-cell arteritis: results of a multicentre
R. Seror	2014	randomised controlled trial
		A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate
G. S. Hoffman	2002	treatment for giant cell arteritis
		Combined treatment of giant-cell arteritis with methotrexate and prednisone. a
J. A. Jover	2001	randomized, double-blind, placebo-controlled trial

Giant Cell Arteritis (GCA)

Medical Treatment

- **PICO question 22:** In patients with GCA who are in remission off of glucocorticoids and on non-glucocorticoid immunosuppressive therapy for 1 year, what is the effect of discontinuing non-glucocorticoid immunosuppressive therapy versus continuing non-glucocorticoid immunosuppressive therapy on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Activity of disease, Clinical symptoms, disease related damage, relapse, serious adverse events, infection, malignancy, toxicity, death.
- 46. In patients with GCA who are in remission off of glucocorticoids and on non-glucocorticoid immunosuppressive therapy for 1 year, what is the effect of discontinuing non-glucocorticoid immunosuppressive therapy versus continuing non-glucocorticoid immunosuppressive therapy on disease-related outcomes and treatment-related adverse events?
 - No comparative data available
- 47. In patients with GCA who are in remission off of glucocorticoids and on non-glucocorticoid immunosuppressive therapy for 1 year, what is the effect of discontinuing non-glucocorticoid immunosuppressive therapy on disease-related outcomes and treatment-related adverse events?
 - No single arm data available
- 48. In patients with GCA who are in remission off of glucocorticoids and on non-glucocorticoid immunosuppressive therapy for 1 year, what is the effect of continuing non-glucocorticoid immunosuppressive therapy on disease-related outcomes and treatment-related adverse events?
 - No single arm data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies:

None

Medical treatment

- **PICO question 23:** In asymptomatic patients with GCA who have rising inflammatory markers, what is the impact of continued clinical observation without escalation of immunosuppression versus escalating immunosuppression on disease-related outcomes, and treatment-related adverse events?
- Critical Outcomes: Activity of disease, Clinical symptoms, disease related damage, relapse, serious adverse events, infection, toxicity, death, malignancy
- 49. In asymptomatic patients with GCA who have rising inflammatory markers, what is the impact of continued clinical observation without escalation of immunosuppression versus escalating immunosuppression on disease-related outcomes, and treatment-related adverse events?
 - No comparative data available
- 50. In asymptomatic patients with GCA who have rising inflammatory markers, what is the impact of continued clinical observation without escalation of immunosuppression on disease-related outcomes, and treatment-related adverse events?
 - No single arm data available
- 51. In asymptomatic patients with GCA who have rising inflammatory markers, what is the impact of escalating immunosuppression on diseaserelated outcomes, and treatment-related adverse events?
 - No single arm data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies and test accuracy studies:

None

Surgical Intervention

- **PICO question 24:** In patients with GCA with severe disease, what is the impact of surgical intervention with immunosuppression versus immunosuppression alone on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
- **Critical Outcomes:** Damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation, ischemic events, complications of the intervention such as bleeding or thrombotic events, need for additional intervention, death
- 52. In patients with GCA with severe disease, what is the impact of surgical intervention with immunosuppression versus immunosuppression alone on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - No comparative data available
- 53. In patients with GCA with severe disease, what is the impact of surgical intervention with immunosuppression on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Disease- related outcomes	Both, 2006	Observational, single arm	Mean 24 m (range 5-101)	10 GCA patients with symptomatic large artery involvement undergoing PTA of upper extremity arterial lesion. 9/10 meet ACR criteria. Germany. 1995-2004.	Percutaneous transluminal angioplasty	Immediate technical success rate of 100%. Cumulative primary patency rate 65.2% (SE 8.9%). Repeat angioplasty with cumulative secondary patency rate of 82.6% (SE 7.1%). Cumulative tertiary patency rate of 89.7% (SE 5.6%). 5/10 patients without clinical signs of relapsing stenosis	1 patient did not fulfill ACR criteria but had bilateral UE arm manifestations and PMR.
Surgical intervention -related adverse events	Both, 2006	Observational, single arm	Mean 24 m (range 5-101)	10 GCA patients with symptomatic large artery involvement undergoing PTA of upper extremity arterial lesion. 9/10 meet ACR criteria. Germany. 1995-2004.	Percutaneous transluminal angioplasty	Hematoma at puncture site in 1/10 patients. latrogenic femoral artery pseudoaneurysm in 1/10 patients.	1 patient did not fulfill ACR criteria but had bilateral UE arm manifestations and PMR.

54. In patients with GCA with severe disease, what is the impact of immunosuppression alone on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?

No single arm data available

- References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies and test accuracy studies :

Author	Year	Title
Both	2006	Balloon angioplasty of arteries of the upper extremities in patients with extracranial giant-cell arteritis

Giant Cell Arteritis (GCA)

Surgical intervention

- **PICO question 25:** In patients with GCA and severe disease, what is the impact of performing surgical intervention while the patient has active disease versus delaying until the disease is in remission on disease-related outcomes and surgical intervention-related adverse events?
- **Critical Outcomes:** Damage from disease, disease activity, relapse, infection, ischemic events, complications of the intervention such as bleeding or thrombotic events, need for additional intervention, death.
- 55. In patients with GCA and severe disease, what is the impact of performing surgical intervention while the patient has active disease versus delaying until the disease is in remission on disease-related outcomes and surgical intervention-related adverse events?
 - No comparative data available
- 56. In patients with GCA and severe disease, what is the impact of performing surgical intervention while the patient has active disease on diseaserelated outcomes and surgical intervention-related adverse events?
 - Patient important outcomes:

Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Operative Mortality	Mennan der, 2008	Observational, retrospective	Mean f/u of 4 years	100 patients undergoing repair of ascending aortic aneurysm with histological evidence of GCA or lympho- plasmacytic aortitis (excluding Takayasu's, infective aoritis, mixed inflammatory dz or simple atherosclerosis.	Repair of ascending aortic aneurysm.	Operative mortality in 4/100 patients. Late death related to low output syndrome in 3/100	Cohort not limited to GCA but also patients with isolated aortitis. No mention of needing to meet (ACR) criteria for GCA.
Complicatio ns of intervention	Mennan der, 2008	Observational, retrospective	Mean f/u of 4 years	100 patients undergoing repair of ascending aortic aneurysm with histological evidence of GCA or lympho- plasmacytic aortitis (excluding Takayasu's, infective aoritis, mixed inflammatory dz or simple atherosclerosis.	Repair of ascending aortic aneurysm.	Mediastinitis: 1/100 Stroke: 4/100 Myocardial infarction: 0/100 Low output syndrome 4/100 Renal insufficiency: 8/100 Reoperations for bleeding: 4/100	Cohort not limited to GCA but also patients with isolated aortitis. No mention of needing to meet (ACR) criteria for GCA.
Need for additional intervention s (2 studies with 221 patients assessed the need for additional intervention s, one study had 3/100 and another	Mennan der, 2008	Observational, retrospective	Mean f/u of 4 years	100 patients undergoing repair of ascending aortic aneurysm with histological evidence of GCA or lympho- plasmacytic aortitis (excluding Takayasu's, infective aoritis, mixed inflammatory dz or simple atherosclerosis.	Repair of ascending aortic aneurysm.	2/100 required reoperation for aortic regurgitation. 1/100 required reoperation for coronary button pseudoaneurysm.	Cohort not limited to GCA but also patients with isolated aortitis. No mention of needing to meet (ACR) criteria for GCA.

had 48/121 patients, leading to high inconsistenc y)	Clifford AH, 2019	Observational retrospective cohort	Mean f/u 56.2 ± 45.4 mon	121 pts undergoing aortic root/ascending aorta or aortic arch repair at Cleveland Clinic with at least 6 month f/u data (29 GCA, 11 TAK, 73 CIA,	Aortic root/ascending aorta or aortic arch repair	48 pts out of 121 pts went on to require 74 additional vascular procedures.	Cohort not limited to GCA but include other forms of large vessel vasculitis including Takayasu's and clinically isolated aortitis (CIA).
Relapse	Clifford AH, 2019	Observational retrospective cohort	Mean f/u 56.2 ± 45.4 mon	8 Other) 121 pts undergoing aortic root/ascending aorta or aortic arch repair at Cleveland Clinic with at least 6 month f/u data (29 GCA, 11 TAK, 73 CIA, 8 Other)	Aortic root/ascending aorta or aortic arch repair	53/121 (44%) developed new vascular lesions.	Cohort not limited to GCA but include other forms of large vessel vasculitis including Takayasu's and clinically isolated aortitis (CIA).

57. In patients with GCA and severe disease, what is the impact of delaying surgical intervention until the disease is in remission on disease-related outcomes and surgical intervention-related adverse events?

- No single arm data available
- References:
- Randomized controlled trials:

None

- Comparative observational studies:

None

- Single arm studies and test accuracy studies :

Author	Year	Title
Mennender	2008	Surgical management of ascending aortic aneurysm due to non-infectious aortitis
Clifford	2019	Outcomes among 196 patients with non-infectious proximal aortitis

- Studies reviewed and excluded:

			Exclude: It is not clear from the manuscript if
M. Gagne-		Giant cell aortitis: clinical presentation and outcomes in	patients had active disease or were in remission at
Loranger	2016	40 patients consecutively operated on	the time of surgery.

Giant Cell Arteritis (GCA)

Surgical Intervention

- **PICO question 26:** In patients with GCA with severe disease, what is the impact of endovascular interventions (such as angioplasty or stent placement) versus vascular bypass or grafting on disease-related outcomes and surgical treatment-related adverse events?
- **Critical Outcomes:** Damage from disease, infection, ischemic events, complications of the intervention such as bleeding or thrombotic events, adverse reaction to contrast exposure, need for additional intervention, death
- 58. In patients with GCA with severe disease, what is the impact of endovascular interventions (such as angioplasty or stent placement) versus vascular bypass or grafting on disease-related outcomes and surgical treatment-related adverse events?
 - No comparative data available
- 59. In patients with GCA with severe disease, what is the impact of endovascular interventions (such as angioplasty or stent placement) on diseaserelated outcomes and surgical treatment-related adverse events?
 - Patient important outcomes:

Outcomes	Author, year	Study type	Duration of follow	Population (number and description)	Intervention used in relevant population	Results	Comments
	,		up		(Describe the intervention)		
Long term patency/re- stenosis	Both, 2006	Retrospective observational cohort	Mean follow-up of 24 months (range 5- 101)	10 CGA patients with symptomatic large artery involvement undergoing PTA (30 lesions). Germany 1995-2004. 9/10 meeting ACR criteria.	PTA of upper extremity arterial lesion	5/10 with relapsing stenosis (10/30 lesions). Cumulative primary patency rate 65.2% (SE 8.9%). Repeat PTA secondary cumulative success rate 82.6%. Tertiary cumulative success rate 89.7%.	Limited to upper extremity arterial stenosis or occlusion.

						Immediate technical success rate 100%.	
Adverse events	Both, 2006	Retrospective observational cohort	Mean follow-up of 24 months (range 5- 101)	10 CGA patients with symptomatic large artery involvement undergoing PTA (30 lesions). Germany 1995-2004. 9/10 meeting ACR criteria.	PTA of upper extremity arterial lesion	Moderate dissection of vessel wall 16/30 vascular lesions. Hematoma at puncture site: 1/10 patients latrogenic femoral artery pseudoaneurysm: 1/10	Limited to upper extremity arterial stenosis or occlusion.

- 60. In patients with GCA with severe disease, what is the impact of vascular bypass or grafting on disease-related outcomes and surgical treatment-related adverse events?
 - Patient important outcomes:

Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results
Operative mortality	Mennan der, 2008	Observational retrospective cohort	Mean follow-up 4 years	100 patients with histological evidence of GCA or lymphoplasmacytic aortitis on resected ascending aortic aneurysm. 1993-2006. Mayo Clinic cohort	Ascending aorta aneurysm repair.	4/100 deaths
Adverse events	Mennan der, 2008	Observational retrospective cohort	Mean follow-up 4 years	100 patients with histological evidence of GCA or lymphoplasmacytic aortitis on resected ascending aortic aneurysm. 1993-2006. Mayo Clinic cohort	Ascending aorta aneurysm repair.	Mediastinitis: 1/100 Reoperation for bleeding: 4/100 Stroke: 4/100 Myocardial infarction: 0/100 Low output syndrome: 4/100 Renal insufficiency: 8/100

- References:
- Randomized controlled trials:
 - None
- Comparative observational studies: None
- Single arm studies and test accuracy studies :

Author	ar Title	
--------	----------	--

Mennander	2008	Surgical management of ascending aortic aneurysm due to non-infectious aortitis
Both	2006	Balloon angioplasty of arteries of the upper extremities in patients with extracranial giant-cell arteritis

Giant Cell Arteritis (GCA)

Medical treatment

- PICO question 27: In patients with GCA undergoing surgical intervention, what is the impact of high dose prednisone use prior to procedure vs. not using high dose prednisone on disease-related outcomes and surgical intervention-related adverse effects?
- Critical Outcomes: Damage from disease, disease activity, infection, ischemic events, complications of the intervention such as bleeding or thrombotic events, need for additional intervention, death
- 61. In patients with GCA undergoing surgical intervention, what is the impact of high dose prednisone use prior to procedure vs. not using high dose prednisone on disease-related outcomes and surgical intervention-related adverse effects?
 - No comparative data available
- 62. In patients with GCA undergoing surgical intervention, what is the impact of high dose prednisone use prior to procedure on disease-related outcomes and surgical intervention-related adverse effects?
 - No single arm data available
- 63. In patients with GCA undergoing surgical intervention, what is the impact of not using high dose prednisone on disease-related outcomes and surgical intervention-related adverse effects?
 - No single arm data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies and test accuracy studies:

None

Takayasu Arteritis (TAK) Imaging, laboratory tests, and monitoring

- **PICO question 1:** In patients with TAK, what is the impact of utilizing non-invasive imaging vs. invasive imaging as a disease activity assessment tool on the development of disease-related outcomes and diagnostic testing-related adverse events?
- **Critical Outcomes:** Adverse reactions to contrast exposure such as nephrotoxicity, Complications of the procedure (Bleeding, thrombotic and ischemic events), disease damage, relapse, death, Clinical symptoms
- 64. In patients with TAK, what is the impact of utilizing non-invasive imaging vs. invasive imaging as a disease activity assessment tool on the development of disease-related outcomes and diagnostic testing-related adverse events? No comparative data available
- 65. In patients with TAK, what is the impact of utilizing non-invasive imaging as a disease activity assessment tool on the development of diseaserelated outcomes and diagnostic testing-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results
Relapse: 109 patients underwent different noninvasive imaging (US,	Fan, 2016	Single Center	Range 2 – 28 months	51 patients with TAK (46F, 5M); 20 patients had follow up scans	Ultrasound of the carotid arteries	Of the 20 patients with follow up studies, 13 had been active at baseline. Of these 13, 12 got to remission. There were no significant differences in carotid wall thickness or outer carotid diameter. 11 of these 12 patients relapsed. During the relapse, there were no significant differences between carotid wall thickness or outer carotid diameter.
PET, MRI). Patients followed up with US had the highest relapse rate (55%), followed by PET followed by MRI (10%)	Grayson, 2018	Single Center	6 months in those that received more than 1 scan	26 TAK patients (44 scans, mean age 31 y, 70% F), 30 GCA patients (67 scans, mean age 69, 70%F)	FDG-PET -2 nuclear med providers interpreted PET scans blinded to clinical data and each other. -2 hour uptake time. -Semiquantitative PETVAS score used (4 segments of aorta, 11 branches, rated as	Patients with PETVAS > 20 had higher rate of future relapse (55% vs 11%)

- Patient important outcomes:

					compared to the liver uptake)	
	Gudbrands son, 2017	Population based cohort study (Norway)	The mean time on TNF 42 months.	32 patients with TAK (ACR 1990 or modified Ishikawa criteria), All patients treated with TNF	114 MRI exams (Median 4), 73 US (median 2), 49 PET-CT (median 1)	3/32 (10%) had developed new arterial lesions.
Dissection: in 72 patients who underwent US for follow up, dissection happened in 16.7%	Wang 2016	Retrospecti ve single center study	n/a	72 patients with clinical diagnosis of TAK	Vascular sonography Igrayscale, color Doppler, power Doppler, eFLOW, pulses and continuous wave Doppler) of abd Ao, celiac artery, SMA, IMA, BL renal and iliac arteries, innominate artery, BL subclavian, BL carotid, BL vertebral, BL axillary arteries	12/72 (16.7%) were found to have dissections 7/12 had undergone CTA evaluation before and no dissections were identified by CTA in those patients.
Coronary artery involvement: in 129 patients who underwent Coronary CT	Kang 2014	Retrospecti ve single center study	n/a	111 patients with TAK – ACR 1990 criteria (29% with cardiac symptoms, 71% with no cardiac symptoms)	Coronary CT angiogram	53.2% of patients had coronary arterial lesions at CT (28% coronary ostial stenosis; 37% nonostial arterial coronary stenosis; 8% coronary aneurysm) Cardiac sx, disease activity was not associated with differences in coronary involvement.
angiography, 44-52% had coronary artery involvement	Soto, 2011	Retrospecti ve single center study	n/a	18 patients with TAK (1990 ACR criteria) and angina	Coronary CT angiogram	8/18 (44%) of patients had lesions identified 5/8 went on to have catheter angio (6/6 "significant" CT lesions were confirmed, 1 "nonsignificant" CT lesion was recharacterized as "significant" on catheter angio)
Arterial Progression – appearance of novel lesions or increase in width or length or percent of stenosis: in 41 patients who had MRA scans	Youngstein, 2017	Cross- sectional, observatio nal, prospective (April 2010-Dec 2015), Two centers	24 (IQR: 12- 60) months from baseline	26 patients with TAK who had underwent surgery with graft placement	FDG-PET at baseline (23/26 – 88% had significant periprosthetic uptake), MRA scans were performed 24 (IQR: 12-60) months from baseline to assess for vascular progression	1/26 had progression on follow up MRA

for disease assessment, 7% had increased vascular involvement, while in 9 patients with active disease	Sun, 2016	Single center, cohort	6 months	15 patients with TAK (ACR 1990 criteria) had repeat contrasted MRI studies (11/15 were "active" at baseline)	CE-MRA (dark blood images – vessel wall imaging)	12/15 had no change in arterial involvement 2/15 had increased vascular involvement (both were active at baseline) 1/15 had decreased arterial involvement
who had PET for follow up, 11% had increased vascular involvement.	Lee, 2012	Single center cohort (retrospecti ve)	Mean time to follow up scan 4.2 months	13 patients with TAK per 1990 ACR criteria (9/13 with active disease at baseline; 4/13 with inactive disease at baseline)	FDG-PET scan at baseline and follow up	 8/9 patients with active disease at baseline had improvement in FDG uptake on follow up after treatment 3/3 patients with inactive disease at baseline (but FDG activity at baseline) had improvement on FDG uptake at follow up 1 patient had increased FDG uptake on flare of disease at follow up.
Disease activity: 68 patients were evaluated using CTA, FDG PET,	Khandelwal 2011	Retrospecti ve analysis of 15 consecutiv e patients	No follow up	15 patients (8 males, 7 females)	Multidetector CTA Arterial mural thickness correlated to ESR and CRP	Laboratory results available in 9 patients All 9 patients had wall thickness. 6 out of 9 had elevated ESR and CRP and 3 out of 9 had normal ESR and CRP
and US. US detected active disease in 1/6 patients, PET showed reduced uptake in 5/6 patients with remission and had a sensitivity of 40-47% in	Andrews 2003	Retrospecti ve review	1996- 2002	6 newly diagnosed patients (5 females, 1 male)	Conventional IA angiography was compared to MRA or FDG-PET performed at diagnosis and follow up (after therapy)	IA angiography not performed in 1 patient at baseline. All 6 pts had FDG-PET at baseline and follow up. 5 pts had MRA at baseline and at follow up 5 out of 6 pts achieved remission. On all 5 pts in remission FDG-PET was significantly reduced uptake (p,0.04) Only 1 MRA out of 5 pts in remission showed improvement of wall thickness. 1 pt did not achieve remission – FDG-PET continued to show abnormal uptake.
patents with high CRP and ESR respectively. CTA showed increased wall	Webb 2004	Retrospecti ve review	1999-2003	18 pts (17 females, 1 male)	Angiography was compared to FDG-PET	A total of 28 FDG-PET scans were done Compared to combined assessment of disease activity FDG-PET correctly detected 11/12 pts with active disease and all 6 in remission. WSR and CRP elevation also correlated with positive FDG-PET (p=0.05, p=0.0047)
thickness regardless of ESR and CRP values in 9 patients. 4	Maeda 1991	Prospective analysis	No follow up	23 patients (all females)	US of carotids was compared to angiography	46 carotids examined: 34 (74%) had thick IMC pattern. Only 11 carotids and 3 patients without abnormalities. 28 (61%) of 46 carotids and 10 pts (43%) failed to show abnormalities on arteriogram.

studies that included 160						7 patients had active disease by serology – of those, all but 1 had abnormal US (thick IMC)
patients with TAK evaluated by differing	Walter 2005	Prospective Consecutiv e patients		6 pts (6 females)	Evaluation of FDG-PET in the assessment of disease activity	8 scans done For high CRP - sensitivity of PET was 46.6% For high ESR – sensitivity was 40.3%
noninvasive means generally showed that	Li, 2019	Consecutiv e cohort	N/A	71 pts with TAK (60F, 11M, median age 32); ACR criteria	Contrast-enhanced US (CEUS); Semiquantitative method (rated from 0-3)	CEUS grade correlated significantly with NIH (p<0.001) and ITAS 2000 (p=0.004)
the imaging changed with disease activity, though one study did not show significant change in	Banerjee, 2019	Prospective ongoing cohort	6 months in this study	52 pts with LVV (31 GCA, 21 TAK)	FDG-PET exam	In the cohort that had treatment increased over the interval, Median PETVAS significantly improved from baseline to 6-month follow-up visit (23.5 vs 18; p < 0.01). Concomitantly, significant improvement in median PGA scores (2 vs 0, p < 0.01), CRP (6.2 vs 2.0, p < 0.001), and ESR (24 vs 9, p < 0.0001) was also observed
imaging with respect to active disease.	Incerti, 2019	Cross sectional study	NA	30 patients with TAK	FDG-PET exam	Positive PET scan, Number of lesions with significant uptake, and SUVmax were all not significantly different in patients with active disease compared to patients with inactive disease (all p<0.1)
	Martinez, 2018	Single Center study	3-12 months repeat PET scan	38 consecutive patients with TAK. One pt excluded due to poor quality images.	FDG-PET exam Target to background ratio (TBR):: TBR:aortic wall uptake divided by blood pool uptake	21/37 patients evaluated (56.8%) Experienced clinical improvement after the initial PET/CT scan and In the 21 patients With clinical improvement the mean TBR decreased significantly from 1.8 ± 0.6 to 1.5 ± 0.3 (p ½ 0.0002).
Aortic Aneurysm/Dila tion – One study with 41 patients with TAK showed that noninvasive testing found 20% had aortic dilatation over follow up.	Muratore, 2019	Longitudin al study	30 month, median	93 LVV (41 TAK, 52 GCA) that underwent at least 2 PET exams	90%+ of imaging was noninvasive (PET, CT, MRA)	18 (12 GCA, 6 TAK)/93 (19.4%) were found to have aortic dilatation. No significant predictors found (PET, disease activity, CV risk factors).

