
SingleStore-V: An Integrated Vector Database System in
SingleStore

Cheng Chen
SingleStore

cchen@singlestore.com

Chenzhe Jin
Purdue University
jin467@purdue.edu

Yunan Zhang
Purdue University

zhan4404@purdue.edu

Sasha Podolsky
SingleStore

sasha@singlestore.com

Chun Wu
SingleStore

chunwu@singlestore.com

Szu-Po Wang
SingleStore

szupo@singlestore.com

Eric Hanson
SingleStore

hanson@singlestore.com

Zhou Sun
SingleStore

zhou@singlestore.com

Robert Walzer
SingleStore

rob@singlestore.com

Jianguo Wang
Purdue University

csjgwang@purdue.edu

ABSTRACT
Vector databases have recently gained significant attention due
to the emergence of large language models that produce vector
embeddings for text. Existing vector databases can be broadly cat-
egorized into two types: specialized and generalized. Specialized
vector databases are explicitly designed and optimized formanaging
vector data, while generalized ones support vector data manage-
ment within a general purpose database. While specialized vector
databases are interesting, there is a substantial customer base in-
terested in generalized vector databases for various reasons, e.g., a
reluctance to move data out of relational databases to reduce data
silos and costs, the desire to use SQL, and the need for more sophis-
ticated query processing of vector and non-vector data. However,
generalized vector databases face twomain challenges: performance
and interoperability of vector search with SQL, such as combining
vector search with filters, joins, or even fulltext search.

In this paper, we present SingleStore-V, a full-fledged generalized
vector database integrated into SingleStore, a modern distributed
relational database optimized for both OLAP and OLTP workloads.
SingleStore-V achieves high performance and interoperability via
a suite of optimizations. Experiments on standard vector bench-
marks show that SingleStore-V performs comparably to Milvus,
a highly-optimized specialized vector database, and significantly
outperforms pgvector, a popular generalized vector database in
PostgreSQL. We believe this paper will shed light on integrating
vector search into relational databases in general, as many design
concepts and optimizations apply to other databases.

PVLDB Reference Format:
Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, Chun Wu,
Szu-Po Wang, Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo Wang.
SingleStore-V: An Integrated Vector Database System in SingleStore.
PVLDB, 17(12): 3772 - 3785, 2024.
doi:10.14778/3685800.3685805

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685805

1 INTRODUCTION
Vector databases are becoming increasingly important due to the ris-
ing demand for efficient processing of vector-similarity queries [15,
16, 41, 49, 50, 53]. This increased demand was triggered by the in-
troduction of a new wave of generative AI systems led by OpenAI’s
ChatGPT, and the ability of their large language models (LLMs) to
produce vector embeddings that accurately represent the meaning
of text. Other deep neural network models are available for trans-
forming different types of complex objects such as images of faces
and objects into vector embeddings.

Vector databases are designed and optimized for processing and
storing these kinds of high-dimensional vectors. This makes them
suitable for supporting various applications, including semantic
search, retrieval augmentation generation (RAG) [34, 54], recom-
mendation systems [14, 18, 32], face recognition and image search.

Currently, there are two main categories of vector databases:
specialized and generalized vector databases. Specialized vector
databases are designed from scratch to explicitly manage vector
data. Examples include Milvus [50] and Pinecone [16]. Generalized
vector databases, on the other hand, are designed to manage vector
data inside an existing database (typically a relational database), fol-
lowing a one-size-fits-all [29] design philosophy. Examples include
pgvector [15] and AnalyticDB-V [52].

SingleStore-V is categorized as a generalized vector database. It
supports vector search in SingleStore, a modern high performance
distributed relational database. We believe that vectors and vector
search are a data type and query processing approach, and they do
not require a fundamentally different way of processing data.

Using a specialized vector database combined with other data
management tools can lead to many problems: redundant data, ex-
cessive data movement, extra labor expense for specialized skills,
extra licensing costs, limited query language power, programma-
bility and extensibility, and poor data integrity and availability
compared with a true DBMS. Therefore, instead of using a special-
ized vector database, we believe that application developers using
vector similarity search will be better served by building their ap-
plications on a modern relational database (like SingleStore [43])
that meets all their database requirements.

