
1

©RAPID7

Se
cu

ri
ty

 Im
pl

ic
at

io
ns

 f
ro

m
Im

pr
op

er
 D

e-
ac

qu
is

it
io

n
of

 M
ed

ic
al

In

fu
si

on
 P

um
ps

Research Report
Deral Heiland - Principal Security Researcher (IoT), Rapid7
Chris McGuire - Independent Security Researcher

This document focuses on the physical and technical examination of various
medical infusion pump devices purchased from secondary market sources.
During this research project we focused on the extraction and examination
of stored data within the infusion pump devices purchased on the secondary
market, with the goal of identifying and locating critical data such as Protected
Health Information (PHI)1 and network configuration information such as wireless
configuration passwords, that had not been properly purged from the devices
prior to de-acquisition. To accomplish this testing we used various methods
including Joint Test Action Group (JTAG)2 debugging methods, along with
physical communication interception methods, and destructive device methods
that involve the removal and reading of flash memory storage components.

During this project we identified that most of the medical infusion pumps that
were purchased from secondary market services such as eBay3 were found to
still contain wireless authentication data from the original medical organization
that had deployed the devices. The authentication data identified, such as Wi-Fi
Pre Shared Keys (PSK)4, were not validated; however, the identified service set
identifiers (SSIDs) were further researched using WIGLE5, an online database
of SSIDs throughout the world. The WIGLE resource revealed in every case
that the device’s SSIDs were still in use at the medical organizations within
the United States. This brings us to the conclusion that the Wi-Fi passwords
have a high probability of being valid. Through experience working with both IT
networking and IT security teams within organizations, including fortune 500
companies, we have found that in most cases when Wi-Fi enabled equipment
is upgraded, the previous Wi-Fi PSK are often reused, unless the underlying Wi-
Fi infrastructure is upgraded and core security authentication methodologies
are changed. Keeping the same Wi-Fi PSK is done to avoid the requirement of
changing the Wi-Fi PSK passwords on every device throughout the network,
including network infrastructure equipment and all other Wi-Fi equipment
that was not being upgraded, which would be time consuming and resource
expensive.

INTRODUCTION

1 https://www.hhs.gov/answers/hipaa/what-is-phi/index.html
2 https://en.wikipedia.org/wiki/JTAG
3 https://www.ebay.com/
4 https://en.wikipedia.org/wiki/Pre-shared_key
 5 https://www.wigle.net/

2

TECHNICAL EVALUATION
In the following sections we discuss in detail various
technical methods that can be used to extract data
from three different brands of infusion pumps that
are currently being sold on the secondary market.
Although these infusion pump models are no longer
being manufactured, they are believed to still be in use
by many medical organizations throughout the world.
The goal here is to show how simple the process can
be to extract data from these devices with less than a
few hundred dollars’ worth of equipment that can be
purchased online.

The equipment used during this exercise included the
following device types, with many inexpensive versions
also available online that could be used to perform the
same functions. This list also includes an estimated
price range for each of these devices :

•	Flash Memory chip programmer ($75-$150)

•	Logic analyzer ($25-$500)

•	JTAG programmer ($55-$500)

•	Hot air reflow or IR reflow oven ($65-$300)

•	Solder iron ($50-$125)

Alaris PC 8015

The first device examined during this study was the
Alaris 8015. This device is currently in use in many
medical organizations and can also be purchased on
the secondary market. During the examination of this
device we explored several methods that can be used
to extract data from the device’s memory storage.
These methods included: (1) removal and examination
of the internal Compact Flash card, (2) capture of serial
communication while using the product’s maintenance
software, and (3) the physical removal and extraction
of data from the flash memory chip on the main circuit

board of the device. These three methods are discussed
in the following sections and detail how data can be
recovered from this product if proper processes are not
carried out to flush this critical data prior to the product
being de-acquisitioned and sold on the secondary markets.

Alaris PC 8015 Non-destructive Analysis
of Internal CF Card

Examination of the Alaris device showed that the infusion
pump used a 64MB Compact Flash6 (CF) card for the
purpose of storing application and configuration data.
The CF card is accessible through the back of the unit by
removing a small cover plate and unplugging the card as
shown below.