- Test Accuracy results: Use of non-invasive imaging be used to diagnose disease activity in Takayasu patients

Sensitivity	0.72 (95% CI: 0.54 to 0.84)					-1
			Prevalence	40%	50%	
Creatificity	0.00 (05% 61: 0.53 += 0.83)		Trevalence	4070	50%	
Specificity	0.69 (95% CI: 0.53 to 0.82)					

	№ of studies (№ of			Factors that may decrease certainty of evidence					Effect per 1,000 patients tested		
Outcome	patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 40%	pre-test probability of 50%	Test accuracy CoE	
True positives (patients with disease activity)	8 studies 180 patients	cohort & case-control type studies	serious ^a	serious ^b	not serious ^c	serious ^d	none	286 (218 to 337)	358 (272 to 421)		
False negatives (patients incorrectly classified as not having disease activity)	_							114 (63 to 182)	142 (79 to 228)		
True negatives (patients without disease activity)	8 studies 193 patients	cohort & case-control type studies	serious ^a	serious ^b	not serious ^c	serious ^d	none	416 (320 to 490)	347 (267 to 408)		
False positives (patients incorrectly classified as having disease activity)								184 (110 to 280)	153 (92 to 233)		

- Explanations

- a. Due to patient selection (some studies did not avoid inappropriate exclusions), the results of the index test were interpreted with knowledge of the results of the standard reference, and not all patients received a reference test

- b. Indirectly compares the interventions in which we are interested (invasive vs noninvasive) when applied to the populations in which we are interested
- c. The similarity of point estimates and overlap of confidence intervals make inconsistency not serious
- d. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth
- 66. In patients with TAK, what is the impact of utilizing invasive imaging as a disease activity assessment tool on the development of disease-related outcomes and diagnostic testing-related adverse events?

Outcomes (Name +	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the	Results
Summary)					intervention)	
Complications	Liu, 1990	Retrospective		50 patients with aorto-	51 patients. IV DSA used in 48 and	0 complications
				arteritis with TAK for mean	intra-arterial used in 3	
82 patients				16 years underwent digital		
with TAK				subtraction angiography		
underwent DSA	Lacombe,	Retrospective		32 TAK patients. 21 with	IV DSA was performed in all	0 complications
and there were	1986			new dx and 10 post op	patients to evaluate for vessel	
0 complications				controls with TAK	abnormalities	
Visualization/su	Liu, 1990	Retrospective		50 patients with aorto-	51 patients. IV DSA used in 48 and	Excellent to god visualization
ccess of				arteritis with TAK for mean	intra-arterial used in 3	obtained in 96%
imaging				16 years underwent digital		
				subtraction angiography		
48 (96%)						
showed good						
visualization of						

the 50 patients			
studied			

- References:
- Randomized controlled trials:

None

- Comparative observational studies: None
- Single arm studies and test accuracy studies:

	Author	Year	Title
	Gudbrandsso	2017	TNF inhibitors appear to inhibit disease progression and improve outcome in Takayasu arteritis; an observational, population-based time trend study
	Youngstein	2017	FDG Uptake by Prosthetic Arterial Grafts in Large Vessel Vasculitis Is Not Specific for Active Disease
	Fan	2016	Ultrasound morphological changes in the carotid wall of Takayasu's arteritis: monitor of disease progression
	Wang	2016	Sonographic Characterization of Arterial Dissections in Takayasu Arteritis
	Sun	2016	Value of whole-body contrast-enhanced magnetic resonance angiography with vessel wall imaging in quantitative assessment of disease activity and follow-up examination in Takayasu's arteritis
	Kang	2014	Takayasu arteritis: assessment of coronary arterial abnormalities with 128-section dual-source CT angiography of the coronary arteries and aorta
	Lee	2012	The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with Takayasu arteritis
	Soto	2011	Coronary CT angiography in Takayasu arteritis
	Khandelwal	2014	Multidetector CT angiography in Takayasu arteritis
	Andrews	2004	Non-invasive imaging in the diagnosis and management of Takayasu's arteritis
			Carotid lesions detected by B-mode ultrasonography in Takayasu's arteritis: "macaroni sign" as
	Maeda	1991	an indicator of the disease
Patient			The value of FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity
important	Walter	2005	and extent of disease
outcomes	Li	2019	Contrast-enhanced Ultrasonography for Monitoring Arterial Inflammation in Takayasu Arteritis

	Martinez	2018	(18)F-FDG PET/CT in the follow-up of large-vessel vasculitis: A study of 37 consecutive patients
			Effect of Treatment on Imaging, Clinical, and Serologic Assessments of Disease Activity in Large-
	Banerjee	2019	Vessel Vasculitis
			(18)F-FDG PET reveals unique features of large vessel inflammation in patients with Takayasu's
	Incerti	2019	arteritis
			Aortic dilatation in patients with large vessel vasculitis: A longitudinal case control study using
	Muratore	2019	PET/CT
	Liu	1990	Intravenous digital subtraction angiography in patients with aorto-arteritis (Takayasu's)
	Lacombe	1986	Intravenous digital subtraction angiography in Takayasu's disease. A report of 32 cases
Patient	Webb	2004	The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis
important			
outcomes			
and test			(18) F-Fluorodeoxyglucose-Positron Emission Tomography As an Imaging Biomarker in a
accuracy	Grayson	2018	Prospective, Longitudinal Cohort of Patients With Large Vessel Vasculitis
	Eshet	2011	The limited role of MRI in long-term follow-up of patients with Takayasu's arteritis
			Comparison of magnetic resonance angiography and (18)F-fluorodeoxyglucose positron
	Quinn	2017	emission tomography in large-vessel vasculitis
			Correlating MRI with clinical evaluation in the assessment of disease activity of Takayasu's
	John	2017	arteritis
	Santhosh	2014	F-18 FDG PET/CT in the evaluation of Takayasu arteritis: an experience from the tropics
			Comparison of F18-FDG PET/CT findings with current clinical disease status in patients with
Test	Karapolat	2013	Takayasu's arteritis
accuracy			The utility of fluorine-18-fluorodeoxyglucose positron emission tomography in the diagnosis and
studies	Nguyen	2019	monitoring of large vessel vasculitis: A South Australian retrospective audit

- Studies reviewed and excluded:

Author	Year	Title	Comments
F. A.			Exclude for single arm TAK PICO 1, does
Aeschlimann	2017	Childhood Takayasu arteritis: disease course and response to therapy	not address
		Long-Term Outcomes and Prognostic Factors of Complications in Takayasu	Exclude for single arm TAK PICO 1, no
C. Comarmond	2017	Arteritis: A Multicenter Study of 318 Patients	data on type of imaging performed
			Exclude for single arm TAK PICO 1, does
Y. F. Peng	2017	Serum Bilirubin Concentrations in Patients With Takayasu Arteritis	not address

K. M. Treitl	2017	3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study	Exclude for single arm TAK PICO 1, no relevant outcomes
F. Alibaz-Oner	2016	Plasma pentraxin-3 levels in patients with Takayasu's arteritis during routine follow-up	Exclude for single arm TAK PICO 1, not specific if imaging is invasive or non-invasive
F. Alibaz-Oner	2015	Patients with Takayasu's arteritis having persistent acute-phase response usually have an increased major vessel uptake by 18F-FDG-PET/CT	Exclude for single arm TAK PICO 1
D. Li	2011	Detecting disease extent and activity of Takayasu arteritis using whole-body magnetic resonance angiography and vessel wall imaging as a 1-stop solution	Exclude for single arm TAK PICO 1
M. Both	2008	MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in complicated courses of giant cell arteritis	Exclude. Not TAK
M. K. Yadav	2007	Takayasu arteritis: clinical and CT-angiography profile of 25 patients and a brief review of literature	Exclude. Does not address the question. Descriptive study of vascular findings. No correlations.
C. Cantu	2000	Noninvasive cerebrovascular assessment of Takayasu arteritis	Exclude. Does not address question. Descriptive study of intracranial involvement.
C. Lefebvre	2000	The role of B-mode ultrasonography and electron beam computed tomography in evaluation of Takayasu's arteritis: a study of 43 patients	Exclude. Does not address question. Descriptive study of usefulness of non- invasive test in detecting stenosis and wall thickening. No correlation with disease activity.
I. Yamada	2000	Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three- dimensional MR angiography	Exclude. Does not address question. Descriptive study of utility of MRA for diagnosis. No correlation with activity.
M. Ando	2000	Surgical considerations of occlusive lesions associated with Takayasu's arteritis	Exclude. Does not address question. Surgical results of occlusive lesions.
R. O. Raninen	2000	Ultrasonography in the quantification of arterial involvement in Takayasu's arteritis	Exclude. Does not address question. Diagnostic performance of UA.
I. Yamada	1998	Takayasu arteritis: evaluation of the thoracic aorta with CT angiography	Exclude. Does not address question. Diagnostic performance of CTA.
J. H. Park	1997	CT angiography of Takayasu arteritis: comparison with conventional angiography	Exclude. Does not address question. Diagnostic performance of CTA.

			Exclude. Does not address question.
			Correlation of MRA with arteriogram in
			terms of detecting vessel
		Takayasu's arteritis: evaluation with three-dimensional time-of-flight MR	abnormalities. No correlation with
S. Kumar	1997	angiography	disease activity.
			Exclude. Does not address question.
			Performance of US in detecting carotid
		Comparative ultrasonographic and angiographic study of carotid arterial	lesions compared to arteriogram. No
N. Taniguchi	1997	lesions in Takayasu's arteritis	correlation with disease activity.
			Exclude. Does not address question.
			Descriptive study of use of US over
			time. No objective measurement of
Y. Sun	1996	Ultrasonographic study and long-term follow-up of Takayasu's arteritis	disease activity.
			Exclude. Does not address question.
			Comparison of MRA abnormalities
A. Hata	1995	Magnetic resonance imaging of vascular changes in Takayasu arteritis	between TAK and healthy controls.
			Exclude. Does not address question.
		Gallium scintigraphy in the diagnosis and total lymphoid irradiation of	Evaluation of treatment with total
K. E. Meyers	1994	Takayasu's arteritis	lymphoid irradiation.
			Exclude. Does not address question.
K. S. Chugh	1992	Renovascular hypertension due to Takayasu's arteritis among Indian patients	Different causes of renovascular HTN.
			Exclude. Missing data. One of disease
			activity measurements was performed
M. D. B. Spichler	2008	Takayasu's arteritis: Clinical and therapeutic aspects in 36 patients	in only half of the patients.
			Exclude. Does not address question.
			Diagnostic performance of WSR and
		Hypertension and Elevated ESR as Diagnostic Features of Takayasu Arteritis	hypertension in predicting the
E. Albert	2003	in Children	diagnosis of TAK.
			Exclude. Does not address question. US
T. Wolkanin-		Ultrasound examination of carotid arteries with intima media measurement:	abnormalities of carotids of pts with
Bartnik	2002	An underestimated tool in the diagnosis of Takayasu's disease	TAK compared to controls.

Imaging, laboratory tests, and monitoring

• **PICO Question 2:** In patients with TAK, what is the impact of adding inflammatory markers to clinical monitoring as a disease activity assessment tool vs. clinical monitoring alone on the development of disease-related outcomes and diagnostic testing-related adverse

events?

- Critical Outcomes: Active disease, Clinical symptoms, Relapse, Death, organ damage
- 67. In patients with TAK, what is the impact of adding inflammatory markers to clinical monitoring as a disease activity assessment tool vs. clinical monitoring alone on the development of disease-related outcomes and diagnostic testing-related adverse events?
 - No comparative data available.
- 68. In patients with TAK, what is the impact of adding inflammatory markers to clinical monitoring as a disease activity assessment tool on the development of disease-related outcomes and diagnostic testing-related adverse events
 - Patient important outcomes:

Outcomes	Author, year	Study type	Duration of	Population (number and	Results
			follow up	description)	
Active	Comarmond C,	Retrospectiv	Median 6.1	318 French TAK patients	Progressive clinical course in 124 of 318 patients (39.0%);
disease	2017	е	years	meeting ACR and Ishikawa	Vascular complications in 122 of 318 patients (38.3%)
uiscusc		observation		criteria modified by Sharma	
		al			136 patients relapsed (136/318, 42.8%)
Relapse					
	-				16 deaths out of 318 patients (5%)
Death					
	Keskek S, 2017	Cross	NA	12 Turkish TAK patients	Acrotism (pulselessness disease) in 4/12 and 8/12 without
		sectional		meeting ACR criteria	acrotism. ESR (mm/h) with acrotism 36.0±14.4 vs w/o
Organ					13.1±7.7. CRP (mg/L) with acrotism 7.9±5.1 vs 3.8±1.6.
damage	Wang X, 2016	Case	Median f/u 3.2	60 Chinese TAK patients	MACE (major adverse cardiac events) associated with
		controlled	yrs ±2.1	meeting ACR criteria seen	Log(hsCRP) with HR 5.3 (95% CI 1.1-27.8;p=0.04)
				between 2005-2014	

Prevalence 45.85%

- Test Accuracy results for inflammatory markers in active and inactive disease:

Sensitivity	0.75 (95% CI: 0.63 to 0.84)
Specificity	0.75 (95% CI: 0.64 to 0.84)

Outcome	Nº of studies Outcome (№ of patients)	Study design	F	actors that m	Effect per 1,000 patients tested	Test			
Outcome			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 45.85%	accuracy CoE
True positives (patients with [target condition])	4 studies 84 patients	cohort & case-control type studies	not serious	not serious	serious	serious	none	343 (290 to 383)	
False negatives (patients incorrectly classified as not having [target condition])								116 (76 to 169)	
True negatives (patients without [target condition])	4 studies 86 patients	cohort & case-control type studies	not serious	not serious	serious	serious	none	408 (344 to 456)	⊕⊕⊖⊖ LOW
False positives (patients incorrectly classified as having [target condition])								134 (86 to 198)	

69. In patients with TAK, what is the impact clinical monitoring alone on the development of disease-related outcomes and diagnostic testingrelated adverse events?

- No single available data

- References:
- Randomized controlled trials: None
- Comparative observational studies: None

- Included Studies:

Single Arm	Author	Year	Title
	Comarmond, C	2017	Long-Term Outcomes and Prognostic Factors of Complications in Takayasu Arteritis: A
			Multicenter Study of 318 Patients
	Keskek	2017	High Levels of Circulating Endothelial Progenitor Cells Are Associated with Acrotism in
			Patients with Takayasu Arteritis
	Wang	2016	High-sensitivity C-reactive protein predicts adverse cardiovascular events in patients
			with Takayasu arteritis with coronary artery involvement
Test	Dagna, L	2011	Pentraxin-3 as a marker of disease activity in Takayasu arteritis
Accuracy	Matasuyama, A	2003	Matrix metalloproteinases as novel disease markers in Takayasu arteritis
Studies	Ishihara, T	2013	Diagnosis and assessment of Takayasu arteritis by multiple biomarkers
	Ma, J	2003	Circulation levels of acute phase proteins in patients with Takayasu arteritis
	Chen	2019	Assessment of disease activity in Takayasu arteritis: A quantitative study with computed
	Chen	2019	tomography angiography

- Studies reviewed and excluded:

Author	Year	Title	Comments
R. Goel	2018	Study of serial serum myeloid-related protein 8/14 as a sensitive biomarker in Takayasu arteritis: a single centre study	Exclude: Outcomes of interest not reported.
F. A. Aeschlimann	2017	Childhood Takayasu arteritis: disease course and response to therapy	Exclude: It is not clear from the manuscript how many of the patients were getting regular inflammatory markers.
			Exclude: Outcomes of interest not
		Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio	included. Only looks at outcomes in
		associated with disease activity in patients with Takayasu's	relation to Platelet-to-lymphocyte and
L. Pan	2017	arteritis: a case-control study	neutrophil-to-lymphocyte ratio.
			Exclude: Outcomes of interest not
			reported regarding ESR and CRP. Levels
F. Alibaz-		Plasma pentraxin-3 levels in patients with Takayasu's arteritis	of Pentraxin-3 were reported during
Oner	2016	during routine follow-up	active and inactive disease.

			Exclude: Outcomes of interest not
X. Kong	2016	The critical role of IL-6 in the pathogenesis of Takayasu arteritis	included.
X. Kong	2015	Evaluation of clinical measurements and development of new diagnostic criteria for Takayasu arteritis in a Chinese population	Exclude: Accuracy study for diagnostic criteria of TAK in Chinese population.
		Markers of endothelial damage and repair in Takayasu arteritis:	Exclude: Outcomes of interest not
S. Dogan	2014	are they associated with disease activity?	included.
H. Yilmaz	2012	Ghrelin and adipokines as circulating markers of disease activity in patients with Takayasu arteritis	Excluded: Outcomes of interest not included.
T. Ishihara	2013	Diagnosis and assessment of Takayasu arteritis by multiple biomarkers	Excluded: accuracy study for biomarkers including hsCRP, MMP6 and Pentraxin 3
			Exclude: Does not address the PICO.
P. C.		Association of vascular physical examination findings and	Also, much of the data is in regard to
Grayson	2012	arteriographic lesions in large vessel vasculitis	accuracy of testing.
		Takayasu arteritis is characterised by disturbances of B cell	Exclude: outcomes of interest not
		homeostasis and responds to B cell depletion therapy with	reported.
B. F. Hoyer	2012	rituximab	
	2000	Takayasy's artaritisy a saysa of prolonged artarial stiffness	Exclude: Outcomes of interest were not included.
W. F. Ng	2006	Takayasu's arteritis: a cause of prolonged arterial stiffness	Exclude: Outcomes of interest were not
	1004	Gallium scintigraphy in the diagnosis and total lymphoid irradiation	included.
K. E. Meyers	1994	of Takayasu's arteritis	
K.C.Church	1002	Renovascular hypertension due to Takayasu's arteritis among	Exclude: Outcomes of interest were not
K. S. Chugh	1992	Indian patients	included
M. D. B.	2009	Takayasu's arteritis: Clinical and therapoutic aspects in 26 patients	Exclude: Study does not answer the
Spichler	2008	Takayasu's arteritis: Clinical and therapeutic aspects in 36 patients	PICO question.
			Exclude: Study only includes 6 Takayasu
		University and Elevated ECD on Disconnetic Factures of Talaysee	patients and compares them to historic
	2002	Hypertension and Elevated ESR as Diagnostic Features of Takayasu Arteritis in Children	controls in the literature. Very limited
E. Albert	2003	Artentis in Children	data regarding inflammatory markers.
			Exclude: Inflammatory markers were
		The value of FDC DET is the diagraphic of large values. With a side	correlated to uptake by PET but there is
	2027	The value of FDG-PET in the diagnosis of large-vessel vasculitis and	no correlations done on outcomes of
Ma Walter	2005	the assessment of activity and extent of disease	interest.