However, there are twomain challenges in building a generalized
vector database: high performance and high interoperability.

https://doi.org/10.14778/3685800.3685805
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685805


Table 1: Comparing SingleStore-V with Other Vector Databases

Vector Databases General-
purpose Transactions Full SQL

Support Distributed Filtered Vector
Search

Vector Range
Search

Vector Range
Join

Vector with
Fulltext Search

Auto
Index Index Algorithms

PASE [53] ! ! ! % ! % % % % IVF_FLAT, HNSW
pgvector [15] ! ! ! % ! ! % % % IVF_FLAT, HNSW

ElasticSearch [4] ! % % ! ! % % ! % HNSW
AnalyticDB-V [52] ! ! ! ! ! ! % ! % VGPQ
ClickHouse [2] ! ! ! ! ! ! % % % Annoy, HNSW
Rockset [10] ! % ! ! ! % % % % IVF
MongoDB [13] ! ! % ! ! ! % ! % HNSW
Vespa [21] % % % ! ! % % ! % HNSW
Milvus [50] % % % ! ! ! % % ! Pluggable (IVF, HNSW)
Qdrant [17] % % % ! ! ! % ! % HNSW
Weaviate [22] % % % ! ! ! % % % HNSW
Pinecone [16] % % % ! ! % % % % Not disclosed
SingleStore-V ! ! ! ! ! ! ! ! ! Pluggable (IVF, HNSW)

Challenge #1: High Performance. An often-cited criticism of
generalized vector databases is their low performance (compared
to specialized vector databases), because they are not natively de-
signed to support vector data. For example, a recent paper [56]
shows that there is a significant performance gap (which can exceed
10X) between certain specialized and generalized vector databases.

Challenge #2: High Interoperability. If vector search becomes
an important operator in relational databases, it must be seamlessly
compatible with other SQL operators such as filters and joins, as a
single SQL query may involve both vector and non-vector data.

The importance of interoperability is two-fold. First, the intro-
duction of vector search into relational databases should not disrupt
existing SQL semantics. For instance, when a user incorporates vec-
tor search into a standard SQL query alongside filters, it is expected
that the results will only include vectors meeting the filter criteria.
Second, and importantly, many real-world applications, such as
e-commerce and recommendations, demand more than just vector
data. They often additionally require filtering based on specific at-
tributes (e.g., price) or joining with other data tables. This is exactly
what relational databases excel at. By integrating vector search
into relational databases, one can naturally support hybrid query
processing in a single SQL query that includes both vector and
non-vector data. This integration provides advanced vector data
analytics that are crucial for real-world applications.

Motivation. We are motivated to build SingleStore-V by the tech-
nology opportunity, competitive challenge, and known customer
needs. One interesting customer builds a job search service that
existed before the GenAI boom. They now have augmented it with
vector-based search on embeddings for job titles and descriptions,
using both ANN and exact KNN search. They have dozens of dis-
tinct queries that use vector search. Some are simple top-k searches
either with no filters or with simple equality or inequality filters on
additional columns. Other queries (with and without vector search)
have joins, UNIONs, subqueries, aggregates, full-text search and
spatial search. This application requires vector search, but there
is no way it could be built comfortably entirely on a specialized
vector database because it needs too many query language features.
Also, it needs transactions. It is a harbinger of the modern app –
utilizing a hybrid of traditional SQL with AI-based vector search.

Although there are a few relational databases that already sup-
port vector search, e.g., pgvector [15] (based on PostgreSQL),

PASE [53] (based on PostgreSQL), and AnalyticDB-V [52] (based on
AnalyticDB), they have not addressed the performance and interop-
erability challenges effectively. For example, the performance of the
above three databases is significantly worse than that of specialized
vector databases like Milvus, as shown in [56]. Furthermore, they
do not integrate vector search well with the existing SQL ecosys-
tem. For instance, they do not support vector search with range
filters, joins, or fulltext search. Note that although Oracle and Azure
SQL have announced their support for vector search [23, 25], few
technical details have been disclosed. Table 1 shows a comparison
of SingleStore-V with other vector databases.

Overviewof SingleStore-V. In this paper, we introduce SingleStore-
V, a generalized vector database integrated into SingleStore, a mod-
ern distributed relational database. It addresses the performance
and interoperability challenges via a suite of optimizations.