6 https://en.wikipedia.org/wiki/CompactFlash

33

Once the CF card was removed from the infusion pump, we used a CF card
reader to mount the FAT16 file system and examine it for critical network
configuration data. After locating the network configuration file NET_CFG.
XLM, we were able to identify detailed information. This information included
hostname with domain information, AES keys for encryption, SSID, and the clear
text PSK Passphrase. Since this device was purchased on the secondary market,
data has been redacted to avoid exposing the previous medical organization’s
biomedical network Wi-Fi configuration data. An example of this data recovery
from the NET_CFG.XLM file is shown below:

Also it is important to note that the storage of the sensitive data on the CF
card was originally reported in CVE-2016-93557 and CVE-2016-93758. This
affects software versions 9.7 and 9.5 and prior, respectively. To resolve this
issue, Alaris recommends updating to the latest version of the software, which
removed the stored PSK data from the CF card and only stored this data on
the internal flash memory.

7 https://nvd.nist.gov/vuln/detail/CVE-2016-9355
8 https://nvd.nist.gov/vuln/detail/CVE-2016-8375

4

Alaris PC 8015 Non-destructive
Maintenance Port

Another non-destructive method for extracting
data is via the serial communication port on
the back of the device. The device has a RJ45
connection port on the back that supports serial
communication. By using the Alaris System
Maintenance Software9, it is possible to interact
with the infusion pump to conduct maintenance,
perform firmware updates, create device
configuration backups, and flush the device
settings and logs.

When the maintenance software is used for
performing backups of network and Wi-Fi
configuration, the software does prevent visual
access to critical data such as passwords and
keys. This software also forces some form of
encryption or encoding of the configuration
data before allowing this data to be saved to
the local hard drive. The easiest non-destructive
recovery method to gain access to the data is
to monitor the serial communication while the
software is requesting the configuration data
from the infusion pump. An example of this is
shown below, where we have placed a serial
breakout board and a logic analyzer to decode
the traffic between the infusion pump and the
laptop running the maintenance software.

9 https://www.medonegroup.com/pdf/manuals/techManuals/Alaris-System-Maint-Software-V9.5x-Tech-Manual.pdf
10 https://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
11 https://en.wikipedia.org/wiki/Protected_Extensible_Authentication_Protocol
12 https://en.wikipedia.org/wiki/MS-CHAP

While examining and decoding serial communication
between the secondary-market-purchased Alaris pump and
its maintenance software, we found that it was not storing a
Wi-Fi Protected Access10 (WPA) PSK, like many other infusion
pumps we had examined during this project, but that it had
been configured for Protected Extensible Authentication
Protocol11 (PEAP) authentication and revealed the clear text
MSCHAPv212 username and password used for Microsoft
Active Directory authentication.

5

Alaris PC 8015 Unit destructive Analysis

The final method examined for extracting critical data from this infusion pump was a destructive
method. The destructive method requires disassembly and removal of the flash memory chip found
on the infusion pump’s main circuit board. As mentioned before, the later versions of the infusion
pump software stopped storing Wi-Fi credentials data on the CF card and only stored that data
on the internal flash memory chip.

To gain access to the main circuit board where the flash memory chip is located, we first disassembled
the infusion pump as shown below.

Once the unit was disassembled, the flash memory chip of interest was found located near the
primary processor, an AXP270C5. The flash memory chip was identified as an Intel 128Mbit
PC28F128J3D75. Since the flash memory chip is a Ball Grid Array13 (BGA), an infrared reflow
system was used to heat the circuit board and melt the solder under the flash memory chip to
allow its removal for examination.

13 https://en.wikipedia.org/wiki/Ball_grid_array

6

Once the chip was removed we used an RT809H flash chip programmer to
extract the data from the flash memory chip. Once extracted, we examined the
content of the binary file using the Linux application hexedit. Using hexedit’s built-
in ASCII search capability, we searched the string data for keywords including
SSID and PSK. This method was successful in finding the Wi-Fi configuration
settings within the binary image. An example of this is shown below.

Alaris PC 8015 Unit Data Purge Processes

During general evaluation of various documentation found online, there
appeared to be no available documented data purge processes for device
decommissioning; however, all of these manuals were found to be outdated.
Upon meeting with the Alaris security team to discuss this topic, we were
informed that they did have documented processes within their product
manuals and published security service bulletins for the Alaris 8015 Infusion
pump products. Access to these manuals and service bulletins14 requires a
support contract with Becton, Dickinson and Company (BD)15. Although we
were not able to gain access to this documentation, we did identify through
other forms of testing that current maintenance tools do support purging of
data such as drug libraries, logs, and network configuration.