Imaging, laboratory tests, and monitoring

- **PICO question 3:** In patients with known TAK, what is the impact of regularly scheduled non-invasive imaging (e.g., every 6 months) vs. routine clinical assessment on the development of disease-related outcomes and diagnostic testing-related adverse events?
- Critical Outcomes: Adverse reactions to contrast exposure, adverse reactions to sedation, Active disease, relapse, death, disease damage, clinical symptoms, patient reported outcomes.

70. In patients with known TAK, what is the impact of regularly scheduled non-invasive imaging (e.g., every 6 months) vs. routine clinical assessment on the development of disease-related outcomes and diagnostic testing-related adverse events??

- No comparative data available.
- 71. In patients with known TAK, what is the impact of regularly scheduled non-invasive imaging (e.g., every 6 months) on the development of disease-related outcomes and diagnostic testing-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Active disease PET is able to identify active disease; Increase in FDG uptake observed in TAK patients with increased acute phase reactants. that included 160 patients with TAK evaluated by differing noninvasive means generally showed	Walter, 2005	Retrospective	Not specified	26 patients with TAK (n=6) or GCA evaluated with PET.	26 patients and 26 controls underwent PET. 4 patients had follow up scans. 26 age and gender matched controls evaluated with PET. PET uptake graded on 4 point scale and correlated with ESR and CRP	No grade 2 or 3 uptake in controls. Grade 1 uptake correlated with ESR of 6, Grade 2 uptake in patients correlated with ESR of 46, and grade 3 with ESR of 90 (p=0.007). Grade 1 arteritis correlated with CRP of 4.0, Grade 2 with CRP of 37 and grade 3 with CRP of 172 (p=0.002). Follow up PET in 4 patients with tx had decrease in ESR/CRP and reduction in PET activity	PET able to identify active disease and correlated with both ESR and CRP, but more with CRP. PET improved in follow up of 4 treated patients. Only 6 TAK patients total
that the imaging changed with disease activity,	Alibaz Oner, 2015	retrospective		14 patients with clinically inactive TAK, but persistent	All patients underwent FDG PET.	Active vasculitic lesions observed in 9/14 (64.3% of patients. Median number	Increase in FDG uptake in the majority of TAK patients with an increase in

- Patient important outcomes:

though one study did not show				elevation of acute phase reactants		of active vascular lesions was 2.	acute phase reactants but clinically silent disease.
significant change in imaging with respect to active disease.	Youngste in T, 2017	Observational prospective	2 years	26 TAK patients >6 months after graft surgery	Underwent PET/FDG imaging of graft and native arteries and compared active and inactive disease as well as arterial progression assessed by MRA	High frequency of graft associated FDG uptake, but no progression in MRAs Median uptake higher in grafts than native aorta p<0.001) FDG uptake did not reflect activity status	FDG uptake in areas of arterial grafts do not have clinical significance (in terms of disease activity or progression)
	Li, 2019	Consecutive cohort	N/A	71 pts with TAK (60F, 11M, median age 32); ACR criteria	Contrast-enhanced US (CEUS); Semiquantitative method (rated from 0-3)	CEUS grade correlated significantly with NIH (p<0.001) and ITAS 2000 (p=0.004)	Indirect Disease Activity by ITAS-A or NIH
	Banerjee , 2019	Prospective ongoing cohort	6 months in this study	52 pts with LVV (31 GCA, 21 TAK)	FDG-PET exam	In the cohort that had treatment increased over the interval, Median PETVAS significantly improved from baseline to 6-month follow up visit (23.5 vs 18; p < 0.01). Concomitantly, significant improvement in median PGA scores (2 vs 0, p < 0.01), CRP (6.2 vs 2.0, p < 0.001), and ESR (24 vs 9, p < 0.0001) was also observed	Indirect PETVAS (graded evaluation per vascular territories)
	Incerti, 2019	Cross sectional study	NA	30 patients with TAK	FDG-PET exam	Positive PET scan, Number of lesions with significant uptake, and SUVmax were all not significantly different in patients with active disease compared to patients with inactive disease (all p<0.1)	Indirect NIH criteria was disease activity measure. FYI, PET was used in clinical practice to guide treatment.
	Martinez , 2018	Single Center study	3-12 months repeat PET scan	38 consecutive patients with TAK. One pt excluded due to poor quality images.	FDG-PET exam Target to background ratio (TBR):: TBR:aortic wall uptake divided by blood pool uptake	21/37 patients evaluated (56.8%) experienced clinical improvement after the initial PET/CT scan and in the 21 patients with clinical improvement the mean TBR decreased significantly	Indirect No specified definitions for "clinical improvement"

						from 1.8 ± 0.6 to1.5 ± 0.3 (p ¼ 0.0002).	
Disease progression Repeat ultrasound may be helpful; MRI	Sun, 1995	retrospective	Average duplex follow up period ws 52.7 months. Mean follow up from dz's onset 17.1 years	16 female patients with TAK. 6 with repeat doppler studies (2-10 examinations)	Clinical features analyzed. All patients had undergone at least one duplex scan evaluating brachiocep, extracranial, vertebral and subclav a. 6 underwent sequential duplex exam and long term clin follow up	All patients had subclav a. involvement. Circumferential intima- media thickening seen in stenotic common carotid a (11/16,89%). In serial follow up 2 of 6 had progressive vascular stenosis with concentric thickening in B common carotid a. other 4 were clinically stable and duplex showed non-progression. Of 16 patients, 4 had CCA occlusion (2 of these had progressive blurred vision).	Repeat ultrasound imaging was helpful in detecting progression of lesions
and MRI limited in the role of long-term follow up; Whole body cE-MRI can quantitively assess disease activity; US of carotids not	Kumar, 1997	Retrospective test accuracy study	9-12 months	16 TAK patients, follow up performed in 3	MRA performed in 16 TAK patients and compared with angiography. Follow up MRA done in 3 patients after 9-12 months	Correlation found between MRA findings and contrast angiography in 129 of 145 arteries. Follow up in 3 patients at 9- 12 months showed new lesion in LCA in one patient, no change in 2 nd patient and insignificant stenosis in L subclav in 3 rd patients. No AEs	Mostly test accuracy but follow up in 3 patients showed changes in 2 on MRA. No adverse outcomes
statistically corelated to disease activity.	Eshet Y, 2011	Retrospective	Avg 36 months (12-56 month)	11 TAK patients with clinical data and repeat MRI studies	Clinical data of 11 TAK patients matched with MRI studies. MRI + if e/o arterial wall enhancement, anatomic changes (dilation, stenosis, occlusion or wall irregularity). Disease activity determined by localizing ischemic signs/symptoms, systemic signs and inc ESR, CRP)	47 MRI exams in 11 patients. MRI positive for active disease at least once in 9/11 patients (82%). No correlation between clinical activity and MRI signs of activity	MRI useful in primary dx of TA, but limited role in long term follow up when reactivation is suspected
	Lee K, 2012	Retrospective chart review	Data collected over 8	38 patients with TAK with baseline PET	Clinical disease activity measured at baseline and c/w PET scan. Those with	Active PET (grade>2) observed in 18/24 patients with active disease and 5 of	FDG uptake is associated with clinical disease activity/markers of

	Sun Y, 2016	Retrospective	years. Time from first PET to repeat was 4.19 months +/-2.5 months	scan, 15 had follow up PET 52 TA patients (5m, 47f, avg age 33). repeat imaging in 15 patients after 6 months	follow up PET (n=15) had results compared with clinical activity at the time All patients underwent whole body CE-MRI (n=52) with follow up imaging in 15 patients after 6 months. Images were quantitatively scored and compared with clinical disease activity (ITAS 2010, ESR, CRP, pentraxin-3 levels)	14 patients with inactive disease. Association between clinical disease activity and PET (p=0.008). In 15 follow up PET scans, after tx, decrease in visual grade (p=0.011), areas of active vascular uptake (p=0.028) and standard uptake value intensity (p=0.008) reflected changes in clinical disease activity In 15 follow up patients at 6 months: at baseline 11 patients were active and 7 went into remission. Clinical manifestations improved with treatment (p<0/05), ESR and CRP decreased significantly (p=0.04, p=0.02). Whole body CE MRI showed no differences between quantitative MR score for luminal stenosis (p=0.12), wall thickening (p=0.27) before or after the follow up. However, wall enhancement scores decreased significantly	inflammation and reflects changes in clinical activity in patients with TA Whole body cE-MRI with vessel wall imaging detects luminal changes and vessel wall inflammation in TA and can quantitatively assess TA activity (with follow up)
	Fan, 2016	Retrospective, but prospective follow up in 20 patients	2 months- 28 months	51 TAK patients assessed with carotid US. 20 patients underwent follow up exams	Underwent 2-5 examinations with ultrasound	(p=0.04) Baseline 13/20 were active. Carotid wall thickness (p=0.15) and outer diameter (p=0.05) were decreased with clinical treatment. No AesRelapse in 11/12 patients showed thicker carotid walls (p=0.13) and inc outer carotid diameter (p=0.09)	US of carotids correlated with clinical disease activity and remission but did not reach stat significance. No AEs
Survival	Soto, 2006	retrospective	Not specified	76 mexican mestizo patients with TA	TTE done in all patients. Angiography done ~5 days after ECHO	5 year survival of patients with LV concentric hypertrophy was 80%	24% lost to follow up. ECHO able to detect abnormalities that

						compared to 95% in those without hypertrophy (p=0.00). 13 of 76 (17%) of patients died. 85% were hypertensive and 9%(n=15) also had acute MI. 11/15 were less than 40yo with no coronary risk factors. 7 of 15 AMI had aortic regurg	predispose to death and AMI in TAK
Aortic Aneurysm/Dilation – One study with 41 patients with TAK showed that noninvasive testing found 20% had aortic dilatation over follow up.	Murator e, 2019	Longitudinal study	30 month, median	93 LVV (41 TAK, 52 GCA) that underwent at least 2 PET exams	90%+ of imaging was noninvasive (PET, CT, MRA)	18 (12 GCA, 6 TAK)/93 (19.4%) were found to have aortic dilatation. No significant predictors found (PET, disease activity, CV risk factors).	

- Test Accuracy:

Author, year	Patient Selection	Risk of bias	Index Test	Risk of bias	Reference Standard	Risk of bias	Flow and timing Rsk of bias	Sens	Spec	PPV	NPV
Tezuka D 2012	39 TA patients undergoing PET/CT between 2006- 2010.	Low	FDG/PET CT evaluating max SUV in active (n=27) vs inactive cases (n=12) and control subjects (n-40)	Low	Biomarkers including CRP and ESR along with disease activity defined by NIH criteria (systemic features, inc esr, vascular ischemia, angiographic changes)	unclear	Low (scored within 1 month of each other)	92.6%	91.7%	96.2%	84.6%
Рара 2012	23 consecutive patients with TAK underwent MRA between 2006- 2009	Low	MRA (cutoff of 40%)	Unclear (no prespecified cutoff)	Reference standard based on Kerr criteria (clinical lab, angiographic evidence, not widely validated)	High	Low	100%	89%	92%	100%

Question: Should PET/CT be used to diagnose ACTIVE DISEASE in TAK?

Sensitivity	0.91 (95% CI: 0.83 to 0.96)				Drow	alence 20%	% 30%				
Specificity	0.92 (95% CI: 0.79 to 0.98)				Prev	alence 20%	% 30%				
				Factors that n	nay decrease ce	rtainty of evide	ence	Effect per 1,00	00 patients tested	T	
Outcome № of studies (patients)		Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 30%	Test accuracy CoE	
True positives (patients with ACTIVE DISEASE)	1 studies 83 patients	case-control type accuracy study	not serious	not serious	not serious	serious	none	182 (166 to 192)	273 (249 to 288)	⊕⊕⊕⊖ moderate	
False negatives (patients incorrectly classified as having ACTIVE DISEASE)	not							18 (8 to 34)	27 (12 to 51)		
True negatives (patients without ACTIVE DISEASE	1 studies 40 patients	case-control type accuracy study	not serious	not serious	not serious	serious	none	736 (632 to 784)	644 (553 to 686)	⊕⊕⊕⊖ moderate	
False positives (patients incorrectly classified as having ACTIVE DISEASE)								64 (16 to 168)	56 (14 to 147)		

1- Tezuka, D 2012

72. In patients with known TAK, what is the impact of routine clinical assessment on the development of disease-related outcomes and diagnostic testing-related adverse events?

- No single arm data available
- References:
- Randomized controlled trials:

None

- Comparative observational studies: None
- Single arm studies:

Single Arm	Author	Year	Title
	Jiang, W	2017	FDG Uptake by Prosthetic Arterial Grafts in Large Vessel Vasculitis Is Not Specific for
			Active Disease

Fan, W	2016	Ultrasound morphological changes in the carotid wall of Takayasu's arteritis: monitor of
		disease progression
Alibaz-Oner, F	2015	Patients with Takayasu's arteritis having persistent acute-phase response usually have an
		increased major vessel uptake by 18F-FDG-PET/CT
Sun, Y	2016	Value of whole-body contrast-enhanced magnetic resonance angiography with vessel
		wall imaging in quantitative assessment of disease activity and follow-up examination in
		Takayasu's arteritis
Lee, K	2012	The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment
		of disease activity in patients with takayasu arteritis
Eshet, Y	2012	The limited role of MRI in long-term follow-up of patients with Takayasu's arteritis
Soto, M	2006	Echocardiographic follow-up of patients with Takayasu's arteritis: five-year survival
Sun, Y	1996	Ultrasonographic study and long-term follow-up of Takayasu's arteritis
Walter, M	2005	The value of FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of
		activity and extent of disease
	2019	Contrast-enhanced Ultrasonography for Monitoring Arterial Inflammation in Takayasu
		Arteritis
Banerjee	2019	Effect of Treatment on Imaging, Clinical, and Serologic Assessments of Disease Activity in
· - ,		Large-Vessel Vasculitis
Incerti	2019	(18)F-FDG PET reveals unique features of large vessel inflammation in patients with
		Takayasu's arteritis
Martinez	2018	(18)F-FDG PET/CT in the follow-up of large-vessel vasculitis: A study of 37 consecutive patients
Muratore	2019	Aortic dilatation in patients with large vessel vasculitis: A longitudinal case control study using PET/CT
Tezuka D	2012	Role of FDG PET-CT in Takayasu Arteritis Sensitive Detection of Recurrences
Рара	2012	Takayasu Arteritis: Intravascular Contrast Medium for MR Angiography in the Evaluation of Disease Activity
	Alibaz-Oner, F Sun, Y Lee, K Eshet, Y Soto, M Sun, Y Walter, M Li Banerjee Incerti Martinez Muratore Tezuka D	Alibaz-Oner, F2015Sun, Y2016Sun, Y2012Lee, K2012Soto, M2006Sun, Y1996Walter, M2005Li2019Banerjee2019Incerti2019Martinez2018Muratore2012

- Studies reviewed and excluded:

Author	Year	Title	Comments
A. Gulcu	2017	Long-Term Follow-Up of Endovascular Repair in the Management of Arterial Stenosis Caused by Takayasu's Arteritis	Exclude. Does not report specifics on imaging data. Imaging used as follow up

			post endovascular repair to assess for
K. M. Treitl	2017	3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study	stenosis Exclude: Only 11 had TAK and results not stratified by those with TAK. MRI of vasculitis vs controls. Also, c/w CDUS and clin dx
J. Wang	2016	Sonographic Characterization of Arterial Dissections in Takayasu Arteritis	Exclude: does not answer PCIO 3. Eval of dissection with US. 72 patients with clin dx of TAK, evaluated with sonography. 56 had TTE. 12 had arterial dissections. Evaluated with sonography and TTE
X. Kong	2015	Evaluation of clinical measurements and development of new diagnostic criteria for Takayasu arteritis in a Chinese population	Exclude: does not answer PICO 3
F. Alibaz- Oner	2015	Patients with Takayasu's arteritis having persistent acute-phase response usually have an increased major vessel uptake by 18F-FDG-PET/CT	Increase in FDG uptake in the majority of TAK patients with an increase in acute phase reactants but clinically silent disease.
E. J. Kang	2014	Takayasu arteritis: assessment of coronary arterial abnormalities with 128-section dual-source CT angiography of the coronary arteries and aorta	Exclude: done at one time point only
P. C. Grayson	2012	Association of vascular physical examination findings and arteriographic lesions in large vessel vasculitis	Exclude: correlation between physical exam and findings on angiogram done at one time point
B. F. Hoyer	2012	Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab	Exclude: not relevant to PICO 3
Y. Eshet	2011	The limited role of MRI in long-term follow-up of patients with Takayasu's arteritis	MRI useful in primary dx of TA, but limited role in long term follow up when reactivation is suspected
D. Li	2011	Detecting disease extent and activity of Takayasu arteritis using whole-body magnetic resonance angiography and vessel wall imaging as a 1-stop solution	Exclude: minimal longitudinal data (3 patients only) and no time frame reported

		Magnetic resonance imaging of vascular changes in Takayasu	Exclude: no scheduled repeat imaging
A. Hata	1995	arteritis	
M. D. B.		Takayasu's arteritis: Clinical and therapeutic aspects in 36	Exclude: Descriptive. No longitudinal data
Spichler	2008	patients	on imaging or clinical exam

Imaging, laboratory tests, and monitoring

- **PICO question 4:** In patients with TAK in apparent remission, what is the impact of long-term routine clinical monitoring (e.g., every 3 months) versus no routine clinical monitoring on disease-related outcomes?
- Critical Outcomes: Relapse, Patient reported outcomes, organ damage from disease, death, disease activity
- 73. In patients with TAK in apparent remission, what is the impact of long-term routine clinical monitoring (e.g., every 3 months) versus no routine clinical monitoring on disease-related outcomes? No comparative data available
- 74. In patients with TAK in apparent remission, what is the impact of long-term routine clinical monitoring (e.g., every 3 months) on disease-related outcomes? No single arm data or test accuracy data available
- 75. In patients with TAK in apparent remission, what is the impact of no routine clinical monitoring on disease-related outcomes? No single arm data or test accuracy data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies: None

<u>Treatment</u>

- **PICO question 5:** In patients with TAK with active disease, what is the impact of treatment with high-dose glucocorticoids vs. low-dose glucocorticoids on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, toxicity leading to drug discontinuation

76. In patients with TAK with active disease, what is the impact of treatment with high-dose glucocorticoids vs. low-dose glucocorticoids on disease-related outcomes and treatment-related adverse events?