To achieve high performance, SingleStore-V introduces a new
physical operator called Top() that pushes down the top-k vector
search to table scan in the SQL execution. It also employs a design
of “per-segment and cross-segment vector indexes” to achieve high
scalability in both parallel and distributed environments. It supports
pluggable vector indexes to embrace the best implementations of
vector indexes in the community. It also provides auto indexing
to choose an appropriate index and parameters based on users’
requirements to achieve high performance.

To achieve high interoperability, SingleStore-V seamlessly inte-
grates vector search with existing SQL queries by efficiently sup-
porting hybrid queries that involve both vector and non-vector data,
including combining vector search with predicate filters, range fil-
ters, joins, and fulltext search.

Experimental Overview. Experiments on VectorDBBench [20]
show that SingleStore-V achieves comparable performance to Mil-
vus, a leading specialized vector database, for both quantization-
based and graph-based indexes. Moreover, SingleStore-V signifi-
cantly outperforms pgvector, a popular generalized vector database
implemented in PostgreSQL.

Contributions. The overall contribution is the design and imple-
mentation of SingleStore-V, a full-fledged generalized vector data-
base system implemented within SingleStore, a modern distributed
relational database. SingleStore-V achieves high performance com-
parable to that of a highly optimized specialized vector database
and supports high interoperability with the existing SQL ecosystem,



efficiently querying both vector and non-vector data together to
provide real-time response with transactional consistency.

This paper discusses the key architectural decisions that enables
SingleStore-V to achieve state-of-the-art vector search capabilities
within a relational database. Considering that generalized vector
databases support hybrid queries involving both vector and non-
vector data far more effectively than specialized vector databases
through powerful SQL queries, we believe that generalized vector
databases serve the needs of user applications better than special-
ized systems. We hope that the insights from this paper would serve
as the basis to the design of other relational database systems that
incorporate vector functionalities.

2 BACKGROUND AND RELATEDWORK
2.1 SingleStore
2.1.1 SingleStore Overview

SingleStore [43] is a horizontally-partitioned, distributed shared-
nothing database system that optimizes performance for both oper-
ational and analytical workloads. It separates storage and compute
by utilizing cloud storage as a shared disk, which provides bene-
fits such as allowing data storage to exceed local disk space and
fast provisioning of new compute resources. At the same time, it
also utilizes local memory and disk storage to enable low-latency
read and write operations. SingleStore’s columnstore [44] supports
high-speed data ingestion, massive scalability, and the ability to
perform complex analytical queries directly on encoded data using
SIMD instructions [40].

2.1.2 Distributed Cluster Architecture
A cluster of SingleStore consists of two types of nodes: aggrega-

tors and leaves. The aggregator nodes are used to interface with
clients and coordinate distributed operations. They accept user
queries, build an optimized query plan, and split the plan into sub-
queries suitable for distributed execution, passing these sub-queries
down to leaf nodes. The leaf nodes hold partitions of data in a ta-
ble (distributed according to a shard key) and perform most of the
computations.

Write operations in SingleStore are executed in ACID transac-
tions, committed atomically across database partitions. Changes
in a transaction become visible as soon as the transaction is com-
mitted. Within each database partition, write operations persist
to a log file on the local disk before committing. Replaying these
log files recovers the state of the database. Log files and data blobs
are asynchronously uploaded to cloud storage to support the sep-
aration of compute and storage, without incurring the latency of
cloud storage as part of the write transaction. Durability is ensured
within the cluster by replicating database partitions across multiple
leaf nodes. Since a transaction is considered as committed only
after it has been replicated, the loss of a single node will not cause
data loss. In the event of a node becoming unavailable, a replica
can be quickly promoted as the master copy of a database partition
to ensure high availability.

2.1.3 LSM-based Table Storage
SingleStore utilizes unified table storage, which internally com-

bines an in-memory rowstore based on a lock-free skip list and a
disk-based columnstore LSM tree. This supports both transactional

and analytical workloads without duplicating data into different
layouts. The columnstore LSM tree storage consists of a collection
of immutable segments each storing a disjoint subset of rows, in the
form of data blobs compressed separately for each column. Writing
data in large immutable data blobs works well with hierarchical
storage, and per-column compression allows for efficient scans in
OLAP queries using SIMD instructions. At the same time, seekable
compression encodings are used to allow fast reads at a specific row
offset, which is a common operation in OLTP and search workloads.
Users can optionally specify the sort order of rows within the LSM
tree. Each segment stores the min and max value of each column in
its metadata to allow skipping segments based on filter conditions.

