
Migration guide.md 3/25/2021

1 / 5

Cisco Webex iOS SDK Transition Guide

The Cisco Webex™ iOS SDK Version 3.0.0.2-beta

The Cisco Webex iOS SDK Version 3.0.0.2-beta is a major rewrite of the version 2.x. It introduces a

completely new architecture based on the same technology that powers the native Webex apps. This

includes a lot of enhancements with the performance of the SDK most notably with the introduction of a

local datawarehouse to cache all the spaces, messages, people, calls and much more. It also introduces a

revolutionary new Catch up API that avoids redundant fetching of information from servers. Future updates

and feature parity with the native clients will also be quicker than what it is at present. The v3 SDK is built in

Swift 5 and requires iOS 11 or later. If you have developed an app with Cisco Webex SDK version 2.X, this

guide will help you in transitioning from Webex SDK version 2 to version 3.

Table of Contents

Install

Note

Examples of transition

In Progress APIs

Install

Assuming you already have an iOS project, e.g. KitchenSinkApp, for your iOS app, here are the steps to

integrate the Cisco Webex iOS SDK into your project:

�. Drag and drop the webexsdk.framework, util_ios.framework, wbxaecodec.framework,
wbxaudioengine.framework file into your app project

�. Set these frameworks as Embed & Sign in your app target

�. set ENABLE_BITCODE=No

Migration guide.md 3/25/2021

2 / 5

�. Modify the Signing & Capabilities section in your xcode project as follows

Note

�. From 3.0.0.2-beta onwards, we have a new entry point for the SDK. i.e:

webex.initialize(:completionHandler). This needs to be invoked before any other API(even

before Auth). This method internally bootstraps the SDK and all it's components.

�. We have transitioned from using a Response class wrapped around a Result object to just using a

Result class in our completion handlers

Previous syntax:

webex.phone.dial("coworker@acm.com", option: MediaOption.audioVideo(local:
..., remote: ...)) { response in
 switch response.result {
 case .success(let call):
 call.onConnected = {
 // ...
 }
 call.onDisconnected = { reason in
 // ...
 }
 case .failure(let error):
 // failure
 }
 }

New syntax:

Migration guide.md 3/25/2021

3 / 5

webex.phone.dial("coworker@acm.com", option: MediaOption.audioVideo(local:
..., remote: ...)) { result in
 switch result {
 case .success(let call):
 call.onConnected = {
 // ...
 }
 call.onDisconnected = { reason in
 // ...
 }
 case .failure(let error):
 // failure
 }
 }

Authentication

�. Instantiating OAuthAuthenticator. We were using client scope as a constructor argument which is
now removed because scope is added internally.

Previous syntax for OAuth:

 let clientId = "$YOUR_CLIENT_ID"
 let clientSecret = "$YOUR_CLIENT_SECRET"
 let scope = "spark:all"
 let redirectUri = "https://webexdemoapp.com"

 let authenticator = OAuthAuthenticator(clientId: clientId,
clientSecret: clientSecret, scope: scope, redirectUri: redirectUri)
 let webex = Webex(authenticator: authenticator)

 if !authenticator.authorized {
 authenticator.authorize(parentViewController: self) { success in
 if !success {
 print("User not authorized")
 }
 }
 }

New Syntax for OAuth

 let clientId = "$YOUR_CLIENT_ID"
 let clientSecret = "$YOUR_CLIENT_SECRET"
 let redirectUri = "https://webexdemoapp.com/redirect"

 let authenticator = OAuthAuthenticator(clientId: clientId,
clientSecret: clientSecret, redirectUri: redirectUri, emailId: "")
 let webex = Webex(authenticator: authenticator)

Migration guide.md 3/25/2021

4 / 5

 webex.initialize { isLoggedIn in
 if isLoggedIn {
 print("User is authorized")
 } else {
 authenticator.authorize(parentViewController: self) {
success in
 if success {
 print("Login successful")
 } else {
 print("Login failed")
 }
 }
 }
 }

�. If you're Guest ID authentication (JWT-based) using JWTAuthenticator authorization. In this version,

we have added completion handler which gets invoked when authorization process is done.

Previous syntax

 let authenticator = JWTAuthenticator()
 let webex = Webex(authenticator: authenticator)

 if !authenticator.authorized {
 authenticator.authorizedWith(jwt: myJwt)
 }

New syntax

 let authenticator = JWTAuthenticator()
 let webex = Webex(authenticator: authenticator)

 webex.initialize { [weak self] isLoggedIn in
 guard let self = self else { return }
 if isLoggedIn {
 print("User is authorized")
 } else {
 authenticator.authorizedWith(jwt: myJwt) { success in
 if success {
 print("Login successful")
 } else {
 print("Login failed")
 return
 }
 })
 }
 }

https://jwt.io/

Migration guide.md 3/25/2021

5 / 5

Examples of transition

Here are some examples to transition from Webex SDK v2 to Webex SDK v3:

�. Phone.register() API is no more required because this happens at the time of login internally. You

have to comment/remove this.

�. Phone.deregister() API is no more required. You have to comment/remove this.

�. JWTAuthenticator.isAuthorized() is a work in progress

In Progress APIs

Below APIs are a work in progress which will be available in subsequent releases

�. letIn APIs.

�. AuxStream APIs.

�. MediaOption Moderator APIs

�. MediaOption Pin APIs

�. Authenticator refreshToken API

�. Multistream API

�. Read receipt API

�. MediaOption.layout

�. oniOSBroadcastingChanged() API