77. Certainty assessment № of patients Effect							t					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	low-dose glucocorticoids (<30mg/d)	high-dose glucocorticoids (>30mg/d)	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Relapse												
1	observational studies	not serious	not serious	not serious	serious ^a	strong association	20/39 (51.3%)	18/57 (31.6%)	OR 2.28 (0.98 to 5.28)	197 more per 1,000 (from 4 fewer to 393 more)		
Death										<u>.</u>		
1	observational studies	not serious	not serious	not serious	very serious ^a	none	2/39 (5.1%)	3/57 (5.3%)	OR 0.97 (0.15 to 6.11)	1 fewer per 1,000 (from 44 fewer to 201 more)		
Serious Ad	verse Events									· · · · ·		
1	observational	not serious	not serious	not serious	serious ^a	strong association	22/39 (56.4%)	45/57 (78.9%)	OR 0.35	222 fewer	AAOO	

1	observational studies	not serious	not serious	not serious	serious ^a	strong association	22/39 (56.4%)	45/57 (78.9%)	OR 0.35 (0.14 to 0.85)	222 fewer per 1,000 (from 445 fewer to 28 fewer)	⊕⊕⊖ Low		
---	--------------------------	-------------	-------------	-------------	----------------------	--------------------	---------------	---------------	---------------------------	--	------------	--	--

Cl: Confidence interval; OR: Odds ratio

Explanations

a. Clinical action may differ if the upper versus the lower boundary of the CI represented the truth

- References:
- Randomized controlled trials: None
- Comparative observational studies:

Author	Year	Title
Mutoh	2019	Insufficient use of corticosteroids without immunosuppressants results in higher relapse
		in Takayasu arteritis

<u>Treatment</u>

- **PICO question 6:** In patients with active TAK not on immunosuppression, what is the impact of initiating treatment with pulse intravenous glucocorticoids followed by high dose oral glucocorticoids vs. high dose oral glucocorticoids alone on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, toxicity leading to drug discontinuation
- 78. In patients with active TAK not on immunosuppression, what is the impact of initiating treatment with pulse intravenous glucocorticoids followed by high dose oral glucocorticoids vs. high dose oral glucocorticoids alone on disease-related outcomes and treatment-related adverse events?

No comparative data available

- 79. In patients with active TAK not on immunosuppression, what is the impact of initiating treatment with pulse intravenous glucocorticoids followed by high dose oral glucocorticoids on disease-related outcomes and treatment-related adverse events? No single arm data available
- 80. In patients with active TAK not on immunosuppression, what is the impact of initiating treatment with high dose oral glucocorticoids alone on disease-related outcomes and treatment-related adverse events? No single arm data available

- References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies: None

<u>Treatment</u>

- **PICO question 7:** In patients with active TAK, what is the impact of glucocorticoid + non-glucocorticoid non biologic immunosuppressive therapy vs. glucocorticoid monotherapy on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes**: Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation
- 81. In patients with active TAK, what is the impact of glucocorticoid + non-glucocorticoid non biologic immunosuppressive therapy vs. glucocorticoid monotherapy on disease-related outcomes and treatment-related adverse events? No comparative data available
- 82. In patients with active TAK, what is the impact of glucocorticoid + non-glucocorticoid non biologic immunosuppressive therapy on diseaserelated outcomes and treatment-related adverse events?
 - Patient Important outcomes:

Outcomes	Author,	Study	Duratio	Population	Intervention used in relevant	Results	Comments
	year	type	n of	(number and	population (Describe the		
			follow	description)	intervention)		
			up				
	Aeshlim	Compara	At least	A total of 27	4/27 children (15%) received	19 flares occurred	Results reported for
	ann,	tive	24	children with	high-dose corticosteroids only,	during 44 non-	Biologics Vs non
Flares	2017	observati	months	TAK (74%	and 18 (67%) received a	biologic treatment	biologics, that is why it's
		onal		,	combination of corticosteroids	episodes (43%)	not a comparative
		0			plus another	compared to only	study, since GCs alone

				females) were included. 22 children (81%) had evidence of active disease at diagnosis. The median age at diagnosis was 12.4 years (IQR 9.1–14.4).	immunosuppressive agent. These immunosuppressive agents prescribed in combination with cortico- steroids included MTX in ten (37%), cyclophosphamide in five (19%), and MTX plus a biologic agent in three (11%) children.	two flares during 12 biologic treatment episodes (17%). (p = 0.18; OR 3.80, 95% CI 0.81–18.59	results are not presented
2-year flare-free survival	Aeshlim ann, 2017	Compara tive observati onal	At least 24 months	A total of 27 children with TAK (74% females) were included. 22 children (81%) had evidence of active disease at diagnosis. The median age at diagnosis was 12.4 years (IQR 9.1–14.4).	4/27 children (15%) received high-dose corticosteroids only, and 18 (67%) received a combination of corticosteroids plus another immunosuppressive agent. These immunosuppressive agents prescribed in combination with cortico- steroids included MTX in ten (37%), cyclophosphamide in five (19%), and MTX plus a biologic agent in three (11%) children.	80% with biologic treatments compared to 43% in non-biologic treatments when adjusted for the number of treatment episodes per patient (p = 0.03)	Results reported for Biologics Vs non biologics, that is why it's not a comparative study, since GCs alone results are not presented

83. In patients with active TAK, what is the impact of glucocorticoid monotherapy on disease-related outcomes and treatment-related adverse events?

- Patient important outcomes:

Outcomes	Autho r, year	Study type	Durati on of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results
Number of patients with	Nakao ka, 2017	Randomize d	56 weeks	32 Patients 12 years of age or older (obtained from 24 September	Patients were randomly assigned (1:1) using a permuted block method to receive weekly injections of tocilizumab 162mg or placebo subcutaneously; background oral GC dose was	2/18 patients on GCs had SAEs: Eye disorders,

Serious Adverse		controlled		2014) with diagnoses	tapered by 10% per week from week 4 to a	Gastrointestinal
Events		trial		of TAK.	minimum of 0.1 mg/kg/day according to the $(N-3)$	disorders, vascular
					following formula: GC dose at week n=0.9 ^(N-3) (GC dose at baseline) when n≥4.	disorders
	Nakao	Randomize	56	32 Patients 12 years	Patients were randomly assigned (1:1)	9/18 patients on GCs
	ka,	d	weeks	of age or older	using a permuted block method to receive	had
	2017	controlled		(obtained from 24	weekly injections of tocilizumab 162mg or	infections/infestation
Infections/infesta		trial		September 2014)	placebo subcutaneously; background oral	S
tions				with diagnoses of	GC dose was tapered by 10% per week	
				TAK.	from week 4 to a minimum of 0.1	
					mg/kg/day according to the following	
					formula: GC dose at week n=0.9 ^(N-3) (GC	
					dose at baseline) when n≥4.	
	Nakao	Randomize	56	32 Patients 12 years	Patients were randomly assigned (1:1)	11/18 patients on
	ka,	d	weeks	of age or older	using a permuted block method to receive	GCs had relapses
	2017	controlled		(obtained from 24	weekly injections of tocilizumab 162mg or	
Number of		trial		September 2014)	placebo subcutaneously; background oral	
Relapses (33				with diagnoses of	GC dose was tapered by 10% per week	
patients received				TAK.	from week 4 to a minimum of 0.1	
GCs, out of which					mg/kg/day according to the following	
61-67% had					formula: GC dose at week n=0.9 ^(N-3) (GC	
relapses)					dose at baseline) when n≥4.	
	Langfo	Randomize	40	34 eligible patients	Treated with prednisone and abatacept; 26	10/15 patients on
	rd,	d	month	with TAK were enrolled	reached the week 12 randomization and underwent a blinded randomization to	GCs had relapses
	2017	Controlled	S		abatacept or placebo.	
	Nakao	trial Randomize	56	32 Patients 12 years	Patients were randomly assigned (1:1)	3/18 SAEs were
Number of	ka,	d	weeks	of age or older	using a permuted block method to receive	observed in patients
serious Adverse	2017	controlled	WEEKS	(obtained from 24	weekly injections of tocilizumab 162mg or	on GCs: Eye
Events (33	2017	trial		September 2014)	placebo subcutaneously; background oral	disorders,
patients received				with diagnoses of	GC dose was tapered by 10% per week	Gastrointestinal
GCs, with a total				TAK.	from week 4 to a minimum of 0.1	disorders, vascular
of 12 adverse					mg/kg/day according to the following	disorders
events, with high					formula: GC dose at week n=0.9 ^(N-3) (GC	
					dose at baseline) when n≥4.	

inconsistency in the results)	Langfo rd, 2017	Randomize d Controlled trial	40 month s	34 eligible patients with TAK were enrolled	Treated with prednisone and abatacept; 26 reached the week 12 randomization and underwent a blinded randomization to abatacept or placebo.	9/15 SAEs were observed in patients on GCs (Ischemic colitis, rectal bleeding, pyelonephritis, Chest pain, epiglottitis, appendicitis, N/V/Diarrhea due to infection, Dyspnea/dysphagia due to reflux)
	Langfo	Randomize	40	34 eligible patients	Treated with prednisone and abatacept;	due to reflux) 5.7 months (+/- 2.69)
Median duration of remission	rd, 2017	d Controlled trial	month s	with TAK were enrolled	26 reached the week 12 randomization and underwent a blinded randomization to abatacept or placebo.	

- References:
- Randomized controlled trials:

None

- Comparative observational studies:

None

- Single arm studies:

Author	Year	Title
Nakaoka	2017	Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study)
Langford	2017	A Randomized, Double-Blind Trial of Abatacept (CTLA-4lg) for the Treatment of Takayasu Arteritis
Aeshlimann	2017	Childhood Takayasu arteritis: disease course and response to therapy

Takayasu Arteritis (TAK)

Treatment

- **PICO question 8:** In patients with active TAK, what is the impact of tocilizumab + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Clinical symptoms, disease activity, relapse, death, damage from disease, serious adverse events from medication (e.g., Intestinal perforations), infection, malignancy, toxicity leading to drug discontinuation
- 84. In patients with active TAK, what is the impact of tocilizumab + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events? No comparative data available
- 85. In patients with active TAK, what is the impact of tocilizumab + glucocorticoid on disease-related outcomes and treatment-related adverse events?
 - Patient important outcomes:

Outcomes	Author, year	Study type	Duratio n of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results
Number of patients with Serious Adverse Events – In 2 studies 1/18 and 2/46 patients on Tocilizumab had serious adverse events (eyes disorders, severe neutropenia)	Nakaok a, 2017	Randomiz ed controlled trial	56 weeks	32 Patients 12 years of age or older (obtained from 24 September 2014) with diagnoses of TAK.	Patients were randomly assigned (1:1) using a permuted block method to receive weekly injections of tocilizumab 162mg or placebo subcutaneously; background oral GC dose was tapered by 10% per week from week 4 to a minimum of 0.1 mg/kg/day according to the following formula: GC dose at week n=0.9 ^(N-3) (GC dose at baseline) when n≥4.	1/18 patients on Tocilizumab + GCs had SAEs (eye disorders)
neutropenia)	Mekini an, 2018	Retrospec tive multicent er study	36 months	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	Two (4%) cases required treatment discontinuation, including neoplasm and one severe asymptomatic neutropenia.
Infections/infestations	Nakaok a, 2017	Randomiz ed controlled trial	56 weeks	32 Patients 12 years of age or older (obtained from 24 September 2014) with diagnoses of TAK.	Patients were randomly assigned (1:1) using a permuted block method to receive weekly injections of tocilizumab 162mg or placebo subcutaneously; background oral GC dose was tapered by 10% per week from week 4 to a minimum of 0.1 mg/kg/day according to the following formula: GC dose at week n=0.9 ^(N-3) (GC dose at baseline) when n≥4.	6/18 patients on Tocilizumab + GCs had infections/infestations
Number of Relapses One study of 46 patients showed relapse rate of 6%,	Nakaok a, 2017	Randomiz ed controlled trial	56 weeks	32 Patients 12 years of age or older (obtained from 24 September 2014)	Patients were randomly assigned (1:1) using a permuted block method to receive weekly injections of tocilizumab 162mg or placebo	8/18 patients on Tocilizumab + GCs had relapses

which was lower than just DMARDs in the study, whereas another study with 32 patients showed a relapse rate of 44% in the Tocilizumab group.	Mekinian , 2018	Retrospectiv e multicenter study	3 years	with diagnoses of TAK. 46 patients with TAK (median age 43; 35F)	subcutaneously; background oral GC dose was tapered by 10% per week from week 4 to a minimum of 0.1 mg/kg/day according to the following formula: GC dose at week n=0.9 ^(N-3) (GC dose at baseline) when n≥4. Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	The cumulative incidence of relapse was significantly higher under DMARDs therapy compared to tocilizumab (34.6% vs 6.3%; p = 0.049, respectively)
Number of serious Adverse Events	Nakaok a, 2017	Randomiz ed controlled trial	56 weeks	32 Patients 12 years of age or older (obtained from 24 September 2014) with diagnoses of TAK.	Patients were randomly assigned (1:1) using a permuted block method to receive weekly injections of tocilizumab 162mg or placebo subcutaneously; background oral GC dose was tapered by 10% per week from week 4 to a minimum of 0.1 mg/kg/day according to the following formula: GC dose at week n=0.9 ^(N-3) (GC dose at baseline) when n≥4.	1/18 SAEs were observed in patients on Tocilizumab + GCs (eye disorders)
Treatment Response- One study with 46 patients showed two thirds of patient will have a treatment response.	Mekinian , 2018	Retrospectiv e multicenter study	36 months	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	12/36 (67%) had a treatment response.
Survival – In one study of 46 patients, rate of three- quarters of patients were still on drug at two years without event.	Mekinian , 2018	Retrospectiv e multicenter study	3 years	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	overall survival without tocilizumab failure was 0.81 [Cl 95%; 0.7-0.95] at 12 months, 0.72 [Cl 95%; 0.55-0.95] at 24 months and 0.48 [Cl 95%; 0.2e-0.1] at 48 months

_

86. In patients with active TAK, what is the impact of non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on diseaserelated outcomes and treatment-related adverse events?

- Patient important outcomes:

Outcomes	Author, year	Study type	Duratio n of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Flares	Aeshlima nn, 2017	Comparativ e observatio nal	At least 24 months	A total of 27 children with TAK (74% females) were included. Twenty-two children (81%) had evidence of active disease at diagnosis. The median age at diagnosis was 12.4 years (IQR 9.1–14.4).	4/27 children (15%) received high-dose corticosteroids only, and 18 (67%) received a combination of corticosteroids plus another immunosuppressive agent. These immunosuppressive agents prescribed in combination with cortico- steroids included MTX in ten (37%), cyclophosphamide in five (19%), and MTX plus a biologic agent in three (11%) children.	19 flares occurred during 44 non- biologic treatment episodes (43%) compared to only two flares during 12 biologic treatment episodes (17%). (p = 0.18; OR 3.80, 95% CI 0.81–18.59	Results reported for Biologics Vs non biologics, that is why it's not a comparative study, since GCs alone results are not presented
2-year flare-free survival	Aeshlima nn, 2017	Comparativ e observatio nal	At least 24 months	A total of 27 children with TAK (74% females) were included. Twenty-two children (81%) had evidence of	4/27 children (15%) received high-dose corticosteroids only, and 18 (67%) received a combination of corticosteroids plus another immunosuppressive agent. These	80% with biologic treatments compared to 43% in non-biologic treatments when adjusted for the number of treatment episodes	Results reported for Biologics Vs non biologics, that is why it's not a comparative study, since GCs alone results are not presented

				active disease at diagnosis. The median age at diagnosis was 12.4 years (IQR 9.1–14.4).	immunosuppressive agents prescribed in combination with cortico- steroids included MTX in ten (37%), cyclophosphamide in five (19%), and MTX plus a biologic agent in three (11%) children.	per patient (p = 0.03)	
Clinical Remission	Sun, 2017	Comparativ e observatio nal	6 Months	Subjects included in this study met the following criteria: (i) active disease (Kerr score ≥ 2); (ii) no prior exposure to any immunosuppres sants in the preceding 3 months; (iii) induction treatment was CYC plus GC or MTX plus GC.	CYC plus GC (N=39) or MTX plus GC (N=12).	The clinical remission rate was 71.7% (33/46) in the CYC group vs. 75% (9/12) in the MTX group.	
Disease activity through radiologic findings	Sun, 2017	Comparativ e observatio nal	6 Months	Subjects included in this study met the following criteria: (i) active disease (Kerr score ≥ 2); (ii) no prior exposure	CYC plus GC (N=39) or MTX plus GC (N=12).	Radiologic assessment at the end of the 6-month induction revealed stable disease in 78.2% (36/46) and 83.3% (10/12) in	

		[]					1
				to any		the CYC and MTX	
				immunosuppres		group, respectively.	
				sants in the			
				preceding 3			
				months; (iii)			
				induction			
				treatment was			
				CYC plus GC or			
				MTX plus GC.			
Side Effects	Sun, 2017	e observatio nal	Months	Subjects included in this study met the following criteria: (i) active disease (Kerr score ≥ 2); (ii) no prior exposure to any immunosuppres sants in the preceding 3 months; (iii) induction	MTX plus GC (N=12).	menstrual disorders (17/46, 36.9%), gastrointestinal reaction (32/46, 69.6%,), myelosuppression (5/46, 10.9%), infection (4/46, 8.7%, pulmonary infection in three cases and urinary tract infection in 1) and malaise (9/46,	
				treatment was CYC plus GC or MTX plus GC.		19.6%). Side effects in the MTX group included gastrointestinal reaction (5/12, 41.7%; loss of appetite in four cases and dental ulcer in 1), myelosuppression (1/12, 8.3%), liver dysfunction (2/12, 16.7%; alanine	

			aminotransferase ≤	
			3 folds of the upper	
			limit of normal),	
			and trichomadesis	
			(1/12; 8.3%).	

• References:

- Randomized controlled trials:

None

- Comparative observational studies:

None

- Single arm studies:

Author	Year	Title
		Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised,
Nakaoka	2017	double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study)
Aeshlimann	2017	Childhood Takayasu arteritis: disease course and response to therapy
		Cyclophosphamide could be a better choice than methotrexate as induction treatment for patients with more severe Takayasu's arteritis
Sun	2017	
Mekinian	2018	Efficacy of tocilizumab in Takayasu arteritis: Multicenter retrospective study of 46 patients

Takayasu Arteritis (TAK)

Treatment

- **PICO question 9:** In patients with active TAK, what is the impact of anti-TNF inhibitors + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Clinical symptoms, disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation

- 87. In patients with active TAK, what is the impact of anti-TNF inhibitors + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events? No comparative data available
- 88. In patients with active TAK, what is the impact of anti-TNF inhibitors + glucocorticoid on disease-related outcomes and treatment-related adverse events?

No single arm data available

- 89. In patients with active TAK, what is the impact of non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on diseaserelated outcomes and treatment-related adverse events?
 - Patient important outcomes:

Outcom es	Autho r, year	Study type	Durati on of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results	Comments
Flares	Aeshli mann, 2017	Comparativ e observation al	At least 24 month s	A total of 27 children with TAK (74% females) were included. Twenty-two children (81%) had evidence of active disease at diagnosis. The median age at diagnosis was 12.4 years (IQR 9.1–14.4).	4/27 children (15%) received high-dose corticosteroids only, and 18 (67%) received a combination of corticosteroids plus another immunosuppressive agent. These immunosuppressive agents prescribed in combination with corticosteroids included MTX in ten (37%), cyclophosphamide in five (19%), and MTX plus a biologic agent in three (11%) children.	19 flares occurred during 44 non- biologic treatment episodes (43%) compared to only two flares during 12 bio- logic treatment episodes (17%). (p = 0.18; OR 3.80, 95% CI 0.81–18.59	Results reported for Biologics Vs non biologics, that is why it's not a comparative study, since GCs alone results are not presented

2-year flare-free survival	Aeshli mann, 2017	Comparativ e observation al	At least 24 month s	A total of 27 children with TAK (74% females) were included. Twenty-two children (81%) had evidence of active disease at diagnosis. The median age at diagnosis was 12.4 years (IQR 9.1–14.4).	4/27 children (15%) received high-dose corticosteroids only, and 18 (67%) received a combination of corticosteroids plus another immunosuppressive agent. These immunosuppressive agents prescribed in combination with corticosteroids included MTX in ten (37%), cyclophosphamide in five (19%), and MTX plus a biologic agent in three (11%) children.	80% with biologic treatments compared to 43% in non-biologic treatments when adjusted for the number of treatment episodes per patient (p = 0.03)	Results reported for Biologics Vs non biologics, that is why it's not a comparative study, since GCs alone results are not presented
Clinical Remissio n	Sun, 2017	Comparativ e observation al	6 Month s	Subjects included in this study met the following criteria: (i) active disease (Kerr score ≥ 2); (ii) no prior exposure to any immunosuppre ssants in the preceding 3 months; (iii) induction treatment was	CYC plus GC (N=39) or MTX plus GC (N=12).	The clinical remission rate was 71.7% (33/46) in the CYC group vs. 75% (9/12) in the MTX group.	