The in-memory rowstore portion of the table persists recently
modified rows from small write transactions (large write operations
create columnstore segments directly). A background flusher pro-
cess periodically converts those rows into columnstore segments.
Deletions from the columnstore segments are represented in seg-
ment metadata by marking rows as deleted in a bit vector, without
rewriting compressed data blobs. This representation avoids the
cost of storing logical delete or row overwrite records in the LSM
tree, as well as the cost of performing merge-based reconciliation
to apply those records during a scan. A background merger process
periodically merges segments to maintain the sort order in the LSM
tree and to combine segments that are either too small or have too
many deleted rows.

All foreground and background operations on unified storage
tables use MVCC to support transaction rollback and consistent
reads. Each table read sees a consistent snapshot of on-disk column-
store and in-memory rowstore data, so that internal data movement
between the two is invisible to the user. Update and delete opera-
tions lock only modified rows, rather than entire segments, so that
concurrent write transactions do not block each other unless they
modify the same row.

2.1.4 Query Execution
SingleStore employs cost-based query optimization [26] and full-

query code generation using LLVM [35] to generate the query plan.
When executing a query plan, a table scan operation has three main
stages. First, we compute a list of relevant segments, skipping ones
which can be eliminated by using min/max segment metadata or
global secondary index structures. Second, we execute filters to
find the offsets of the rows to output. Third, we decode the relevant
columns selectively at those offsets. We also scan the rowstore
at the same snapshot version. Both cases produce an in-memory
column-oriented batch of data suitable for later operations like
joins and group-bys.

2.2 Vector Similarity Search
Vector similarity search (a.k.a high-dimensional nearest neighbor
search) has been explored comprehensively in the past [7, 31, 33,
36, 47] because of its fundamental importance in many real-world
applications. Given a query vector 𝑞 ∈ R𝑑 with d dimensions and
a vector set S, the problem is to find the top-k vectors from S that
are closest to q based on a similarity (or distance) function, e.g.,
Euclidean distance or cosine distance. As d and n are usually large,
e.g., d can be 10s to 1000s of dimensions and n can be millions to



even billions of vectors, vector similarity search is computationally
expensive.

Therefore, high-dimensional indexes are required for supporting
efficient vector search. In the literature, there are mainly four types
of high-dimensional indexes: quantization-based (e.g., IVF_FLAT [7,
33], IVF_PQ [33], IVF_PQFS [8], IVF_SQ8 [7], SPANN [27]), graph-
based (e.g., HNSW [39], NSG [30], Rand-NSG [47], DiskANN [47]),
LSH-based [31, 38, 57], and tree-based [37] indexes. Existing vec-
tor databases mostly use quantization-based indexes (for space
efficiency) and graph-based indexes (for high performance and
accuracy) [15, 46, 50, 53].

2.3 Vector Databases
Vector databases are designed to efficiently store and search high-
dimensional indexes and address system-related challenges, see
[41, 42] for recent surveys. Broadly speaking, vector databases
are categorized into specialized and generalized vector databases,
depending onwhether they support vector searchwithin an existing
database (mostly relational databases).

There are a couple of specialized vector databases developed in
the past, e.g., Faiss [5], Milvus [50], and Pinecone [16], following
the design principle of one-size-not-fits-all [45]. As those systems
are specialized for vector data, they have full control to implement
high-dimensional indexes in the most efficient way to speed up
vector similarity search. Among them, Milvus is a leading spe-
cialized vector databases. It is an in-memory system developed
based on Faiss [5]. It leverages the internal functions of Faiss while
supporting CPU-GPU heterogeneous hardware and distributed en-
vironments. Milvus inherits the indexes implemented in Faiss and
introduces additional indexes optimized for GPUs.

Typical generalized vector databases include pgvector [15],
PASE [53], AnalyticDB-V [52].1 As mentioned in Sec. 1, those sys-
tems did not fully address the performance and compatibility chal-
lenges. There are other vector databases that are implemented in-
side ElasticSearch and MongoDB, but SingleStore-V is implemented
within SingleStore, a relational database.

Also, a prior work relevant to this paper is [56], which analyzes
the root causes of the performance gap between specialized and
generalized vector databases. However, that work is an experimen-
tal study without implementing a generalized vector database. In
contrast, this paper builds a full-fledged generalized vector database
inside SingleStore by following the lessons learned from [56].