If there are any questions or concerns related to processes needed for properly
purging data from the Alaris infusion pump or access to needed documentation
such as operation manual, service manuals, and service bulletins for the
purpose of decommissioning of the products it is recommended that your
support teams reach out to BD for clarification and support.

14 https://www.bd.com/en-us/about-bd/cybersecurity/bulletin/alaris-system-residual-data
15 https://www.bd.com/en-us

7

Baxter Sigma Spectrum

The next device examined during this study focused
on the Baxter Sigma Spectrum model 35700BAX2 and
associated Wireless Battery Module (WBM) running
different software versions. Like the Alaris infusion
pump these devices are currently in use in many
medical organizations and can also be purchased on
the secondary market. During the examination of this
device we explored a number of methods that can be
used to extract data from the devices memory storage.
This infusion pump unit consisted of two independent
running systems, which included the infusion pump
and the WBM. This allowed for duplicate extraction
points of configuration data. In the following section

we examine these methods which included destructive examination, JTAG and serial communication between the
Infusion pump and the WBM.

Baxter Wireless Battery Module Destructive Analysis

During this study we acquired several Sigma Spectrum units for testing along with 6 WBMs purchased separately
from different sources on eBay over a period of 3 months. The WBM used for testing used firmware versions 16, 17,
and 20 D29. The battery module shown in this teardown example is running software version 16.

Our first step was to open the WBM to gain access to the internal circuitry to identify the flash memory storage on
the device.

Once disassembled, we determined that the 35162 battery module had a Digikey processor and was using an
STMicroelectronic M29DW323DB 32Mbit TFBGA48 Flash memory chip for data storage.

8

To examine the content of this flash memory device
we used an infrared reflow oven to heat the circuit
board and remove the flash memory chip. Once
removed we used an RT809H chip programmer
to extract the data from the flash chip. We then
examined the binary data by conducting a search
using the Linux command “strings” to locate SSID
information. This initial test returned no results.
So next we examined the binary using the Linux
application “hexedit”. During this examination we
noticed that ascii string data appeared garbled,
under further examination it was determined that
the device was storing the data using a big endian16
method where two-byte data pairs are swapped
making the ascii data difficult to read. An example of this is shown below.

To resolve this issue the following command was used on a Linux platform to swap the two-byte pairs to place it in
order that could be evaluated and decoded.

xxd -e -g2 in-file.bin | xxd -r > out-file.bin

After running the above command, the data byte order was corrected, and the ascii data was more easily scanned
and processed. A sample of the corrected data is shown below.

16 https://developer.mozilla.org/en-US/docs/Glossary/Endianness

Once corrected, we ran the search within the hexedit application searching for the Wi-Fi SSID that the device was
attempting to connect to, information we determined early on via Wi-Fi sniffer. We located the SSID at memory offset
of 0x3E01EC. Further examination of the binary data also revealed that the WPA passphrase had been converted to
a 64-character hex key (PSK) and had been stored at the memory offset of 0x3E0260. Converting of passphrases to
64-character key is a common process since all operating systems require that 64-character key for authentication

9

to a WPA enabled Wi-Fi access point and by storing it as a 64-character key it
will help speed up the authenticating process when it is needed. An example
of this is shown below.

Baxter Infusion Pump Unit Destructive Analysis

Now that we found the Wi-Fi credentials stored on the WBM the next test was
to evaluate the main Baxter infusion pump unit to see if that data is also being
stored there. To accomplish this we again conducted a destructive approach
by disassembling the infusion pump to identify flash memory chips used to
store device firmware and data.

The main circuit board located above on the right side was found to contain
the primary microcontroller unit (MCU), an NXP LH79520, along with a flash
memory chip, a Spansion S29JL064J 64Mbit TSOP48. Prior to removing the
flash memory chip, we found that all circuit boards inside the infusion pump had
been coated with a conformal17 coating to protect the circuits from moisture.
So, prior to desoldering the coating had to be scrapped away from solder joints
on the flash memory chip. Once this had been completed, we de-soldered the
48-pin flash memory chip and placed it in a RT809H chip programmer and
extracted the stored memory for offline analysis.