				CYC plus GC or MTX plus GC.			
Disease activity through radiologic findings	Sun, 2017	Comparativ e observation al	6 Month s	Subjects included in this study met the following criteria: (i) active disease (Kerr score ≥ 2); (ii) no prior exposure to any immunosuppre ssants in the preceding 3 months; (iii) induction treatment was CYC plus GC or MTX plus GC.	CYC plus GC (N=39) or MTX plus GC (N=12).	Radiologic assessment at the end of the 6-month induction revealed stable disease in 78.2% (36/46) and 83.3% (10/12) in the CYC and MTX group, respectively.	
Side Effects	Sun, 2017	Comparativ e observation al	6 Month s	Subjects included in this study met the following criteria: (i) active disease (Kerr score ≥ 2); (ii) no prior exposure to any immunosuppre ssants in the preceding 3 months; (iii) induction treatment was CYC plus GC or MTX plus GC.	CYC plus GC (N=39) or MTX plus GC (N=12).	CYC group: menstrual disorders (17/46, 36.9%), gastrointestinal reaction (32/46, 69.6%,), myelosuppression (5/46, 10.9%), infection (4/46, 8.7%, pulmonary infection in three cases and urinary tract infection in 1) and malaise (9/46, 19.6%). Side effects in the MTX group included gastrointestinal reaction (5/12, 41.7%;	

- References:
- Randomized controlled trials:

None

- Comparative observational studies:

None

- Single arm studies:

Author	Year	Title
Aeshlimann	2017	Childhood Takayasu arteritis: disease course and response to therapy
Sun	2017	Cyclophosphamide could be a better choice than methotrexate as induction treatment for patients with more severe Takayasu's arteritis

Takayasu Arteritis (TAK)

<u>Treatment</u>

• **PICO question 10:** In patients with active TAK, what is the impact of abatacept + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events?

- **Critical Outcomes:** Clinical symptoms, disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation
- 90. In patients with active TAK, what is the impact of abatacept + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events? No Comparative data available
- 91. In patients with active TAK, what is the impact of abatacept + glucocorticoid on disease-related outcomes and treatment-related adverse events?

Outcom	Author, year	Study type	Duration	Population	Intervention used in relevant	Results
es			of follow	(number and	population (Describe the	
			up	description)	intervention)	
Number of Relapses	Langford, 2017	Randomize d Controlled trial	40 months	34 eligible patients with TAK were enrolled	Treated with prednisone and abatacept; 26 reached the week 12 randomization and underwent a blinded randomization to abatacept or placebo.	The relapse-free survival at 12 months was 22% for those receiving abatacept and 40% for those receiving placebo (p= 0.853)
Number of serious Adverse Events	Langford, 2017	Randomize d Controlled trial	40 months	34 eligible patients with TAK were enrolled	Treated with prednisone and abatacept; 26 reached the week 12 randomization and underwent a blinded randomization to abatacept or placebo.	There was no difference in the frequency or severity of adverse events between treatment arms, including infection. No deaths happened during the study.
Median duration of remissio n	Langford, 2017	Randomize d Controlled trial	40 months	34 eligible patients with TAK were enrolled	Treated with prednisone and abatacept; 26 reached the week 12 randomization and underwent a blinded randomization to abatacept or placebo.	Treatment with abatacept in patients with TAK enrolled in this study was not associated with a longer median duration of remission (abatacept 5.5 months, placebo 5.7 months)

92. In patients with active TAK, what is the impact of non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on diseaserelated outcomes and treatment-related adverse events? No single arm data available

References:

- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies:

Author	Year	Title
Langford	2017	A Randomized, Double-Blind Trial of Abatacept (CTLA-4Ig) for the Treatment of Takayasu Arteritis

Takayasu Arteritis (TAK)

- **PICO question 11:** In patients with active TAK, what is the impact of rituximab + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Clinical symptoms, disease activity, relapse, death, damage from disease, serious adverse events from medication (e.g., PML, hypogammaglobulinemia), infection, malignancy, toxicity leading to drug discontinuation
- 93. In patients with active TAK, what is the impact of rituximab + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events? No Comparative data available
- 94. In patients with active TAK, what is the impact of rituximab + glucocorticoid on disease-related outcomes and treatment-related adverse events?

No single arm data available

95. In patients with active TAK, what is the impact of non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on diseaserelated outcomes and treatment-related adverse events? No single arm data available

References:

- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies: None

Takayasu Arteritis (TAK)

<u>Treatment</u>

- **PICO question 12:** In patients with active TAK, what is the impact of ustekinumab + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Clinical symptoms, disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation
- 96. In patients with active TAK, what is the impact of ustekinumab + glucocorticoid vs. non-glucocorticoid non-biologic immunosuppressive therapy
 + glucocorticoids on disease-related outcomes and treatment-related adverse events?
 No Comparative data available
- 97. In patients with active TAK, what is the impact of ustekinumab + glucocorticoid on disease-related outcomes and treatment-related adverse events? No single arm data available
- 98. In patients with active TAK, what is the impact of non-glucocorticoid non-biologic immunosuppressive therapy + glucocorticoids on diseaserelated outcomes and treatment-related adverse events? No single arm data available

References:

- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies: None

Takayasu Arteritis (TAK)

Treatment

- **PICO question 13:** In patients with active TAK, what is the impact of adding aspirin (any dose) or other anti-platelet therapy vs. not adding anti-platelet therapy on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Death, clinical symptoms from disease such as ischemia, damage from disease, serious adverse events from medication such as bleeding, toxicity leading to drug discontinuation
- 99. In patients with active TAK, what is the impact of adding aspirin (any dose) or other anti-platelet therapy vs. not adding anti-platelet therapy on disease-related outcomes and treatment-related adverse events?

			100. Certaint	ty assessment			№ of patients		Effect		Contraction of the second s	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	antiplatelet	no antiplatelet	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
Ischemic ev	vents											
1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	-/0	-/0	HR 0.06 (0.05 to 0.51)	0 fewer per 1,000 (from 1 fewer to 0 fewer)		
Bleeding co	omplications											
1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	1/30 (3.3%)	0/18 (0.0%)	OR 1.88 (0.07 to 48.66)	0 fewer per 1,000 (from 0 fewer to 0 fewer)		

Explanations

a. Directly compares the interventions in which we are interested when applied to the populations in which we are interested and measures outcomes important to patients b. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision

• References:

- Randomized controlled trials:

None

- Comparative observational studies:

Author	Year	Title
De Souza	2010	Antiplatelet therapy for the prevention of arterial ischemic events in takayasu arteritis

- Comments:

Author	Year	Title	Comments
		(18) F-Fluorodeoxyglucose-Positron Emission Tomography As an	
		Imaging Biomarker in a Prospective, Longitudinal Cohort of	Exclude. Antiplatelet therapy
P. C. Grayson	2018	Patients With Large Vessel Vasculitis	not used
		Long-term outcome of 251 patients with Takayasu arteritis on	
		combination immunosuppressant therapy: Single centre	
		experience from a large tertiary care teaching hospital in Southern	Exclude. Antiplatelet therapy
R. Goel	2018	India	not used
		3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel	Exclude. Antiplatelet therapy
K. M. Treitl	2017	vasculitis: A feasibility study	not used
A. W. de		Antiplatelet therapy for the prevention of arterial ischemic events	
Souza	2010	in takayasu arteritis	
		MRI and FDG-PET in the assessment of inflammatory aortic arch	Exclude. GCA imaging study. No
M. Both	2008	syndrome in complicated courses of giant cell arteritis	TAK patient.

F. Numano	1986	Antiaggregative aspirin dosage at the affected vessel wall	Exclude. Biomarker study. Aspirin's platelet anti- aggregative studied by measurement of plasma prostanoid levels.
Ma Walter	2005	The value of FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease	Exclude. Imaging study. Had only 6 TAK patients. Antiplatelet therapy not used

Takayasu Arteritis (TAK)

<u>Treatment</u>

- **PICO question 14:** In patients with refractory TAK on glucocorticoid therapy, what is the impact of adding anti-TNF therapy vs. adding tocilizumab on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, toxicity leading to drug discontinuation
- 101. In patients with refractory TAK on glucocorticoid therapy, what is the impact of adding anti-TNF therapy vs. adding tocilizumab on diseaserelated outcomes and treatment-related adverse events?

			Certain	ty assessment			Nº of p	atients	Effect				
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	тсг	TNF-A	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance	
Vascular sig	gns - 6 months												

1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	2/10 (20.0%)	6/32 (18.8%)	OR 1.08 (0.18 to 6.46)	12 more per 1,000 (from 148 fewer to 411 more)		
---	--------------------------	-------------	-------------	--------------------------	---------------------------	------	--------------	--------------	---------------------------	--	--	--

Constitutional signs - 3 months

1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	1/10 (10.0%)	3/33 (9.1%)	OR 1.11 (0.10 to 12.04)	9 more per 1,000 (from 81 fewer to 455 more)		
---	--------------------------	-------------	-------------	--------------------------	---------------------------	------	--------------	-------------	----------------------------	--	--	--

Complete response - 6 months

			Certaint	assessment			Nº of patients		Effect			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	тсz	TNF-A	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	7/10 (70.0%)	17/32 (53.1%)	OR 2.06 (0.45 to 9.42)	169 more per 1,000 (from 194 fewer to 383 more)		

No response - 6 months

	1 observat studi	not serious not serious	not serious ^a very serious ^b	none	1/10 (10.0%)	9/32 (28.1%)	OR 0.28 (0.03 to 2.58)	(from 270 fewer to		
--	---------------------	-------------------------	--	------	--------------	--------------	---------------------------	-----------------------	--	--

Relapse free survival - 1 year

Relapse free survival - 2 years

more)		1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	1/14 (7.1%)	18/56 (32.1%)	OR 0.16 (0.02 to 1.34)	251 fewer per 1,000 (from 312 fewer to 67 more)		
-------	--	---	--------------------------	-------------	-------------	--------------------------	---------------------------	------	-------------	---------------	---------------------------	---	--	--

Relapse free survival - 3 years

1	observational studies	not serious	not serious	not serious ^a	very serious ^b	none	1/14 (7.1%)	12/56 (21.4%)	OR 0.28 (0.03 to 2.38)	143 fewer per 1,000 (from 206 fewer to 179 more)		
---	--------------------------	-------------	-------------	--------------------------	---------------------------	------	-------------	---------------	---------------------------	--	--	--

CI: Confidence interval; OR: Odds ratio

Explanations

- a. Directly compares the interventions in which we are interested when applied to the populations in which we are interested and measures outcomes important to patients
- b. Clinical action would differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision
- 102. In patients with refractory TAK on glucocorticoid therapy, what is the impact of adding anti-TNF therapy on disease-related outcomes and treatment-related adverse events?
 - Patient important outcomes

Outcomes	Author, year	Study type	Duration of follow up	Population	Intervention used in relevant population	Results
Remission – 2 studies with 22 patients with TAK with treatment with anti-TNF showed remission rates from	Novikov, 2018	Retrospective, single center	Range 3- 28 months, median 10 months	10 female patients with refractory TAK (ACR or Ishikawa); Prior to CZP administration, all patients received GC and MTX, CYC, AZA, HCQ, LEF or MMF. Six patients were also treated with bDMARD.	Certolizumab pegol (Anti-TNF). CZP was administered subcutaneously at a starting dosage of 400mg at weeks 0, 2 and 4. Subsequently, it was used at a standard dose of 200mg every 2 weeks	10/10 patients achieved remission. 7/10 patients had sustained remission of at least 4 months.
30-100% depending on definition.	Park, 2018	single-center open-label trial	54 weeks	12 patients with active TAK (all F, mean age 46.8y)	Infliximab biosimilar CT-P13 at a starting dose of 5 mg/kg at weeks 0, 2, 6, and then every 8 weeks up to week 46.	Partial or complete remission at week 30: three (27.3%) patients achieved complete remission and six (54.5%) patients achieved partial remission.
Infection – Two studies with 22 patients showed some infectious risk with	Novikov, 2018	Retrospective, single center	Range 3- 28 months, median 10 months	10 female patients with refractory TAK (ACR or Ishikawa); Prior to CZP administration, all patients received GC and MTX, CYC, AZA, HCQ, LEF or MMF. Six patients were also treated with bDMARD.	Certolizumab pegol (Anti-TNF). CZP was administered subcutaneously at a starting dosage of 400mg at weeks 0, 2 and 4. Subsequently, it was used at a standard dose of 200mg every 2 weeks	2 with mild herpes labialis, 1 with community acquired pneumonia, 1 with tonsillitis, 1 with UTI
anti-TNF treatment.	Park, 2018	single-center open-label trial	54 weeks	12 patients with active TAK (all F, mean age 46.8y)	Infliximab biosimilar CT-P13 at a starting dose of 5 mg/kg at weeks 0, 2, 6, and then every 8 weeks up to week 46.	4 (33.3%) had infection (URI, Viral keratitis were reported).
Side effects requiring discontinuation of drug – In one study of 12 patients showed no side effects requiring discontinuation over study period.	Park, 2018	single-center open-label trial	54 weeks	12 patients with active TAK (all F, mean age 46.8y)	Infliximab biosimilar CT-P13 at a starting dose of 5 mg/kg at weeks 0, 2, 6, and then every 8 weeks up to week 46.	During the treatment period, there were no serious adverse events (SAEs) or AEs necessitating discontinuation of CT-P13.

103. In patients with refractory TAK on glucocorticoid therapy, what is the impact of adding tocilizumab on disease-related outcomes and treatment-related adverse events?

- Patient important outcomes

Outcomes	Author, year	Study type	Duration of follow	Population	Intervention used in relevant population	Results
			up			

Treatment Response n- One study with 46 patients showed two thirds of patient will have	Mekinian, 2018	Retrospectiv e multicenter study	36 months	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	12/36 (67%) had a treatment response.
a treatment response.		study			montiny.	
Side effect requiring drug discontinuation – In 1 study of 46 patients, 2 patients had to discontinue treatment with TZ due to side effects.	Mekinian, 2018	Retrospectiv e multicenter study	36 months	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	Two (4%) cases required treatment discontinuation, including neoplasm and one severe asymptomatic neutropenia.
Survival – In one study of 46 patients, rate of three- quarters of patients were still on drug at two years without event.	Mekinian, 2018	Retrospectiv e multicenter study	3 years	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	overall survival without tocilizumab failure was 0.81 [Cl 95%; 0.7-0.95] at 12 months, 0.72 [Cl 95%; 0.55-0.95] at 24 months and 0.48 [Cl 95%; 0.2e-0.1] at 48 months
Relapse – One stdy of 46 patients showed relapse rate of 6 percent, which was lower than just DMARDs in the study.	Mekinian, 2018	Retrospectiv e multicenter study	3 years	46 patients with TAK (median age 43; 35F)	Tocilizumab. Tocilizumab was mainly used intravenously at 8 mg/kg monthly.	The cumulative incidence of relapse was significantly higher under DMARDs therapy compared to tocilizumab (34.6% vs 6.3%; p = 0.049, respectively)

• References:

- Randomized controlled trials:

None

- Comparative observational studies:

Author	Year	Title
A. Mekinian, C.		Efficacy of Biological-Targeted Treatments in Takayasu Arteritis: Multicenter, Retrospective Study of 49
Comarmond	2015	Patients

- Single arm studies:

Author	Year Title					
Novikov	Novikov 2018 Certolizumab pegol in the treatment of Takayasu arteritis					
		Infliximab biosimilar CT-P13 therapy in patients with Takayasu arteritis with low dose of glucocorticoids: a				
Park	2018	prospective single-arm study				

Takayasu Arteritis (TAK)

Treatment

- **PICO question 15:** In patients with TAK who achieved remission on glucocorticoids, what is the impact of low dose maintenance glucocorticoids vs. no maintenance glucocorticoids on disease-related outcomes and treatment-related adverse events?
- Critical Outcomes: Disease activity, relapse, death, damage from disease, clinical symptoms, patient reported outcomes, infection, toxicity leading to drug discontinuation
- 104. In patients with TAK who achieved remission on glucocorticoids, what is the impact of low dose maintenance glucocorticoids vs. no maintenance glucocorticoids on disease-related outcomes and treatment-related adverse events? No comparative data available
- 105. In In patients with TAK who achieved remission on glucocorticoids, what is the impact of low dose maintenance glucocorticoids on diseaserelated outcomes and treatment-related adverse events? No single arm data available
- 106. In In patients with TAK who achieved remission on glucocorticoids, what is the impact of no maintenance glucocorticoids on disease-related outcomes and treatment-related adverse events? No single arm data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies: None
- Comments:

Author	Year	Title	Comments
		Analysis of predictive factors for treatment resistance and	Exclude. Does not address any arm of
Y. Sun	2018	disease relapse in Takayasu's arteritis	PICO question
F. A. Aeschlimann	2017	Childhood Takayasu arteritis: disease course and response to therapy	Exclude. Only one patient was on maintenance low dose prednisone. More appropriate for PICO 7 and 8
R. Goel	2018	Long-term outcome of 251 patients with Takayasu arteritis on combination immunosuppressant therapy: Single centre experience from a large tertiary care teaching hospital in Southern India	Exclude. Majority of patients received steroid sparing immunosuppressive agents for maintenance. Did not present outcome of patients on steroid monotherapy
	2016	Fewer subsequent relapses and lower levels of IL-17 in Takayasu	
S. Fukui	2016	arteritis developed after the age of 40 years	Exclude. Does not address PICO question Exclude. While low dose prednisone was
			used for maintenance, the data quality is low (just reported frequency of improved
		Takayasu's arteritis: frequency of systemic manifestations (study	symptoms, table 5). No relevant
		of 22 patients) and favorable response to maintenance steroid	informative outcome data can be
A. Fraga	1972	therapy with adrenocorticosteroids (12 patients)	obtained.

Takayasu Arteritis (TAK) Treatment

- **PICO question 16:** In patients with TAK with asymptomatic progression of a previously identified vascular lesion, what is the impact of escalating or changing immunosuppression vs. continuing current therapy on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation

- 107. In patients with TAK with asymptomatic progression of a previously identified vascular lesion, what is the impact of escalating or changing immunosuppression vs. continuing current therapy on disease-related outcomes and treatment-related adverse events? No comparative data available
- 108. In patients with TAK with asymptomatic progression of a previously identified vascular lesion, what is the impact of escalating or changing immunosuppression on disease-related outcomes and treatment-related adverse events? No single arm data available
- 109. In patients with TAK with asymptomatic progression of a previously identified vascular lesion, what is the impact of continuing current therapy on disease-related outcomes and treatment-related adverse events? No single arm data available
 - References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies :

None

- Comments:

Author	Year		Comments
		Title	
			Excluded. This study did not identify TAK
		Analysis of predictive factors for treatment resistance and disease	patients with asymptomatic progression of
Y. Sun	2018	relapse in Takayasu's arteritis	previously identified vascular lesions.

Takayasu Arteritis (TAK)

Treatment

- **PICO question 17:** In patients with known TAK who develop a new vascular lesion in a previously unaffected vascular territory, what is the impact of escalating or changing immunosuppression vs. continuing current therapy on disease-related outcomes and treatment-related adverse events?
- **Critical Outcomes:** Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation
- 110. In patients with known TAK who develop a new vascular lesion in a previously unaffected vascular territory, what is the impact of escalating or changing immunosuppression vs. continuing current therapy on disease-related outcomes and treatment-related adverse events? No comparative data available
- 111. In patients with known TAK who develop a new vascular lesion in a previously unaffected vascular territory, what is the impact of escalating or changing immunosuppression on disease-related outcomes and treatment-related adverse events?

Outcomes	Author, year	Study type	Duration of follow up	Population (number and description)	Intervention used in relevant population (Describe the intervention)	Results
Restenosis- free survival rates	Gulcu, 2017	Retrospective case-series study	1 and 8 years	35 patients (median age: 45 years, range: 22-77 years) with 49 stenotic arterial lesions caused by TA who underwent endovascular treatment	GC treatment (20-30 mg/day) after endovascular intervention. High dose of prednisolone (0.8-1 mg/kg) was given when systemic symptoms of inflammation.	4 (8%) lesions were occluded or showed restenosis. 1- and 8-year restenosis-free survival rates of renal artery interventions were 74% and 57% (P = 0.281)
Adverse events	Gulcu, 2017	Retrospective case-series study	1 and 8 years	35 patients (median age: 45 years, range: 22-77 years) with 49 stenotic arterial lesions caused by TA who underwent endovascular treatment	GC treatment (20-30 mg/day) after endovascular intervention. High dose of prednisolone (0.8-1 mg/kg) was given when systemic symptoms of inflammation.	Other than the 3 occluded lesions, No symptoms in the remaining 45 (92%) lesions.

- Patient important outcomes:

- 112. In patients with known TAK who develop a new vascular lesion in a previously unaffected vascular territory, what is the impact of continuing current therapy on disease-related outcomes and treatment-related adverse events? No single arm data available
 - References:
- Randomized controlled trials:

None

- Comparative observational studies:

None Single arm studies:

Author	Year	Title
		Long-Term Follow-Up of Endovascular Repair in the Management of Arterial Stenosis Caused by Takayasu's
Gulcu	2017	Arteritis

- Comments: The study does not specify the treatment received before intervention, but since patients received high dose GCs, we assume that the regimen was escalated.