2.4 Comparison with Other Vector Databases
The vector index structure in SingleStore-V is similar to Milvus,
but it is integrated seamlessly into SingleStore’s LSM-based stor-
age engine as a secondary index, rather than building a dedicated
LSM-based index as in Milvus. It also differs from those in other
generalized vector databases such as pgvector [15] and PASE [53]
because the latter are based on PostgreSQL, which relies on a Btree-
based storage engine with no distributed index support. In con-
trast, SingleStore-V is distributed, and it utilizes LSM-based stor-
age to construct vector index on immutable data segments for
improved performance. Moreover, SingleStore-V supports vector

1Note that we do not discuss Oracle [23] and Azure SQL [25] because the technical
details of their support for vector search are not publicly available.

Figure 1: SingleStore-V Architecture

index merger to build larger cross-segment indexes for improved
performance. It also features auto vector index for automatic vector
index algorithm selection and parameter tuning.

SingleStore-V executes vector search queries as part of its general
query execution engine, which differs from specialized vector exe-
cution engines like Milvus. In comparison with other generalized
vector databases like pgvector and PASE, SingleStore-V executes
vector search differently by pushing down a Top() filter (Sec. 5.1)
into the scan operation. While AnalyticDB-V [52] also utilizes push-
down, AnalyticDB-V does not discuss distributed query processing,
and their pushdown differs from ours, as their filtered search does
not guarantee k output results.

Furthermore, SingleStore-V incorporates vector search into SQL
queries in more cases such as vector range search and join. To our
knowledge, no other vector databases have comprehensive support
for these features. Please refer to Table 1 for more detailed feature
comparisons.

3 SYSTEM OVERVIEW
Figure 1 shows the system architecture of SingleStore-V, which is
a distributed vector database based on SingleStore that includes
aggregator nodes to coordinate SQL queries and leaf nodes to store
shards of data.

The architecture of SingleStore makes it uniquely suitable for
achieving the goals of high performance and high interoperabil-
ity as a generalized vector database. In particular, the immutable
segments in SingleStore’s LSM-based table storage support fast
search performance on per-segment vector index structures, while



the seekable column encodings enable efficient retrieval of vector
data from those segments (Sec. 4). Using in-memory rowstore for
recently modified data ensures that this data is visible for vector
search in real-time. The adaptive query execution pipeline models
index use as an alternative access method for the filter operation,
which allows vector search to be modeled as a filter to enable inter-
operability with other SQL operations (Sec. 5). Building on these
ideas, the design of SingleStore-V includes the following features:

Extended SQL Semantics for Vector Search. SingleStore-V in-
troduces necessary SQL statements to operate on vector data by
extending the SQL syntax. It implements a new data type, VECTOR,
to represent vectors. Users can thus create a table in SingleStore-V
that specifies a column as VECTOR, which allows them to load and
insert vector data. SingleStore-V also implements ADD INDEX to
create a vector index and specify index parameters. Furthermore,
SingleStore-V extends the SQL SELECT statement to search both
vector and non-vector data (Sec. 5).

Persisted Vector Index with In-memory Caching. As shown
in Figure 1, SingleStore-V builds vector index structures over the
segments in the LSM-based table storage (Sec. 4.1). Recall that each
segment stores a large immutable subset of rows. By making vector
indexes part of the immutable segments, table storage features such
as data persistence, replication, offloading to cloud storage, etc. all
work seamlessly on vector indexes. In additional to the persisted
storage, SingleStore-V also caches the vector indexes in memory
for better search performance.

Real-time Update and Transaction Support. SingleStore-V of-
fers full update, delete, and ACID transaction support for the vector
index, just like the rest of the table storage. As a relational database,
this capability is an important requirement for interoperability.
Since row deletions simply mark the row as deleted in the segment
metadata, update and delete operations are performed efficiently
without modifying the vector index structures. Vector search exe-
cution skips the rows marked as deleted in segment metadata and
also incorporates rows from the in-memory rowstore to ensure a
transactional consistent view, including real-time changes.

Scalable Vector Search. As a distributed shared-nothing system,
SingleStore-V scales horizontally by executing vector search in
parallel across database partitions on different leaf nodes and com-
bining the results (Sec. 5.1). Within each database partition, the
vector index merger improves scalability by building larger indexes
covering multiple segments (Sec. 4.2).