Unlike the data extracted from the flash memory chip on the WBM, this data
was not stored in an endian mode format that prevented it from easily being
read or processed. The SSID was found located near the memory offset of

17 https://en.wikipedia.org/wiki/Conformal_coating

10

0x06F0. Further examination of the binary data also revealed that the WPA passphrase, like the battery module, had
been converted to a 64-character hex key (PSK) and had been stored at the memory offset of 0x6120, as shown in
the following figure.

Baxter Wireless Battery Module Non-
destructive Analysis Via JTAG

Next we explored gaining access to the flash memory
using a non-destructive method. In this non-destructive
method we used JTAG to gain access to the flash
memory on the WBM, which was running software
version 17. The WBM did not have a header that was
easily accessible for connecting to JTAG. To locate
possible JTAG connections we were required to
closely examine the circuit board along with using
the development manual for the Digi NS9210 MCU to
identify needed pinout information. We were then able
to trace circuit board paths from the MCU which allowed
access to JTAG. An example of these connection
points are shown below:

To attach to these connection points we cleaned off the
masking and conformal coating and tin’d the connection
points with solder to facilitate the connecting of 30 gauge
wire wrap wire to them as shown below:

Once wired, we attached a Segger JLink JTAG debugger
device to the WBM and used the JLink Commander
application to extract the firmware and data stored within
the flash memory of the WBM. For this device we used
the JLink debugger device setting for a Digi NS9360.
Also noted that a generic ARM9 setting could have also
been used. After running savebin, like a previous issue,
we identified that the output ASCII data was unreadable
because of endian mode being used. To resolve this issue
before running the savebin command again we ran the BE
command to set the output as Big Endian to assure the
output data would be in a readable byte order.

11

Once firmware and data was extracted, a search of the data allowed us to find the
stored Wi-Fi WPA 64-character PSK . Similar to the destructive test method, this data
is found by searching for the known SSID and then examining data coming after
that. Also important to note that each firmware version will typically store this WPA
PSK data in a different memory offset. In this case firmware version 17is found at
offset 0x2D3F50 as shown below:

Baxter Infusion Pump Unit Non-destructive JTAG Access
Analysis

After examining the WBM, we focused on JTAG access on the main infusion pump.
To accomplish this we started by disassembling the infusion pump and examined
the main circuit board. On the main circuit board of the infusion pump we found it to
be using an ARM7 NXP LH79520 as the primary MCU. Examination of the LH7952018

datasheet for this MCU showed the pinout for JTAG access as:

18 https://www.keil.com/dd/docs/datashts/philips/lh79520_ds.pdf

PIN Number NAME

170 TMS

12

PIN Number NAME

171 TDO

172 TDI

173 TCLK

174 nTRST

176 TEST2 (Pull high to enable JTAG)

Like the WBM, the infusion pump did not have any defined headers for JTAG access,
so to connect up and interact with the JTAG of the MCU required direct connecting
to the circuit board and the MCU. This was done using 30 gauge wire-wrap wire
as shown below. Note the yellow and green wires were attached for universal
asynchronous receiver transmitter (UART)19 testing.

19 https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

13

Once JTAG pins were wired we attached a Segger JLink JTAG debugger device
to the infusion pump and used the JLink Commander application to extract
the firmware and data stored within the flash memory of the device. The JLink
command device settings for a NXP LH79520 MCU were used. Also a generic
ARM7 setting could be chosen. Prior to executing a connection with JLink the
device was powered off and pin 176 was pulled high prior to powering the device
backup. This was done to enable JTAG on the MCU as defined by the MCU’s
datasheet. Below is an example of the connect, halt, and savebin commands
used to extract and save the flash memory data to a binary file.

Once data was extracted, a search of the data allowed us to find the stored Wi-Fi
WPA 64-character PSK. A similar method was used during the WBM testing in
the previous section. By searching for the identified SSID, and then examining
data coming after that it is possible to find the WPA 64-character PSK. In this
case the key was found at offset 0x6120 as shown below:

14

Baxter Non-destructive Inter-
component Communication Analysis

During testing it was found that the infusion pump
unit transfers Wi-Fi configuration data to the WBM
during initial power up. This was discovered by
using a logic analyzer to monitor the contact points
between the units. Examples of these connections
are shown in figure below. It was determined that
the communication between the main infusion
pump and WBM was using UART.