Takayasu Arteritis (TAK)

<u>Treatment</u>

- **PICO question 18:** In patients with TAK in apparent clinical remission but with signs of active large vessel vascular inflammation on non-invasive imaging, what is the impact of treating with immunosuppressive therapy vs. not treating with immunosuppressive therapy on disease-related outcomes or treatment related adverse events?
- **Critical Outcomes:** Disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation
- 113. In patients with TAK in apparent clinical remission but with signs of active large vessel vascular inflammation on non-invasive imaging, what is the impact of treating with immunosuppressive therapy vs. not treating with immunosuppressive therapy on disease-related outcomes or treatment related adverse events? No Comparative data available
- 114. In patients with TAK in apparent clinical remission but with signs of active large vessel vascular inflammation on non-invasive imaging, what is the impact of treating with immunosuppressive therapy on disease-related outcomes or treatment related adverse events? No single arm data available
- 115. In patients with TAK in apparent clinical remission but with signs of active large vessel vascular inflammation on non-invasive imaging, what is the impact of not treating with immunosuppressive therapy on disease-related outcomes or treatment related adverse events? No single arm data available

References:

- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies: None

Takayasu Arteritis (TAK)

- **PICO question 19:** In patients with TAK in apparent clinical remission but with rising inflammatory markers, what is the impact of continued clinical observation without escalation of immunosuppression versus escalating immunosuppression on disease-related outcomes, and treatment-related adverse events?
- **Critical Outcomes:** Clinical symptoms, disease activity, relapse, death, damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation
- 116. In patients with TAK in apparent clinical remission but with rising inflammatory markers, what is the impact of continued clinical observation without escalation of immunosuppression versus escalating immunosuppression on disease-related outcomes, and treatment-related adverse events? No Comparative data available
- 117. In patients with TAK in apparent clinical remission but with rising inflammatory markers, what is the impact of continued clinical observation without escalation of immunosuppression on disease-related outcomes, and treatment-related adverse events? No single arm data available
- 118. In patients with TAK in apparent clinical remission but with rising inflammatory markers, what is the impact of escalating immunosuppression on disease-related outcomes, and treatment-related adverse events? No single arm data available

References:

 Randomized controlled trials: None

- Comparative observational studies: None
- Single arm studies: None

Takayasu Arteritis (TAK) Surgical Intervention

- **PICO question 20:** In patients with known TAK and persistent limb claudication without evidence of ongoing active disease, what is the impact of surgical intervention with continued immunosuppression vs. continued immunosuppression alone on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
- **Critical Outcomes:** Serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation, ischemic events, complications of the intervention such as bleeding or thrombotic events, death
- In patients with known TAK and persistent limb claudication without evidence of ongoing active disease, what is the impact of surgical intervention with continued immunosuppression vs. continued immunosuppression alone on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events? No comparative data available
- 2. In patients with known TAK and persistent limb claudication without evidence of ongoing active disease, what is the impact of surgical intervention with continued immunosuppression on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - Patient important outcome:

Outcomes	Author,	Study type	Duration	Population (number	Intervention used in relevant population	Results
	year		of follow	and description)	(Describe the intervention)	
			up			
	Zheng,	Retrospective	Mean (SD)	46 TA patients with	All 46 patients underwent surgery or angioplasty.	23/46 (50%) of patients treated
Relapse-free	2018	case-series	2.1 (0.6)	lesions	24 patients were treated with corticosteroid	with GC/IS prior to surgery had
Relapse-free			years		and/or immunosuppressive drugs before surgery.	no complication or death
	Pajari,	Retrospective	Up to 15	29 patients TA with	The 29 patients underwent 49 vascular	5-year patency rate after grats
Patency	1986	case-series	years	lesions	procedures due to arterial insufficiency. Patency	in patients with inactive disease
					was evaluated in 35 grafts (17 with patients in	stage was 88% +/- 8%

					active disease and 18 in patients with inactive disease).	
Complicatio ns	Zheng, 2018	Retrospective case-series	Mean (SD) 2.1 (0.6) years	46 TA patients with lesions	All 46 patients underwent surgery or angioplasty. 24 patients were treated with corticosteroid and/or immunosuppressive drugs before surgery.	1/46 (2%) of patients treated with GC/IS prior to surgery had a complication

- 3. In patients with known TAK and persistent limb claudication without evidence of ongoing active disease, what is the impact of surgical intervention with continued immunosuppression alone on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events? No single arm data available
- References:
- Randomized controlled trials: None
- Comparative observational studies: None
- Single arm studies:

Author	Year	Title
Zheng	2018	Treatment with Corticosteroid and/or Immunosuppressive Agents before Surgery can Effectively Improve the
		Surgical Outcome in Patients with Takayasu's Arteritis
Pajari	1986	Treatment of Takayasu's arteritis: an analysis of 29 operated patients

- Studies reviewed and excluded:

Author	Year	Title	Comments
			Thirteen of the 20 patients had active
		Takayasu's arteritis: clinical features and outcomes of 125 patients	disease and received strict perioperative GC
X. L. Cong	2010	in China	during vascular procedures. Exclude
			9/41 had active disease and were the only
			ones who received immunosuppression, the
			data isn't presented for the 32 patients
		Percutaneous transluminal angioplasty for stenosis of the aorta due	without GCs as well, so the population is not
S. Tyagi	1999	to aortic arteritis in children	relevant to the question - Exclude

S. Joseph	1994	Percutaneous transluminal angioplasty of the subclavian artery in nonspecific aortoarteritis: results of long-term follow-up	by definition of active disease, most patients had active disease by the time of the intervention, and no immunosuppression was mentioned to be given with the surgical intervention - Exclude
		Takayasu arteritis: initial and long-term follow-up in 16 patients	
		after percutaneous transluminal angioplasty of the descending	Patients with active disease by definition -
S. A. Rao	1993	thoracic and abdominal aorta	Exclude
		Evaluation of the results of surgical treatment for dilative lesions	Patients don't have inactive disease with
M. Okita	2000	associated with Takayasu's arteritis	limb claudication - Exclude

Takayasu Arteritis (TAK)

- **PICO question 21:** In patients with known TAK with worsening signs of limb/organ ischemia on immunosuppression, what is the impact of surgical intervention with escalating immunosuppression vs. escalating immunosuppression alone on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
- **Critical Outcomes:** Damage from disease, disease activity, relapse, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation, ischemic events, complications of the intervention such as bleeding or thrombotic events, death
- 119. In patients with known TAK with worsening signs of limb/organ ischemia on immunosuppression, what is the impact of surgical intervention with escalating immunosuppression vs. escalating immunosuppression alone on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - No data available
- 120. In patients with known TAK with worsening signs of limb/organ ischemia on immunosuppression, what is the impact of surgical intervention with escalating immunosuppression on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - Patient Important Outcomes:

Outcomes	Author,	Study type	Duration	Population	Treatment given to	Results
	year			Description	relevant population	

Survival rate & Death	Ando, 2000	Case-series	Follow-up from 1 to 246 months (mean, 107 months)	87 patients with TA. 43 cases of thoracic aortic aneurysm (TAA) and 44 cases of diffuse dilatation of the ascending aorta with aortic regurgitation (AR).	Artificial graft for TAA, valve replacement for AR. Preoperative GC administered to 40 patients with high CRP and ESR.	Cumulative survival rates of 87 patients with Takayasu arteritis complicated by dilative lesions were as follows: 87.6% after 3 years, 79.7% after 6 years, and 74.3% after 9 years. 5 patients (5.7%) died during the hospital stay. 15 patients of late deaths, and 10 patients died due to cardiovascular problems. Hospital Death: TAA Group: 43 Patients Hospital Death: 2 Patients (4.7%) Late Death: 7 On Steroids: 12 Patients (28%) Dilation of Aorta: 44 Patients Hospital Death: 3 (6.8%) Late Death: 8 On Steroids: 28 Patients (64%)
Patency & Restenosis	Yildyz, 2014	Case-series	6 months	24 patients with TA	Percutaneous intervention, surgical and medical treatments. Immunosuppressive therapy including steroids and/or methotrexate, azathioprine and cyclophosphamide before percutaneous intervention.	At 6 months follow-up, the arteries were patent and showed no proliferative lesions in 8 patients. Restenosis 1/24 (4%).
Recurrence – one study with 65 patients showed no difference in symptomatic (or radiographic) recurrence with respect to disease activity status.	Lee, 2014	Retrospective single center cohort study	2 years	65/235 (27.7%) patients with TAK (ACR criteria) 1994- 2011 underwent arterial revascularization for 111 arterial lesions	45 lesions with surgical bypass 66 lesions with PTA Variable assessed was disease activity's effect on outcomes. If active the patient was given moderate to high doses of prednisone perioperatively If inactive, no prednisone was given or increased, and patient continued on their own IS regimen	There were no statistically significant differences in symptomatic recurrence between clinically active TA under immunosuppression and clinically inactive TA without additional immunosuppression during the peri- procedural period ($p = 0.30$). The results were similar when the symptomatic recurrence free survivals for each revascularization method were examined. In the 64 lesions treated by PTA, symptomatic recurrence was not significantly different according to the need for additional immunosuppressive therapy during the peri- procedural period ($p = 0.20$), no specific numbers presented

- 121. In patients with known TAK with worsening signs of limb/organ ischemia on immunosuppression, what is the impact of escalating immunosuppression alone on the development of disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - Patient Important Outcomes:

Outcomes	Author,	Study type	Duration	Population	Treatment given to relevant	Results
	year			Description	population	
	Vinicki,	Retrospective	6 months	5 patients with TA,	All patients received either	Only 5 patients with TA
	2017	case-series		and 5 patients with	infliximab (IFX), etanercept (ETN) or	Remission in all patients.
				GCA, refractory to	tocilizumab (TCZ),	Sustained remission in all cases during follow
				conventional	4/5 TA patients received less than 10	up (mean follow-up 59.6 ± 27.2 months).
Remission				therapies including	mg/day of prednisone.	
Nernission				GC.		
	Henes,	Retrospective	Median	10 patients with LLV	CYC plus GC	Complete remission in all patients by end of
	2011	case-series	follow-up			follow-up
			of 45			
			months			
	Henes,	Retrospective	Median	10 patients with LLV	CYC plus GC	SAE – 6 (60%); streptococcus mitis sepsis,
	2011	case-series	follow-up			reactivation of PJP (pneumocystis jirovecii
SAE			of 45			pneumonia)
			months			
	Vinicki,	Retrospective	6 months	5 patients with TA,	All patients received either	None of the patients developed a new
	2017	case-series		and 5 patients with	infliximab (IFX), etanercept (ETN) or	arterial lesion.
Adverse events				GCA, refractory to	tocilizumab (TCZ),	Recurrent infection in 1 patient.
				conventional	4/5 TA patients received less than 10	Neutropenia in 1 patient.
				therapies including	mg/day of prednisone.	
				GC.		

- References:
- Randomized controlled trials: None
- Comparative observational studies: None

- Single arm studies:

Author	Year	Title
Vinicki	2017	Sustained remission after long-term biological therapy in patients with large vessel vasculitis: an analysis of ten cases
Henes	2011	Cyclophosphamide for large vessel vasculitis: assessment of response by PET/CT
Yildyz	2014	Outcomes and effectiveness of percutaneous intervention in patients with takayasu's arteritis
Ando	2000	Evaluation of the results of surgical treatment for dilative lesions associated with Takayasu's arteritis
Lee	2014	Comparison of outcomes between endovascular treatment and bypass surgery in Takayasu arteritis

Takayasu Arteritis (TAK)

- **PICO question 16:** In patients with TAK <u>with stenosis of a cranial/cervical vessel without clinical symptoms</u>, what is the impact of surgical intervention combined with continued immunosuppression vs. continued immunosuppression alone on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
- **Critical outcomes:** Damage from disease, serious adverse events from medication, infection, malignancy, toxicity leading to drug discontinuation, ischemic events, complications of the intervention such as bleeding or thrombotic events, death
- 122. In patients with TAK with stenosis of a cranial/cervical vessel without clinical symptoms, what is the impact of surgical intervention combined with continued immunosuppression vs. continued immunosuppression alone on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - No comparative data available
- 123. In patients with TAK with stenosis of a cranial/cervical vessel without clinical symptoms, what is the impact of surgical intervention combined with continued immunosuppression on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?
 - Patient Important Outcomes

Outcomes	Author,	Study type	Duration	Population	Treatment given to relevant	Results	Comments
	year			Description	population		

Technical success 2 studies reported the rate of successful operations that ranged from 83% to 92.3%.	Kim, 2011	Retrospective case-series	Mean clinical follow-up duration 39 months (range 11- 91 months)	12 patients with TA	Percutaneous transluminal balloon angioplasty (PTA) and/or stenting. Prednisolone (1 mg/kg/d) and methotrexate (7.5 mg/wk) in patients unresponsive to steroids.	Technical success: 20 procedures in 11 patients (92%) One procedure failed with 50% residual stenosis.	Indirect; All patients presented with symptoms. of the 12 included patients, five had ischemic stroke, three had tIA (transient hemiparesis, aphasia, or visual loss), three had dizziness and one had decreased vision; Prednisolone administered to patients with increased ESR before endovascular treatment.
	Cong, 2010	Retrospective case-series	Median duration of 36 months (3–180 months)	80 patients diagnosed with TA, mean age 26.9 years (6–65 years).	20 patients received angioplasty procedures. Vascular bypass in 36 patients. 23 of them received perioperative GC, 13 preventive GC. GC in 58 patients (72.5%). 16 patients on DMARDs in addition to GC.	 1) Vascular bypass + GC patients: 30/36 (83%) 2) Angioplasty procedures: 22/25 (88%) initially successful with or without stents. 	Indirect; Data not separated for stable disease. Combined with patients that have active disease. Does not separate patient outcomes/ lesion location.
Restenosis Reported by 2 studies that had inconsistent rates 10% and 77.3%.	Kim, 2011	Retrospective case-series	Mean clinical follow-up duration 39 months (range 11- 91 months)	12 patients with TA	Percutaneous transluminal balloon angioplasty (PTA) and/or stenting. Prednisolone (1 mg/kg/d) and methotrexate (7.5 mg/wk) in patients unresponsive to steroids.	Restenosis in 2/10 patients (10%) without symptom recurrence.	Indirect; All patients presented with symptoms. of the 12 included patients, five had ischemic stroke, three had tIA (transient hemiparesis, aphasia, or visual loss), three had dizziness and one had decreased vision
	Cong, 2010	Retrospective case-series	Median duration of 36 months (3–180 months)	80 patients diagnosed with TA, mean age 26.9 years (6–65 years).	20 patients received angioplasty procedures. Vascular bypass in 36 patients. 23 of them received perioperative GC, 13 preventive GC. GC in 58 patients (72.5%). 16 patients on DMARDs in addition to GC.	Restenosis in 17/22 (77.3%). 14 of the 17 (82.4%) developed in less than 1 year.	Indirect; Data not separated for stable disease. Combined with patients that have active disease. Does not separate patient outcomes/ lesion location.

Remission Reported by 2 studies; Remission 67- 68%	Cong, 2010	Retrospective case-series	Median duration of 36 months (3–180 months)	80 patients diagnosed with TA, mean age 26.9 years (6–65 years).	20 patients received angioplasty procedures. Vascular bypass in 36 patients. 23 of them received perioperative GC, 13 preventive GC. GC in 58 patients (72.5%). 16 patients on DMARDs in addition to GC.	Postoperative remission in 23 (67.65%) patients on GC prior to surgery. Relapse-free 5/16 patients treated with a combination of DMARD and GC.	Indirect; Data not separated for stable disease. Combined with patients that have active disease. Does not separate patient outcomes/ lesion location.
	Zheng, 2018	Retrospective case-series	Mean (SD) 2.1 (0.6) years	46 TA patients with lesions	All 46 patients underwent surgery or angioplasty. 24 patients were treated with corticosteroid and/or immunosuppressive drugs before surgery.	34(68%) of patients with relief treated with GC/IS prior to surgery.	Indirect evidence; 34 had active disease prior to surgery; outcome data not separated for active and inactive disease.
Complications Reported by 4 studies; all indirect evidence/ postoperative	Zheng, 2018	Retrospective case-series	Mean (SD) 2.1 (0.6) years	46 TA patients with lesions	All 46 patients underwent surgery or angioplasty. 24 patients were treated with corticosteroid and/or immunosuppressive drugs before surgery.	1/12 (8%) of patients with complications treated with GC/IS.	Indirect evidence; outcome data not separated for active and inactive disease.
complications ranges from 8- 22%	Singh, 2015	Retrospective case-series		62 patients with TA with various angiographic involvement; 10 TA with cervicocranial involvement; LCCA [3], RCCA [2] ;LSCA [5]	23 patients went balloon angioplasty and prednisone 1mg/kg/day or/and MTX 7.5- 15mg/week prior to and after surgery	1/3 LCCA Cerebral Infarction 1/2 Cerebral Infarction	Indirect evidence; all patients have symptoms; LUL calud, vertigo; blurring of eye.
	Kim, 2011	Retrospective case-series	Mean clinical follow-up duration 39 months (range 11- 91 months)	12 patients with TA	Percutaneous transluminal balloon angioplasty (PTA) and/or stenting. Prednisolone (1 mg/kg/d) and methotrexate (7.5 mg/wk) in patients unresponsive to steroids.	Occlusion occurred in one patient. One patient had a minor stroke three months later.	Indirect; All patients presented with symptoms. of the 12 included patients, five had ischemic stroke, three had tIA (transient hemiparesis, aphasia, or visual loss), three had dizziness and one had decreased vision

	Cong, 2010	Retrospective case-series	Median duration of 36 months (3–180 months)	80 patients diagnosed with TA, mean age 26.9 years (6–65 years).	20 patients received angioplasty procedures. Vascular bypass in 36 patients. 23 of them received perioperative GC, 13 preventive GC. GC in 58 patients (72.5%). 16 patients on DMARDs in addition to GC.	Postoperative complications in 4/36 (22%) Angioplasty procedures: 3 unsuccessful.	Indirect; Data not separated for stable disease. Combined with patients that have active disease. Does not separate patient outcomes/ lesion location.
Death Death was reported in 8 studies ranged from 2% to 11%.	Zheng, 2018	Retrospective case-series	Mean (SD) 2.1 (0.6) years	46 TA patients with lesions	All 46 patients underwent surgery or angioplasty. 24 patients were treated with corticosteroid and/or immunosuppressive drugs before surgery.	1 (2.2%) death as a result of perioperative complication.	Indirect evidence; outcome data not separated for active and inactive disease.
	Singh, 2015	Retrospective case-series		62 patients with TA with various angiographic involvement; 10 TA with cervicocranial involvement; LCCA [3], RCCA [2] ;LSCA [5]	23 patients went balloon angioplasty and prednisone 1mg/kg/day or/and MTX 7.5- 15mg/week prior to and after surgery	1/10 or 1/3 LCCA TA patients with cervicocranial involvement died from infarction.	Indirect evidence; all patients have symptoms; LUL calud, vertigo; blurring of eye.
	Kim, 2011	Retrospective case-series	Mean clinical follow-up duration 39 months (range 11- 91 months)	12 patients with TA	Percutaneous transluminal balloon angioplasty (PTA) and/or stenting. Prednisolone (1 mg/kg/d) and methotrexate (7.5 mg/wk) in patients unresponsive to steroids.	One patient died from cardiac failure 36 months after successful angioplasty (8%).	Indirect; All patients presented with symptoms. of the 12 included patients, five had ischemic stroke, three had tIA (transient hemiparesis, aphasia, or visual loss), three had dizziness and one had decreased vision
	Cong, 2010	Retrospective case-series	Median duration of 36 months (3–180 months)	80 patients diagnosed with TA, mean age 26.9 years (6–65 years).	20 patients received angioplasty procedures. Vascular bypass in 36 patients. 23 of them received perioperative GC, 13 preventive GC. GC in 58 patients (72.5%). 16 patients on DMARDs in addition to GC.	Vascular bypass + GC patients: 2/36 (6%) vascular bypass patients died.	Indirect; Data not separated for stable disease. Combined with patients that have active disease. Does not separate patient outcomes/ lesion location.