Flexible Vector Index Algorithms. Building vector indexes on
immutable segments imposes no constraint on the indexing algo-
rithm used, which allows SingleStore-V to plug in different vector
index algorithms (Sec. 4.3) and pick suitable index algorithms auto-
matically (Sec. 4.4).

Interoperability with Other SQL Operations. During query
execution, SingleStore-V pushes down vector search into the table
scan to perform efficient search using the vector index. The search
operation is modeled as a new Top() filter to enable filtered vector
search (Sec. 5.2) and hybrid search, which combines vector search
with with fulltext index search (Sec. 5.3). Vector range search and

vector range join support (Sec. 5.4) further extends SingleStore-V’s
ability to incorporate vector search into existing SQL queries.

4 VECTOR INDEX DESIGN
In this section, we present the architecture and design of the vector
index in SingleStore-V. Key ideas of the design include per-segment
vector index (Sec. 4.1), vector index merger (Sec. 4.2), pluggable
vector index (Sec. 4.3), and auto vector index (Sec. 4.4).

4.1 Per-Segment Vector Index
As SingleStore is a distributed shared-nothing database, it shards a
table into multiple partitions, and each partition contains multiple
segments (each of size 512MB by default) that are managed by
an LSM-based storage engine (Sec. 2.1). Therefore, there are two
approaches for building a vector index: (1) per-partition vector index
that builds a vector index for each partition, and (2) per-segment
vector index that builds a vector index for each segment.

SingleStore-V does not choose the per-partition vector index.
This is because the data in a partition is a changing dataset, which
includes not only immutable on-disk columnstore segments but
also an in-memory rowstore that is continuously modified by write
transactions. Besides that, new segments can be created and inserted
into a partition for new data, and old segments can be deleted when
data is deleted or updated, or when segments are merged. Thus,
partitions are inherently mutable. However, all major vector index
algorithms, such as quantization-based [7, 8, 33] and graph-based
indexes [30, 39, 47], are extremely inefficient in supporting dynamic
data. For example, quantization-based indexes require an initial
training stage during which the distribution of vectors must be
known. While graph-based indexes like HNSW do not require an
initial training stage, the frequent adding and removing of vectors
significantly impacts the quality of the index. When the distribution
of vectors undergoes significant changes or the quality of the index
degrades, the per-partition vector index must be retrained and
rebuilt. This process can be both costly and time-consuming, and
the index may become temporarily unavailable or inaccurate during
this period.

SingleStore-V’s Design Choice on Vector Index. SingleStore-
V chooses the per-segment vector index approach. Specifically, it
builds a vector index for each on-disk immutable segment. The
in-memory segment is not indexed because it is typically small and
changes frequently. Building an index for the in-memory segment
would be computationally expensive and not significantly improve
query performance. Therefore, SingleStore-V simply performs a
full scan on the in-memory segment during vector search.

There are several advantages to this design. First, since the con-
tent of each on-disk segment is immutable, the per-segment vec-
tor index is built once when the segment is created and remains
unchanged. As a result, it eliminates the need for global index re-
building and scales well as additional vectors are added. Second,
building a per-segment vector index on immutable segments al-
lows us to treat the vector index algorithm as a black box, enabling
easy integration with different vector index algorithms and also
implementing powerful automatic vector index algorithm selection
and parameter tuning. Further details will be delved into in Sec. 4.3
and Sec. 4.4. Third, the per-segment vector index avoids the cost of



performing an LSM-tree lookup per matched row to find the row
in the primary LSM-tree. This is because the per-segment vector
index stores row offsets rather than the primary key as in the per-
partition index. This advantage becomes particularly significant
when the vector index produces many output rows.

In SingleStore-V, a vector index can be created on an empty table
as part of the CREATE TABLE command. Alternatively, a vector index
can be added to an existing table using the ALTER TABLE command.
With ALTER TABLE, a per-segment vector index will be built for all
existing segments.