To capture the UART communication between the
devices we created a simple shim using a flexible20

development breakout board. This was done so
the battery module could be properly installed for
normal operations, but still allow us the ability to
tap into and capture that communication in real
time. An example of the shim and how it was placed
between units is shown in the following figures.

Using standard default UART settings along with a
commonly used baud rate of 57600 we were able to
capture the Wi-Fi configuration data being passed
to the WBM during unit power up and initialization.
This captured data is shown in the following figure
containing SSID and the 64 hex character PSK :

This was successfully tested against B/G PN 35162 and
A/B/G/N PN 35195 Wireless Battery Modules.

Baxter Sigma Spectrum Data Purge Process

Baxter documentation such as Spectrum Operator’s Manual
and Service Manual cover operational steps that can be used
for resetting wireless configurations, removal of logs, and drug
library from the device. A more comprehensive process for
decommissioning of the Sigma Spectrum infusion pump and
the WBM is currently addressed in the Product Security Bulletin21
published on September 8, 2022. Their recommendations
cover wiping data from both the infusion pump unit as well
as the WBM. The process for the infusion pump unit was to
remove the network settings and drug library through the
standard menus on the device. The battery module was
slightly more complex in that the pump needs to have the
network configuration reset and networking enabled to start
the process. Then the battery module must be inserted into
the pump and the user must wait for the network settings
to transfer to the battery module, which is designated by the
network icon turning a yellow color. After this step, the WBM
will have the previous network configuration wiped off of the
memory. These processes have been tested and validated
as a viable method to remove the network configuration and
other data from the device in preparation for decommissioning.
Also, Baxter will be adding this decommissioning process to
their product documentation in future releases.

If there are any questions or concerns related to the processes
described within Baxter’s Security Bulletin for decommissioning
the Baxter infusion pump products or Sigma Spectrum manuals
are needed it is recommended that your support teams reach
out to Baxter for clarification and support.

20 https://www.adafruit.com/product/1518?gclid=Cj0KCQiAic6eBhCoARIsANlox84bQ9-BoQmvZFfl1zelKiOG2SjH3mSNO_Qt8Eqp-R9DIyDBHGROXBUaAp7zEALw_wcB
21 https://www.baxter.com/sites/g/files/ebysai3896/files/2022-09/ICSMA-22-251-01_0.pdf
22 https://www.baxter.com/contact-us

15

Hospira Abbott PLUM A+ - MedNet

The last device examined during this study focused on the
Hospira Abbott PLUM A+ with MedNet running software
version 13.40. Like the other devices this infusion pump,
although no longer manufactured, is still currently in use
in many medical organizations and can also be purchased
on the secondary markets. The Hospira devices, being
examined in this writeup, were purchased off of eBay for
the purpose of data examination using various methods.
The methods covered in this section include JTAG, RS232,
and destructive extraction of the flash memory chips.

Hospira Infusion Pump Unit Destructive
Analysis

In the initial testing the first device was disassembled to
identify flash memory, MCUs, and connection headers.
Analysis showed that the main board for the MedNet
communication board could be extracted by removing
two screws and unplugging it. This board was found to
contain two flash memory chips.

The first flash memory chip identified was a TSOP48 package
type. After removing the sticker from its surface we identified

the flash memory chip as an AMD AM29LV320DT-90EC
32 Megabit flash memory.

To examine the content of this flash memory device
we used ChipQuick23 a low temperature desoldering
metal to remove the TSOP48 device. Once removed
we used an RT809H chip programmer to extract the
data from the flash chip. Next we used Linux command
strings to examine the binary file and found this to
contain what appeared to be infusion pump drug library
data and user interface and pump operational control
code. No configuration data was identified on the flash
memory chip.

The second flash memory chip examined was a FBGA64
package device. Once the sticker was removed this
chip we identified it as a Spanion S29GL128M10FAIR2
flash memory chip.

Examination of the content of this flash memory device
we used an infrared reflow oven to heat the circuit board
and remove the FBGA64 chip. Once removed we again
used an RT809H chip programmer to extract the binary
data from the flash chip. After extracting we used the

23 https://www.chipquik.com/store/index.php?cPath=200

16

application binwalk24 to initially examine the binary and discovered it contained
CramFS and JFFS2 file system structure for LxNETES, an embedded Linux OS.