Ando, 2000 Ando, 2000	Retrospective case-series 13 patients with occlusive cervical vessel lesions. Case-series	Follow-up ranged from 1 to 240 months (mean: 117 months). Follow-up from 1 to 246 months (mean, 107 months)	46 TA patients with coronary and aortic stenosis. 87 patients with TA. 43 cases of thoracic aortic aneurysm (TAA) and 44 cases of diffuse dilatation of the ascending aorta with aortic regurgitation (AR).	Transaortic ostial endarterectomy (TAE) in 9, coronary artery bypass grafting (CABG) in 10, 4 patients TAE and valve replacement. Preoperative steroids to 22 patients. Artificial graft for TAA, valve replacement for AR. Preoperative GC administered to 40 patients with high CRP and ESR.	Death: 5/46 (11%) 5 patients (5.7%) died during the hospital stay. 15 patients of late deaths, and 10 patients died due to cardiovascular problems. The total actuarial survival rate was 79.7% at 6 years and 74.3% at 9 years.	Indirect; unclear if patients had symptoms. Indirect; no patient presentations/symptoms available.
Han, 2017	Retrospective Cohort	61 months, mean	19 patients with Takayasu arteritis who underwent aorto-carotid bypass from March 2002 to April 2015	Eleven patients (57.9%) underwent aorto-uni-carotid bypass and 8 patients (42.1%) underwent aorto-bi-carotid bypass. Surgery was done after normalization of ESR and CRP level by using steroids and immunosuppressants like prednisolone or methylprednisolone.	3/19 died during followup (2 were less than 3 years)	Indirect – These patients were symptomatic.
Robbs, 1994	Single Center Cohort, retrospective	3mo to 11 y	1981 and March 1993, 134 patients with a clinical diagnosis of Takayasu's Arteritis were referred to the Vascular Service for consideration for operative therapy.	Eighty-one patients (60%) were deemed suitable for reconstructive surgery and submitted to operation. 22/81 had renovascular HTN.	Overall operative mortality in the Type I patients was 3.6% (stroke) and in the type II-IV 4%.	Indirect - These patients were symptomatic. Data here is for all- comers

124. In patients with TAK with stenosis of a cranial/cervical vessel without clinical symptoms, what is the impact of continued immunosuppression alone on disease-related outcomes, treatment-related adverse events, and surgical intervention-related adverse events?

- No available data.
- References:
- Randomized controlled trials:

None

- Comparative observational studies: None

- Single arm studies :

Author	Year	Title
Ando, M	2000	Surgical considerations of occlusive lesions associated with Takayasu's arteritis
Ando, M	2000	Evaluation of the results of surgical treatment for dilative lesions associated with Takayasu's arteritis
Cong, X	2010	Takayasu's arteritis: clinical features and outcomes of 125 patients in China
Kim, H	2011	Outcomes after endovascular treatment of symptomatic patients with Takayasu's arteritis
Singh, A	2015	Angiographic profile and endovascular interventions in Takayasu's arteritis
Zheng, T	2018	Treatment with Corticosteroid and/or Immunosuppressive Agents before Surgery can Effectively Improve the Surgical Outcome in Patients with Takayasu's Arteritis
Han	2017	Aorto-carotid bypass in patients with Takayasu arteritis
Robbs	1994	Arterial reconstruction for non-specific arteritis (Takayasu's disease): medium to long term results

- Studies reviewed and excluded:

Author	Year	Title	Comments
		Sustained remission after long-term biological therapy in patients	Less than 10 patients with TA. Exclude
J. P. Vinicki	2017	with large vessel vasculitis: an analysis of ten cases	
		Tocilizumab in refractory aortitis: study on 16 patients and	Less than 10 patients with TA. Exclude
J. Loricera	2014	literature review	

Takayasu Arteritis (TAK)

- PICO question 23: In patients with TAK with worsening signs of limb/organ ischemia, what is the impact of performing surgical • intervention while the patient has active disease versus delaying until the disease is in remission on disease-related outcomes and surgical intervention-related adverse events?
- Critical Outcomes: Damage from disease, clinical symptoms from disease, disease activity, relapse, infection, ischemic events, • complications of the intervention such as bleeding or thrombotic events, need for additional intervention or immunosuppression, death
- In patients with <u>TAK with worsening signs of limb/organ ischemia</u>, what is the impact of performing surgical intervention while the patient 125. has active disease versus delaying until the disease is in remission on disease-related outcomes and surgical intervention-related adverse events?

			Certainty a	ssessment			Nº of p	oatients	E	fect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quiescent	Active Disease	Relative (95% Cl)	Absolute (95% CI)	Certainty
5 year free	dom from revisior	1									
11	observational studies	not serious	not serious	not serious	very serious ^{1,a}	none	28/29 (96.6%)	6/13 (46.2%)	OR 32.67 (3.36 to 317.22)	504 more per 1,000 (from 281 more to 535 more)	
10 year fre	edom from revisio	on									
11	observational studies	not serious	not serious	not serious	very serious ^{1,a}	none	24/29 (82.8%)	6/13 (46.2%)	OR 5.60 (1.31 to 24.00)	366 more per 1,000 (from 67 more to 492 more)	
Freedom f	rom graft revision	or progression of	disease		•		•	•	•	· · · · ·	
11	observational studies	not serious	not serious	not serious	very serious ^{1,a}	none	27/29 (93.1%)	5/13 (38.5%)	OR 21.60 (3.50 to 133.28)	546 more per 1,000 (from 302 more to 604 more)	
Restenosis	rate										
1 ³	observational studies	not serious ^b	not serious	not serious	not serious	none	3/25 (12.0%)	17/38 (44.7%)	OR 0.17 (0.04 to 0.66)	326 fewer per 1,000 (from 416 fewer to 99 fewer)	
MACE in pa	atients with coron	ary artery interver	ntion	1	1		1	1	1	1 1	
1 ²	observational	very serious	not serious	not serious	very serious ^{2,a}	none	2 participants	22 participants	HR 10.58	per 100	

studies

2,b,c

(2.35 to 47.59)

(from -- to --)

	Certainty assessment							Nº of patients Effect			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Quiescent	Active Disease	Relative (95% Cl)	Absolute (95% Cl)	Certainty
									[MACE in patients with coronary artery intervention]	 per 100 (from to)	

CI: Confidence interval; OR: Odds ratio; HR: Hazard Ratio

Explanations

a. Clinical action may differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision.

b. High risk of bias for selection of intervention group and control group

c. Median follow-up time was significantly shorter for PCI group compared to CABG group; Difference in included PCI and CABG groups; CABG group had fewer women and more current or past smokers.

References

1. Fields, C., E., Bower, T., C., Cooper, L., T., Hoskin, T., Noel, A., A., Panneton, J., M., Sullivan, T., M., Gloviczki, P., Cherry, K., J. Takayasu's arteritis: operative results and influence of disease activity. J Vasc Surg; 2006. 2. Wang, X., Dang, A., Ly, N., Cheng, N., Yeng, Y., Song, Y. Long-term outcomes of coronary artery bypass grafting versus percutaneous coronary intervention for Takayasu arteritis patients with coronary artery involvement. Seminars in Arthritis and Rheumatism; 2017. 3. M. C. Park, S. W. Lee, Y. B. Park, S. K. Lee, D. Choi, W. H. Shim, Post-interventional immunosuppressive treatment and vascular restenois in Takayasu's arteritis. Rheumatology 2006

- References:
- Randomized controlled trials: None
 - Comparative observational studies:

Author	Year	Title
Fields, C	2006	Takayasu's arteritis: operative results and influence of disease activity
Park, M	2006	Post-interventional immunosuppressive treatment and vascular restenosis in Takayasu's arteritis
		Long-term outcomes of coronary artery bypass grafting versus percutaneous coronary intervention for
Wang, X	2017	Takayasu arteritis patients with coronary artery involvement.

Takayasu Arteritis (TAK)

Surgical Intervention

 PICO question 18: In patients with TAK with worsening signs of limb/organ ischemia, what is the impact of endovascular interventions (such as angioplasty or stent placement) versus vascular bypass or grafting on disease-related outcomes and surgical treatment-related adverse events?

- **Critical Outcomes**: Damage from disease, infection, ischemic events, complications of the intervention such as bleeding or thrombotic events, adverse reaction to contrast exposure, need for additional intervention, death
- 126. In patients with TAK with worsening signs of limb/organ ischemia, what is the impact of endovascular interventions (such as angioplasty or stent placement) versus vascular bypass or grafting on disease-related outcomes and surgical treatment-related adverse events?

Subgroup 1 Question: PCI vs. CABG for cardiac outcomes

	Certainty assessment							№ of patients		:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	PCI	CABG	Relative (95% Cl)	Absolute (95% Cl)	Certainty

MACE

1	observational studies	not serious	not serious	not serious	very serious ^{1,a}	none	13/25 (52.0%)	2/21 (9.5%)	RR 10.29 (1.97 to 53.85)	885 more per 1,000 (from 92 more to 1,000 more)	
---	--------------------------	-------------	-------------	-------------	-----------------------------	------	---------------	-------------	------------------------------------	---	--

Myocardial infarction

1	observational studies	not serious	not serious	not serious	very serious ^{1,a}	none	3/25 (12.0%)	0/21 (0.0%)	RR 6.69 (0.33 to 137.28)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	
---	--------------------------	-------------	-------------	-------------	-----------------------------	------	--------------	-------------	------------------------------------	---	--

Repeat revascularization/restenosis

2	observational studies	not serious	not serious	not serious	serious ^{1,2,b}	none	25/44 (56.8%)	5/33 (15.2%)	OR 7.38 (2.36 to 23.10)	417 more per 1,000 (from 145 more to 653 more)	
---	--------------------------	-------------	-------------	-------------	--------------------------	------	---------------	--------------	-----------------------------------	--	--

Cardiac death

1	observational not s studies	serious not serious	not serious	not serious ¹	none	1/25 (4.0%)	0/21 (0.0%)	OR 2.63 (0.10 to 68.07)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	
---	--------------------------------	---------------------	-------------	--------------------------	------	-------------	-------------	-----------------------------------	---	--

Mean time between revascularization and MACE

			Certainty a	ssessment			Nº of p	atients	Effect	:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	PCI	CABG	Relative (95% Cl)	Absolute (95% Cl)	Certainty
1	observational studies	not serious	not serious	not serious	very serious ^{1,a}	none	25	21	-	MD 54.84 lower (96.51 lower to 13.17 lower)	

Death from cardiovascular event

1 observatio studies	I not serious not	ot serious not serious	very serious ^{2,a} none	2/19 (10.5%)	0/12 (0.0%)	OR 3.57 (0.16 to 81.03)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	
-------------------------	-------------------	------------------------	----------------------------------	--------------	-------------	-----------------------------------	---	--

Stroke

1	observational studies	not serious	not serious	not serious	very serious ^{2,a}	none	1/19 (5.3%)	0/12 (0.0%)	OR 2.03 (0.08 to 53.87)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	
---	--------------------------	-------------	-------------	-------------	-----------------------------	------	-------------	-------------	-----------------------------------	---	--

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio; MD: Mean difference

Explanations

a. Clinical action may differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision. b. CI difference

References

1. Wang, X., Dang, A., Lv, N., Cheng, N., Cheng, X., Yang, Y., Song, Y.. Long-term outcomes of coronary artery bypass grafting versus percutaneous coronary intervention for Takayasu arteritis patients with coronary artery involvement. Seminars in Arthritis and Rheumatism; 2017.

2. Yang, Y., Tian, T., Yang, K., Zhang, Y., Meng, X., Fan, P., Feng, L., Mu, C., Gao, L., Zhou, X.. Outcomes of percutaneous coronary intervention and coronary artery bypass grafting in patients with Takayasu arteritis. International Journal of Cardiology; 2017.

Subgroup 2

Question: Surgical compared to Endovascular for Renal Artery Stenosis

			Certainty a	ssessment			Nº of p	atients	Effect	:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Sugical	Endovascular	Relative (95% Cl)	Absolute (95% Cl)	Certainty

Restenosis rate

			Certainty a	ssessment			Nº of p	atients	Effect	:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Sugical	Endovascular	Relative (95% Cl)	Absolute (95% CI)	Certainty
11	observational studies	not serious	not serious	not serious	not serious	none	2/11 (18.2%)	6/19 (31.6%)	OR 0.48 (0.08 to 2.95)	134 fewer per 1,000 (from 280 fewer to 261 more)	

Rate of permeability at 5 years

studies (0.34 to 12.72) per 1,000 LOW (from 260 fewer to 281 more) 281 more)	11	observational studies	not serious	not serious	not serious	not serious	none	9/11 (81.8%)	13/19 (68.4%)	OR 2.08 (0.34 to 12.72)	fewer to	
--	----	--------------------------	-------------	-------------	-------------	-------------	------	--------------	---------------	-----------------------------------	----------	--

Cure of hypertension

Chronic renal failure

	studies not serious	not serious	not serious	not serious	none	0/9 (0.0%)	2/14 (14.3%)	OR 0.26 (0.01 to 6.15)	101 fewer per 1,000 (from 141 fewer to 363 more)	
--	---------------------	-------------	-------------	-------------	------	------------	--------------	-------------------------------	--	--

Cl: Confidence interval; OR: Odds ratio

Explanations

a. Clinical action may differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision.

References

1. Kinjo, H., Kafa, A.. The results of treatment in renal artery stenosis due to Takayasu disease: comparison between surgery, angioplasty, and stenting. A monocentrique retrospective study. G Chir; 2015

Subgroup 3

Question: Surgical Vascular compared to Endovascular in Various Arterial Lesions

			Certainty a	ssessment			№ of p	atients	Effect	:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Surgical Vascular	Endovascular	Relative (95% Cl)	Absolute (95% Cl)	Certainty

Early complications of procedures

			Certainty a	ssessment			Nº of p	atients	Effect	:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Surgical Vascular	Endovascular	Relative (95% CI)	Absolute (95% Cl)	Certainty
2 ^{1,2}	observational studies	not serious	not serious	not serious	not serious	none	19/117 (16.2%)	7/41 (17.1%)	RR 0.96 (0.37 to 2.53)	7 fewer per 1,000 (from 108 fewer to 261 more)	

Restensosis rate after 1 month

fewer)

Late complications

2 ^{1,2}	observational studies	not serious	not serious	not serious	not serious	none	37/117 (31.6%)	18/41 (43.9%)	OR 0.55 (0.26 to 1.15)	138 fewer per 1,000 (from 270 fewer to 35 more)	
------------------	--------------------------	-------------	-------------	-------------	-------------	------	----------------	---------------	-------------------------------	---	--

Deaths associated with procedure

212 more)

Any complication

Procedure failure when on immunosuppressives

1 ³	observational studies	serious ^{3,c}	not serious	not serious	not serious	none	1/15 (6.7%)	2/14 (14.3%)	OR 0.43 (0.03 to 5.33)	76 fewer per 1,000 (from 138 fewer to 328 more)	
----------------	--------------------------	------------------------	-------------	-------------	-------------	------	-------------	--------------	----------------------------------	---	--

Procedure failure when off immunosuppressives

13	observational studies	serious ^{3,c}	not serious	not serious	not serious	none	6/18 (33.3%)	13/17 (76.5%)	OR 0.15 (0.03 to 0.68)	437 fewer per 1,000 (from 676 fewer to 76 fewer)	
----	--------------------------	------------------------	-------------	-------------	-------------	------	--------------	---------------	-------------------------------	--	--

Explanations

a. In Y. Yang et. al. There is a higher percentage of cardiovascular risk factors in PCI group (e.g. HTN, DM, HLD) Also, in Y. W. Kim bypass group has more patients with active disease at the time of intervention.

b. Surgical consequences may differ if the upper versus the lower boundary of the CI represented the truth, leading to deaths associated with the procedure type thus was rated down to serious.

c. There are many differences between the groups in regards to the indication for the procedure; The population that underwent a surgery/procedure is mostly males which is not a good representation of the general population of Takayasu's arteritis (mostly females).

References

1. Kim, Y.,W., Kim, D.,I., Park, Y.,J., Yang, S.,S., Lee, G.,Y., Kim, D.,K., Kim, K., Sung, K.. Surgical bypass vs endovascular treatment for patients with supra-aortic arterial occlusive disease due to Takayasu arteritis. Journal of Vascular Surgery; 2012. 2. Labarca, C., Makol, A., Crowson, C.,S., Kermani, T.,A., Matteson, E.,L., Warrington, K.,J.. Retrospective Comparison of Open versus Endovascular Procedures for Takayasu Arteritis. Journal of Rheumatology; 2016. 3. Perera, A.,H., Youngstein, T., Gibbs, R.,G., Jackson, J.,E., Wolfe, J.,H., Mason, J.,C.. Optimizing the outcome of vascular intervention for Takayasu arteritis. Br J Surg; 2012.

- References:
- Randomized controlled trials:

None

- Comparative observational studies:

Author	Year	Title
Wang, X	2017	Long-term outcomes of coronary artery bypass grafting versus percutaneous coronary intervention for Takayasu arteritis patients with coronary artery involvement
Yang, Y	2017	Outcomes of percutaneous coronary intervention and coronary artery bypass grafting in patients with Takayasu arteritis
Kinjo, H	2015	The results of treatment in renal artery stenosis due to Takayasu disease: comparison between surgery, angioplasty, and stenting. A monocentrique retrospective study
Labarca, C	2016	Retrospective Comparison of Open versus Endovascular Procedures for Takayasu Arteritis
Perera, A	2014	Optimizing the outcome of vascular intervention for Takayasu arteritis
Kim, Y	2012	Surgical bypass vs endovascular treatment for patients with supra-aortic arterial occlusive disease due to Takayasu arteritis

Takayasu Arteritis (TAK)

Surgical Intervention

• **PICO question 25:** In patients with TAK/GCA undergoing surgical intervention, what is the impact of high dose prednisone use prior to procedure vs. not using high dose prednisone on disease-related outcomes and surgical intervention-related adverse effects?

- Critical Outcomes: Damage from disease, disease activity, relapse, infection, ischemic events, complications of the intervention such as bleeding or thrombotic events, need for additional intervention, death
- 127. In patients with TAK/GCA undergoing surgical intervention, what is the impact of high dose prednisone use prior to procedure vs. not using high dose prednisone on disease-related outcomes and surgical intervention-related adverse effects?

128. Certainty assessment							Nº of patients		Effect			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	high dose prednisone use prior to procedure	not using high dose prednisone	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Symptoms	relief											
1	observational studies	not serious	not serious	not serious	serious ^a	none	23/24 (95.8%)	11/22 (50.0%)	RR 1.92 (1.25 to 2.93)	460 more per 1,000 (from 125 more to 965 more)		
Complicatio	ons						•					
1	observational studies	not serious	not serious	not serious	serious ª	strong association	1/24 (4.2%)	10/22 (45.5%)	RR 0.09 (0.01 to 0.66)	414 fewer per 1,000 (from 450 fewer to 155 fewer)		
Death							•					
1	observational studies	not serious	not serious	not serious	very serious ^a	strong association	0/24 (0.0%)	1/22 (4.5%)	RR 0.31 (0.01 to 7.16)	31 fewer per 1,000 (from 45 fewer to 280 more)		

CI: Confidence interval; RR: Risk ratio

Explanations

a. Clinical action may differ if the upper versus the lower boundary of the CI represented the truth

2. In patients with TAK/GCA undergoing surgical intervention, what is the impact of high dose prednisone use prior to procedure on disease-related outcomes and surgical intervention-related adverse effects?