SingleStore-V supports inserts, deletes, and updates in a similar
way to other types of data in SingleStore as described in Sec. 2.1.3.
When vectors are inserted into a table, small write transactions
initially persist the data in the in-memory rowstore. When the back-
ground flusher process converts a batch of in-memory rows into a
columnstore segment, it also builds a per-segment vector index for
that segment. Deletes and updates to a row in a columnstore seg-
ment modify segment metadata to mark the row as deleted, leaving
the corresponding per-segment vector index unchanged. In other
words, each per-segment vector index is immutable once created.
At search time, the deleted bit vector is used as a filter to exclude
deleted rows. Since update operations also insert the modified rows
into the in-memory rowstore, the search query sees the updated
version of the row as it scans the in-memory rowstore. Larger write
transactions bypass the in-memory rowstore to directly write to
columnstore segments, which build the vector index as part of the
write transaction and keep the size of the in-memory rowstore
small. The background merger process also builds a vector index on
the newly merged segments it produces, keeping the per-segment
vector indexes consistent with the segments.

4.2 Vector Index Merger
The challenge of the per-segment index is performance. This is
because vector indexes typically have sub-linear search complex-
ity. For example, IVF-based algorithms achieve a search time of
𝑂 (
√
𝑛), while graph-based algorithms take a search time of𝑂 (log𝑛)

under typical parameter settings. Therefore, searching multiple per-
segment vector indexes is slower compared to searching a single
per-partition vector index. Also, for HNSW in particular, we ob-
serve cases where base layer graph search significantly dominates
search in higher levels, suggesting high per-index constant factors.

Increasing segment size would allow SingleStore-V to reduce the
number of per-segment indexes, but this approach has drawbacks
as well. The segment merger in SingleStore-V materializes output
segments in memory, column by column, so larger segments would
result in significant temporary increases in memory use. Segment
elimination during filter execution would also be less effective,
as the likelihood of a segment being entirely eliminated would
decrease. Performance in the case of clustered deletions would
also decrease, as SingleStore-V would be less likely to delete whole
segments at a time.

Instead of increasing segment size, SingleStore-V decouples index
size from segment size with a two-level vector index structure
integrated with the LSM-based storage engine. In this design,
SingleStore-V builds per-segment indexes and a background vector

index merger constructs additional vector indexes spanning multi-
ple segments. Both the per-segment indexes and the cross-segment
index are built on static datasets, as segments are immutable. Dur-
ing vector search, the larger cross-segment vector index can be
leveraged to improve search efficiency.

Specifically, starting with an individual vector index for each seg-
ment, the index merger in SingleStore-V combines segments into
groups. For each group, it creates a vector index covering all seg-
ments in the group. The merger will repeat this process iteratively
with groups of two, four, eight segments, and so on, following a tree
structure. The original per-segment input indexes are evicted from
memory, but remain available on disk. To minimize the compute
cost for the HNSW indexes, the merger avoids rebuilding indexes
from scratch by making a copy of one segment index and growing
it by appending vector data from other segments. This is especially
important because the HNSW indexes have a large build cost.

Large cross-segment indexes have seemingly similar drawbacks
to large segments. However, as they are built on a subset of seg-
ment data, they allow SingleStore-V to strike a different balance and
take advantage of extra optimizations. Index merging, like segment
merging, has memory use proportional to the index size. But tuning
the segment size around the segment merger requires accounting
for the worst-case memory use from the largest columns in a seg-
ment, while tuning for index merging requires accounting only
for the index sizes. For indexes based on PQ, this memory use is
expected to be especially small compared to the data size. Likewise,
the smaller size makes it tractable for SingleStore-V to store per-
segment indexes. These per-segment indexes allow SingleStore-V
to reduce performance degradation related to clustered deletions
and segment elimination. Namely, SingleStore-V bounds the perfor-
mance degradation in these cases by falling back on per-segment
indexes from disk when it detects that deletions or filters would
allow it to skip searching through enough per-segment indexes.

Although we can always fall back to per-segment indexes, the
effort put into merging indexes is wasted if the merged index fre-
quently contains deleted segments. This commonly occurs when
the segment merger decides to merge a segment that is already
part of a cross-segment vector index. To reduce the likelihood of
such scenarios, the index merger only merges vector indexes of
segments within a sorted run of the LSM tree. It gives priority to
merging vector indexes from longer sorted runs first, as these are
expected to have a longer lifespan and, hence, extend the lifespan
of the cross-segment indexes.

4.3 Pluggable Vector Index
There are many different types of vector indexes, each offering
unique design trade-offs. For example, IVF_PQFS has a faster index
build time and a smaller memory footprint compared to HNSW, but
its recall and search performance are not as good. Moreover, many
new algorithms continue to be developed each year, and even for
the same algorithm, multiple implementations are available. For
example, Faiss, hnswlib, and Knowhere [12] all provide (different)
implementations of the same set of vector indexes.