Using binwalk we extracted most of the structured file systems and were able to
examine the configuration file wpa_supplicant.conf and extract the stored SSID and
WPA PSK as shown below. Again like other examples we have blanked out the data
to avoid exposing the original medical organizations credentials that were found
on this device.

Hospira Infusion Pump Unit JTAG Non-destructive Analysis

To gain access to the flash memory using a non-destructive method for JTAG
access, on a second Hospira infusion pump, we opened the device and identified
the MCU as a Digi NS7520 which has a ARM7TDMI core and also 14 pin header
pads on the circuit board believed to be for JTAG. To validate the JTAG connections
we examined a non-functional damaged device by removing the primary MCU to
gain access to the BGA. Using this along with the Digi NS7520 hardware reference
manual25 and a multimeter, we traced the circuit board paths from the MCU to the
14 pin header to validate it as a JTAG header and identify the pinout connections.
Once these header pads were confirmed we soldered a 2.54mm gull wing header
to the circuit boards as shown below.

24 https://github.com/ReFirmLabs/binwalk
25 https://www.digi.com/resources/documentation/digidocs/PDFs/90000353.pdf

17

The identification of the JTAG header pinout could have also been accomplished
by using a tool such as a jtagulator26 or similar device used for enumerating
JTAG pins.

Once the JTAG pinout was properly identified we then attached a Segger JLink
JTAG debugger device to the infusion pump and used the JLink Commander
application to connect to and interact with the MCU. Using the NS7520 datasheet
as a resource we identified the offset to the flash memory chip to be at hex
address 0x10000000. The size of the flash memory chip, S29GL128M10FAIR2,
was 16777216 bytes. Using the JLink commander application we attempted to
read the memory with the savebin command. As shown below, the JLink failed
to read memory because of memory access timeout during the read process.

Upon further testing and evaluation it was discovered that following process
steps were effective in extracting all of the flash memory. The first step is to
wait until the infusion pump is fully booted before initiating the connection
command from the JLink Commander. Next we set the JLink connection
device type to ARM7, target interface to JTAG, device position to auto-detect,
and speed to 5000. The higher speed allows reading over 256k of memory
before the memory access timeout would occur.

26 http://www.grandideastudio.com/jtagulator/

18

Then by reading the data out of the flash in 256k blocks we can avoid the
memory access timeout issue and the process reset and reboot that was
triggered when the flash memory read timeout occurred. By reading the data
in 256k blocks we were required to run 64 separate read operations to pull all
of the flash chips memory. The process can be done by using the following
savebin command

After each read operation the memory offset was incremented by 0x40000
along with changing the file name that the data was written out to. The following
image shows an example of this process:

savebin d1.bin, 0x10000000, 0x40000

19

 After all 64 of 256k blocks had been read, we then
concatenated them together in proper order into a
single file. Once that was completed the binary file
was processed using binwalk as described above in
the Hospira Infusion Pump Unit Destructive Analysis.

Once binwalk completed extracting most of the file
system structure was recovered and we were able
to examine the configuration file wpa_supplicant.
conf and extract the stored SSID and WPA PSK as
shown below.

Hospira Infusion Pump Unit RS232
Non-destructive Analysis

Further examination of the Hospira identified an
RS232 transceiver chip Sipex SP3222E, shown below
on the Back Side image of the MedNet circuit board.
This chip was found to be connected to the 2.54mm
10 pin header shown on the Front Side image.

Using a logic analyzer on the 10 pin header we were

able to determine which pins were active on the RS232 header
and also identified that it exposed a console connection to the
primary NS7520 MCU. The image below shows the correct
pins for the active RS232 RXT, TXT and GND for console
interaction.

Using a Waveshare27 USB to RS232/485/TTL device and
serial communication application with the following settings:

•	Baud rate: 38400

•	Data Bits: 8

•	Parity: None

•	Stop Bit: 1

We were able to connect and interact via the RS232 serial
Once connected it was determined that we had root level

27 https://www.waveshare.com/usb-to-rs232-485-ttl.htm

20

access. This allowed us to identify and open the file /ram/mnt/jffs2/config/
wpa_supplicant.conf and extract the stored SSID and WPA PSK as shown in
the image below.

Hospira Infusion Pump Data Purge Process

A little history on the Hospira infusion pump product line. This product has
changed hands several times over the years. First it was acquired by Pfizer28

in 2015 and then was sold to ICU Medical Inc.29 in 2017.