Outcomes	Author,	Study	Duration of	Population	Intervention used in	Results
	year	type	follow up	(number and	relevant population	
				description)		

					(Describe the intervention)	
Relief of symptoms were reported by 1 study	Chen, 2015	Case- series	Average follow-up 6- 72 months	11 TAK patients undergoing surgery	Preoperative GC	11/11 (100%)
with total 11 patients, follow-up 31.6 +- 27.4 months and rate of 100%	Sharma, 2000	Case- series	Average follow-up 6- 72 months	20 TAK patients undergoing balloon angioplasty	Preoperative GC	19/20 (95%)
Major complications were reported by 1	Chen, 2015	Case- series	Average follow-up 6- 72 months	11 TAK patients undergoing surgery	Preoperative GC	2/11 (18%)
study with total 11 patients, follow-up 31.6 +- 27.4 months and rate of 18%	Fields, 2006	Case- series	Average follow-up 6.7 years (range, 1 month to 19.3 years)	42 TAK patients undergoing surgery	GC 1mg/kg/day	11/42 (26%)
Failure of revascularization was reported by 1 study with total 11 patients, follow-up 31.6 +- 27.4 months and rate of 18%	Chen, 2015	Case- series	Average follow-up 6- 72 months	11 TAK patients undergoing surgery	Preoperative GC	2/11 (18%)
Death	Chen, 2015	Case- series	Average follow-up 6- 72 months	11 TAK patients undergoing surgery	Preoperative GC	1/11 (9%)
Freedom from revision at 5 and 10 years	Fields, 2006	Case- series	Average follow-up 6.7 years (range, 1 month to 19.3 years)	42 TAK patients undergoing surgery	GC 1mg/kg/day	100% in patients with quiescent disease not requiring steroids (group I, n=5), 95% and 81% in patients whose disease was quiescent on steroids (group II, n=24), 57% at

						both 5 and 10 years in patients with active disease on steroids (group III, n=7), and 33% at both 5 and 10 years in patients with active disease not on long- term steroids (group IV, n=6) (P<.006)
Restenosis	Sharma, 2000	Case- series	Average follow-up 6- 72 months	20 TAK patients undergoing balloon angioplasty	Preoperative GC	2/20 (10%)

 In patients with TAK/GCA undergoing surgical intervention, what is the impact of not using high dose prednisone on disease-related outcomes and surgical intervention-related adverse effects?
 No single arm data available

References:

- Randomized controlled trials: None
- Comparative observational studies:

Author	Year	Title
		Treatment with Corticosteroid and/or Immunosuppressive Agents before Surgery can Effectively
Zheng	2018	Improve the Surgical Outcome in Patients with Takayasu's Arteritis

- Single arm studies:

Author	Year	Title
Chen	2015	Endovascular revascularization for carotid artery occlusion in patients with Takayasu arteritis
Fields	2006	Takayasu's arteritis: operative results and influence of disease activity
Sharma	2000	A follow-up study of balloon angioplasty and de-novo stenting in Takayasu arteritis

- Studies reviewed and excluded:

Author	Year	Title	Comments
		Stenting for middle aortic syndrome caused by Takayasu arteritis-	
W. Che	2018	immediate and long-term outcomes	Exclude - low dose
K. Q. Yang	2017	Aortic Aneurysm in Takayasu Arteritis	exclude - low dose
M. Peng	2016	Selective stent placement versus balloon angioplasty for renovascular hypertension caused by Takayasu arteritis: Two-year results	exclude - low dose
A. Kalangos	2006	Long-term outcome after surgical intervention and interventional procedures for the management of Takayasu's arteritis in children	exclude - less than 10 pts
M. C. Park	2006	Post-interventional immunosuppressive treatment and vascular restenosis in Takayasu's arteritis	exclude - GC used after surgery
M. C. Park	2005	Clinical characteristics and outcomes of Takayasu's arteritis: analysis of 108 patients using standardized criteria for diagnosis, activity assessment, and angiographic classification	exclude - mixed treatments, no clear distinction who got what
M. Ando	2000	Surgical considerations of occlusive lesions associated with Takayasu's arteritis	exclude - mixed data
M. Okita	2000	Evaluation of the results of surgical treatment for dilative lesions associated with Takayasu's arteritis	exclude - mixed data

Takayasu Arteritis (TAK)

- **PICO question 26:** In patients with TAK with renovascular hypertension and renal artery stenosis, what is the impact of surgical intervention vs. treating with immunosuppression on hypertension, surgical intervention-related adverse events, and treatment-related adverse events?
- **Critical Outcomes:** Damage from disease (e.g., worsening of hypertension), infection, complications of the intervention such as bleeding or thrombotic events, need for additional intervention, serious adverse effects, toxicity, death
- 129. In patients with TAK with renovascular hypertension and renal artery stenosis, what is the impact of surgical intervention vs. treating with immunosuppression on hypertension, surgical intervention-related adverse events, and treatment-related adverse events?

	Certainty assessment							№ of patients		:	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Sugical	Endovascular	Relative (95% Cl)	Absolute (95% Cl)	Certainty
Bestenesia											

Restenosis rate

1	observational studies	not serious	not serious	serious ^a	not serious	none	2/11 (18.2%)	6/19 (31.6%)	OR 0.48 (0.08 to 2.95)	134 fewer per 1,000 (from 280 fewer to 261 more)	
---	--------------------------	-------------	-------------	----------------------	-------------	------	--------------	--------------	-------------------------------	--	--

Rate of permeability at 5 years

	bservational no studies	not serious not serious	serious ^a	not serious	none	9/11 (81.8%)	13/19 (68.4%)	OR 2.08 (0.34 to 12.72)	134 more per 1,000 (from 260 fewer to 281 more)	
--	----------------------------	-------------------------	----------------------	-------------	------	--------------	---------------	--------------------------------	---	--

Cure of hypertension

Chronic renal failure

CI: Confidence interval; OR: Odds ratio

Explanations

a. This study indirectly answers the PICO question by comparing surgical VS endovascular management for renal artery stenosis

b. Clinical action may differ if the upper versus the lower boundary of the CI represented the truth, leading to very serious imprecision.

2. In patients with TAK with renovascular hypertension and renal artery stenosis, what is the impact of surgical intervention on hypertension, surgical intervention-related adverse events, and treatment-related adverse events?

Outcomes	Author,	Study type	Duratio	Population (number and	Intervention used in	Results
(Name +	year		n of	description)	relevant population	
Summary)			follow		(Describe the	
			up		intervention)	

Complications In 172 TAK patients, surgical intervention (stent, balloon, surgery) there	Ham, 2010	retrospective	75 months	55 patients, 31 with TAK (24 with fibromuscular dysplasia). Of the TAK patients, all had hypertension and 7 had renal insufficiency. There were 2 balloon angioplasties, 34 aortorenal bypass, 3 aortorenal bypass with ex vivo repair, 3 visceral- renal bypass, 5 nephrectomy	Open revascularization and renal artery PCTA with or without stenting. Patency of renal revascularization was assessed by serial duplex ultrasonography at 1 and 6 months after the intervention, then annually thereafter	8 major complications (10%) in 7 patients, including intra-abdominal bleeding requiring reexploration (n=3), wound infection (n=2), myocardial infarction (n=1), mesenteric ischemia requiring superior mesenteric revascularization (n=1), and retroperitoneal hematoma after PTA with stent (n=1). There were no postoperative deaths
were 21 complications (though ham study reported complications on entire cohort*). Overall reasonable safety of	Weaver , 2004	retrospective	68 months	27 patients with TAK and renal artery stenosis with HTN underwent revascularization. All patients had rec'd steroids previously and 13 were on steroids at time of intervention. 8 had previously undergone renal interventions	32 aortorenal bypass procedures, 2 renal artery reimplantations, 4 nephrectomies and 2 transluminal angioplasty procedures	Morbidity was 19% with 2 wound infections, 1 MI, 1 retroperitoneal hematoma requiring repeat exploration and 1 mesenteric ischemia requiring SMA revascularization. No postoperative deaths
performing intervention in RAS	Sharma , 1998	retrospective	22 months	96 stenosis in 66 TAK patients underwent PTRA (percutaneous transluminal renal angioplasty) for management of HTN 2/2 renal artery stenosis.	All TAK patients underwent PTRA. Indications included HTN uncontrolled with one drug, e/o >70% stenosis in the renal artery with peak systolic gradient of >20mmHg, AND clinically inactive disease	Complications included transient intrarenal arterial spasm in 3 patients, groin hematoma in 2 patients and ipsilateral renal vein injury in 1 patient

	Khalilull	Retrospectiv	5-14	48 TAK patients	Renal angioplasty	One patient developed intimal flap.
	ah,	e	months	undergoing renal artery		One small pseudoaneurysm of the
	1992			stenosis angioplasty with		brachial artery. No other
				64 stenotic lesions		complications
	Ham,	retrospective	75	55 patients, 31 with TAK	Open revascularization	BP in TAK patients went from
	2010		months	(24 with fibromuscular	and renal artery PCTA	171/102 pre intervention to
				dysplasia). Of the TAK	with or without stenting.	131/79 post intervention
Blood				patients, all had	Patency of renal	# of antihypertensive meds went
Pressure—				hypertension and 7 had	revascularization was	from 2.4 to 1.0
				renal insufficiency. There	assessed by serial duplex	
333 cases of				were 2 balloon	ultrasonography at 1 and	
TAK treated				angioplasties, 34	6 months	
with				aortorenal bypass, 3	after the intervention,	
angioplasty or				aortorenal bypass with ex	then annually thereafter	
surgery for				vivo repair, 3 visceral-		
renal artery				renal bypass, 5		
stenosis. BP				nephrectomy		
showed	Hong,	retrospective	118	TAK patients with renal	Of 62 TAK patients with	3/9 had refractory hypertension
significant	2017		months	artery involvement based	RA involvement, 11	
improvement				on CT or angiography.	underwent RA	
post procedure				Poor outcomes defined as	revascularization	
with cure or				refractory HTN, chronic		
improvement				renal insufficiency or		
in most				death.		
patients.	Tyagi,	retrospective	4-108	35 children (age 5-14,	Percutaneous	Of the 26 successful cases, 8 had
Decrease	1997		months	mean 10.8) with severe	transluminal renal	cure in BP, 16 had improved BP
consistently in				HTN and RAS (>75%	angioplasty was	and 2 had no response
# of				stenosed). 31 with TAK	performed after	
antihypertensi					aortogram.	
ve meds post	Weaver	retrospective	68	27 patients with TAK and	32 aortorenal bypass	BP improved from 167/99 to
intervention.	, 2004		months	renal artery stenosis with	procedures, 2 renal artery	132/79
Strongly favors				HTN underwent	reimplantations, 4	Antihypertensive medication use
intervention				revascularization. All	nephrectomies and 2	went from 2.5 to 1 per patient. 10
				patients had rec'd	transluminal angioplasty	patients had normal BP without
				steroids previously and 13	procedures	any antihypertensive med, 2 with
				were on steroids at time		

				of intervention. 8 had previously undergone renal interventions		no improvement and 15 with improvement
	Lagnea u, 1985	Retrospectiv e	45 months	35 patients with TAK, 21 had significant hypertension and arteritis of the renal arteries. 18 patients required operation for severe unrelenting HTN resistant to medical therapy	18 TAK patients had surgical intervention (4 nephrectomy, 13 bypass graft procedures, 1 direct re-implantation)	12/18 were cured (BP <140/90) and 5 were improved.
	Dong 1987	Retrospectiv e	25.5 months	32 patients with arteritis undergoing PCTA for renovascular HTN, but only 22 followed for 6 months post op	PCTA in 22 TAK patients for renovascular HTN	183/122 to 141/91 after follow up HTN cured in 18 of the 22
	Sharma , 1998	retrospective	22 months	96 stenosis in 66 TAK patients underwent PTRA (percutaneous transluminal renal angioplasty) for management of HTN 2/2 renal artery stenosis.	All TAK patients underwent PTRA. Indications included HTN uncontrolled with one drug, e/o >70% stenosis in the renal artery with peak systolic gradient of >20mmHg, AND clinically inactive disease	Systolic BP decreased from 95mmHg to 9mmHg. BP improved from 181/115 to 136/86. Antihypertensive drug requirement decreased from 3.9 to 1.1.
	Dong, 2002	retrospective	92.5 months	87 cases of renovascular stenosis treated wth PTRA of which 49 had arteritis.	49 TAK patients Underwent PRTA	BP went from 196/127 to 144/91 post intervention. Cured in 33 (50.8%), improved in 20 (30.8%), poor outcome in 12 (18.4%)
Primary Patency	Ham, 2010	retrospective	75 months	55 patients, 31 with TAK (24 with fibromuscular dysplasia). Of the TAK patients, all had	Open revascularization and renal artery PCTA with or without stenting.	primary patency rate was 75% in TAK at 5 years

203 TAK patients with revascularizati on of renal artery with high primary patency rates at 1 year.	Tyagi,	retrospective	4-108	hypertension and 7 had renal insufficiency. There were 2 balloon angioplasties, 34 aortorenal bypass, 3 aortorenal bypass with ex vivo repair, 3 visceral- renal bypass, 5 nephrectomy 35 children (age 5-14,	Patency of renal revascularization was assessed by serial duplex ultrasonography at 1 and 6 months after the intervention, then annually thereafter Percutaneous	Unsuccessful in 5/31, Successful
	1997		months	mean 10.8) with severe HTN and RAS (>75%stenosed). 31 with TAK	transluminal renal angioplasty was performed after aortogram.	procedure in 26 TAK cases
	Weaver , 2004	retrospective	68 months	27 patients with TAK and renal artery stenosis with HTN underwent revascularization. All patients had rec'd steroids previously and 13 were on steroids at time of intervention. 8 had previously undergone renal interventions	32 aortorenal bypass procedures, 2 renal artery reimplantations, 4 nephrectomies and 2 transluminal angioplasty procedures	Primary patency of the renal revascularization at 1, 3, and 5 years was 87%, 79%, and 79%, respectively
	Sharma , 1998	retrospective	22 months	96 stenosis in 66 TAK patients underwent PTRA (percutaneous transluminal renal angioplasty) for management of HTN 2/2 renal artery stenosis.	All TAK patients underwent PTRA. Indications included HTN uncontrolled with one drug, e/o >70% stenosis in the renal artery with peak systolic gradient of >20mmHg, AND clinically inactive disease	Successful intervention in 91 (95%) of stenosis in 62/66 patients. Clinical success in 59 (89%). Stenosis decreased from 88% to 11%
	Khalilull ah <i>,</i> 1992	Retrospectiv e	5-14 months	48 TAK patients undergoing renal artery	Renal angioplasty	58/64 (90.6%) of stenotic lesions could be successfully dilated.

				stenosis angioplasty with 64 stenotic lesions		
	Ham, 2010	retrospective	75 months	55 patients, 31 with TAK (24 with fibromuscular dysplasia). Of the TAK patients, all had hypertension and 7 had renal insufficiency. There were 2 balloon angioplasties, 34 aortorenal bypass, 3 aortorenal bypass, 3 aortorenal bypass with ex vivo repair, 3 visceral- renal bypass, 5 nephrectomy	Open revascularization and renal artery PCTA with or without stenting. Patency of renal revascularization was assessed by serial duplex ultrasonography at 1 and 6 months after the intervention, then annually thereafter	0/31 died
Death 5 deaths in 138 TAK patients undergiongint erventionàlow mortality	Hong, 2017	retrospective	118 months	TAK patients with renal artery involvement based on CT or angiography. Poor outcomes defined as refractory HTN, chronic renal insufficiency or death.	Of 62 TAK patients with RA involvement, 11 underwent RA revascularization	1/9 died
	Weaver , 2004	retrospective	68 months	27 patients with TAK and renal artery stenosis with HTN underwent revascularization. All patients had rec'd steroids previously and 13 were on steroids at time of intervention. 8 had previously undergone renal interventions	32 aortorenal bypass procedures, 2 renal artery reimplantations, 4 nephrectomies and 2 transluminal angioplasty procedures	3 deaths (9 months, 9 years and 14 years) none post-op
	Lagnea u, 1985	Retrospectiv e	45 months	35 patients with TAK, 21 had significant hypertension and arteritis of the renal arteries. 18	18 TAK patients had surgical intervention (4 nephrectomy, 13 bypass	No failures, 1 died of sepsis post op

				patients required operation for severe unrelenting HTN resistant to medical therapy	graft procedures, 1 direct re-implantation)	
Renal function- 27 patients with overall improvmeent in GFR and renal function. 2/3 came off of dialysis	Weaver , 2004	retrospective	68 months	27 patients with TAK and renal artery stenosis with HTN underwent revascularization. All patients had rec'd steroids previously and 13 were on steroids at time of intervention. 8 had previously undergone renal interventions	32 aortorenal bypass procedures, 2 renal artery reimplantations, 4 nephrectomies and 2 transluminal angioplasty procedures	3 on HD. Baseline creat was 1.2 in remaining 24 patients with GFR of 76. Post intervention Screat dec to 1 in the 24 patients on dialysis and GFR inc to 88. 2/3 HD patients got off of dialysis
Restenosis-93 TAK patients. 15 with	Weaver , 2004	retrospective	68 months	27 patients with TAK and renal artery stenosis with HTN underwent revascularization. All patients had rec'd steroids previously and 13 were on steroids at time of intervention. 8 had previously undergone renal interventions	32 aortorenal bypass procedures, 2 renal artery reimplantations, 4 nephrectomies and 2 transluminal angioplasty procedures	3 graft stenosis (8%) and 3 graft occlusions (in 5 patients)
restenosis or occlusion	Sharma , 1998	retrospective	22 months	96 stenosis in 66 TAK patients underwent PTRA (percutaneous transluminal renal angioplasty) for management of HTN 2/2 renal artery stenosis.	All TAK patients underwent PTRA. Indications included HTN uncontrolled with one drug, e/o >70% stenosis in the renal artery with peak systolic gradient of >20mmHg, AND clinically inactive disease	Restenosis rate (recurrence of htn and angiographic demonstration of restenosis) was 16% at 22 months

References:

- Randomized controlled trials: None
- Comparative observational studies:

Author	Year	Title
		The results of treatment in renal artery stenosis due to Takayasu disease: comparison between
Kinjo <i>,</i> H	2015	surgery, angioplasty, and stenting. A monocentrique retrospective study

- Single arm studies:

Author	Year	Title	
		Late outcomes of endovascular and open revascularization for nonatherosclerotic renal artery	
Ham	2010	disease	
Weaver	2014	Renal revascularization in Takayasu arteritis-induced renal artery stenosis	
Sharma	1998	Results of renal angioplasty in nonspecific aortoarteritis (Takayasu disease)	
Khalilullah	1992	Percutaneous transluminal angioplasty in Takayasu arteritis	
Hong	2017	Longterm Outcomes of Renal Artery Involvement in Takayasu Arteritis	
		Percutaneous transluminal angioplasty for renovascular hypertension in children: initial and long-	
Туаді	1997	term results	
Lagneau	1985	Renovascular hypertension and Takayasu's disease	
		Percutaneous transluminal angioplasty for renovascular hypertension in arteritis: experience in	
Dong	1987	China	

Takayasu Arteritis (TAK)

<u>Other</u>

- PICO question 27: In patients with known TAK and known cervicocranial stenotic lesions, what is the impact of maintaining blood pressure <130/80 (or ≤ 95 percentile in children <13 years old based on NIH/CDC values) vs. permitting blood pressure to remain above these levels on disease-related outcomes and treatment-related adverse events?
- Critical outcomes: Organ damage from disease (e.g., Stroke, ischemia), serious adverse events, toxicity leading to drug discontinuation (e.g., Hypotension, bradycardia, elevated creatinine), death

- 131. In patients with known TAK and known cervicocranial stenotic lesions, what is the impact of maintaining blood pressure <130/80 (or ≤ 95 percentile in children <13 years old based on NIH/CDC values) vs. permitting blood pressure to remain above these levels on disease-related outcomes and treatment-related adverse events?
 - No data available
- 132. In patients with known TAK and known cervicocranial stenotic lesions, what is the impact of maintaining blood pressure <130/80 (or ≤ 95 percentile in children <13 years old based on NIH/CDC values) on disease-related outcomes and treatment-related adverse events?
 - No data available
- 133. In patients with known TAK and known cervicocranial stenotic lesions, what is the impact of permitting blood pressure to remain above these levels on disease-related outcomes and treatment-related adverse events?
 - No data available

References:

- Randomized controlled trials: None
- Comparative observational studies: None

- Single arm studies: None

- Comments:

Author	Year	Title	Comments
		Stenting for middle aortic syndrome caused by Takayasu	Surgical procedures, no BP control
W. Che	2018	arteritis-immediate and long-term outcomes	therapy. Exclude
		Impact of revascularization on hypertension in children	
		with Takayasu's arteritis-induced renal artery stenosis: a	Surgical procedures, no BP control
T. A. Ladapo	2015	21-year review	therapy. Exclude
		Angioplasty for pediatric renovascular hypertension: a	Surgical procedures, no BP control
G. Zhu	2014	13-year experience	therapy. Exclude

		Surgical treatment of atypical aortic coarctation	
		complicating Takayasu's arteritisexperience with 33	Surgical procedures, no BP control
T. Taketani	2005	cases over 44 years	therapy. Exclude
		Management of renal hypertension in children with	
		Takayasu's arteritis using renal autografting or allograft	
		transplantation in selected circumstances and total	Surgical procedures, no BP control
P. G. Beale	1992	lymphoid irradiation	therapy. Exclude
J. M.			Surgical procedures, no BP control
-	1001		
Giordano	1991	Experience with surgical treatment of Takayasu's disease	therapy. Exclude
			Surgical procedures, no BP control
P. Lagneau	1987	Surgical treatment of Takayasu's disease	therapy. Exclude