During general evaluation of various documentation found online for the
Hospira Plum A+ MedNet unit no single procedure could be located that
detailed the needed steps for removing all critical data such as PHI, and
Wi-Fi configuration data in preparation of decommissioning and transfer of
an infusion pump. Although, support documentation did reference a factory
reset which would reset the ethernet IP address back to 192.168.0.100. This
process was found located in section 6.4.2 in the manual Hospira MedNet
Technical Service Manual30. Also, the document “Hospira MedNet Wireless
connectivity Engine Configuration Guide”31 which we located on the fccid.io
website detailed information for configuration of the Wireless MedNet unit, it
is assumed this access could also provide a means to reset and or remove
the Wi-Fi configuration data.

If there are any questions or concerns related to the proper methods used to
perform a factory reset and purging all critical data from the Hospira infusion
pump products it is highly recommended that your support teams reach out
to ICU Medical Inc. for clarification.

During general evaluation of various documentation found online
for the Hospira Plum A+ MedNet unit no single procedure could
be located that detailed the needed steps for removing all critical
data such as PHI, and Wi-Fi configuration data in preparation
of decommissioning and transfer of an infusion pump.

28 https://www.pfizer.com/news/press-release/press-release-detail/pfizer-completes-acquisition-hospira
29 https://www.icumed.com/about-us/news-events/news/2017/icu-medical-completes-the-acquisition-of-hospira-infusion-systems-from-pfizer
30 https://www.medonegroup.com/pdf/manuals/techManuals/Plum-A-Plus-3-with-Hospira-MedNet.pdf
31 https://fccid.io/STJ80411396001/User-Manual/User-Manual-769980.pdf

21

Through various testing methods described within this document a total of 13 infusion
pump devices were examined. During this examination, eight of the devices were
found to contain Wi-Fi PSK access credentials and one of the devices was found to
contain PEAP authentication data for Windows Active Directory.

The discovery of this data on de-acquisitioned medical devices being sold on the
secondary market points out a serious systemic issue. To effectively resolve this
issue, organizations that leverage medical technologies should build out policies
and processes to properly handle the acquisition and de-acquisition of medical
technology. The policies should define ownership and governance of the processes
within the organization and what is expected to maintain solid security and protection
of the data that is stored on these devices, which may include critical infrastructure
configuration data and PHI related data.

To support security requirements, processes need to be defined — especially
processes around de-acquisition of medical devices. These processes should detail
steps on how the data is purged from the device and how that is confirmed prior to
sending the devices out for resale or redistribution to other organizations outside
the control of the initial owner. For medical devices that are leased and are not
owned by the medical organization, some form of contractual arrangement needs
to be made during the acquisition phase that includes processes and expectations
for purging the data from the devices prior to resale or redistribution. By developing
and following defined policies and processes that support the purging of critical
data from the devices prior to de-acquisition, issues like what we documented in
this research paper can be completely avoided.

For further guidance on properly securing infusion pumps, the National Institute
of Standards and Technology (NIST) has released a series of special publications
NIST.SP.1800-832 that can be used to build out the needed security controls for the
purpose of managing and maintaining a secure infusion pump environment.

CONCLUSION

22

PRODUCTS
Cloud Security
XDR & SIEM
Threat Intelligence
Vulnerability Risk Management

Application Security
Orchestration & Automation
Managed Services

To learn more or start a free trial, visit: https://www.rapid7.com/try/insight/

CUSTOMER SUPPORT

Call +1.866.380.8113

The information provided in this report is intended for informational purposes only and Rapid7 makes no warranties,

express or implied, regarding the suitability of the content for any specific purpose. The content within this report is based

on data and findings available up to the date of its publication, which is mentioned within the document.

The information contained herein is provided “as is,” and readers are advised to use their own discretion when applying

the information to their specific situations. Furthermore, any third-party sources, tools, or software mentioned in this

report are included for informational purposes only. Rapid7 does not take responsibility for the accuracy, functionality,

or security of these external resources.

Rapid7 is not liable for any damages, losses, or consequences that may arise from the use of the information provided

within. This includes but is not limited to direct, indirect, incidental, or consequential damages related to actions taken

based on the content of this report.

Any reproduction, distribution, or unauthorized use of this report’s contents without explicit permission from the authors

and publishers is strictly prohibited.

23