With this in mind, we believe it is crucial to design the system
to easily integrate with a wide range of vector indexes and im-
plementations. This approach not only enables the system to be



optimized to work well under different constraints, but also ensures
its future-proofing, allowing for seamless adoption of cutting-edge
algorithms as they become available.

As a result, SingleStore-V supports pluggable vector indexes.
This is possible because both per-segment and cross-segment vec-
tor indexes are built on immutable data, allowing SingleStore-V to
treat the vector index as a black box and utilize only a very generic
interface. Currently, SingleStore-V uses state-of-the-art vector in-
dex libraries, including Faiss and hnswlib, and supports various
popular in-memory vector indexes, such as IVF_FLAT, IVF_PQ,
IVF_PQFS, HNSW_FLAT, and HNSW_PQ. Users can select a vector
index algorithm along with its parameters at index creation time.
One example of this would be:
ALTER TABLE t
ADD VECTOR INDEX (v)
INDEX_OPTIONS '{"index_type":"IVF_PQFS",

"metric_type":"EUCLIDEAN_DISTANCE",
"m":250, "nlist":512, "nprobe":8}';

Internally, we decouple the vector index algorithm from its
implementation to allow the use of multiple implementations for
the same algorithm. This enables a seamless upgrade of a vector
index algorithm to utilize a newer and improved implementation.
We achieve this by associating each vector index with its imple-
mentation ID.

The pluggable vector index architecture is highly flexible and
extends beyond in-memory vector index algorithms to include on-
disk vector index algorithms as well such as DiskANN [47] and
SPANN [27]. Furthermore, this decoupling allows the vector index
to be built in an external service equipped with GPUs, thereby im-
proving resource utilization and significantly enhancing the index
build time compared to running on regular database nodes.

4.4 Auto Vector Index
Existing vector databases are difficult for customers to use in terms
of index selection and index parameter tuning, because they re-
quire users to manually select the index and configure complicated
index parameters. Arbitrarily choosing values can result in high
cost, low performance, or low accuracy. This places a considerable
burden on customers, and in many cases, customers have a limited
understanding of the impact of each parameter. Furthermore, as
data distribution evolves over time, it may not be optimal to utilize
the same index or parameters all the time.

To address this issue, SingleStore-V supports the AUTO index,
which automatically selects a suitable vector index algorithm and
tunes its parameters for each vector index. This approach is feasible
because the vector index in SingleStore-V is built on immutable
data, since all the vectors have already been seen before the index
is built. It also blends well with our vector index merger. The cross-
segment index can pick a different index type best suited for the
combined set of data, no matter what index is built for the per
segment indexes.

Users can specify their high-level objective for the AUTO index,
such as high-performance, high-recall, or small memory usage. The
engine then generates a shortlist of candidate algorithms and index
options using rule-based heuristics based on Faiss guidelines [9] and
autofaiss [1]. For each candidate, SingleStore-V builds the vector

index and then determines the optimal search options through a
grid search based on Faiss autotune [6]. SingleStore-V stores several
choices on the performance-recall Pareto frontier and selects the
best one based on additional recall requirement at search time.

To expedite the above process of index tuning, SingleStore-V
introduces two heuristics. First, since building the vector index is
the most intensive operation, the AUTO index will try to use the
last index algorithm and its options for the new index, assuming
that the data distribution has not changed. If satisfactory, we avoid
exploring other candidates. Second, for each algorithm, we define
the options such that larger values lead to better recall but worse
search time and index size. This property helps to prune the search
space when conducting a grid search for index and search options.

Auto-tuning the vector index can be a time-consuming process,
and we aim to prevent it from blocking the write path in SingleStore-
V. One optimization in SingleStore-V is to initially build a quick
but acceptable index, such as IVF_PQFS, when building a new per-
segment or cross-segment vector index. This process can be usually
done within 1 second per segment. Automatic vector index selection
and parameter tuning are then carried out in the background or
within a dedicated service. Once the more optimal indexes are ready,
they replace the original index. This approach allows SingleStore-V
to maintain fast write speeds and ensures that new data becomes
searchable quickly, while still achieving reasonable recall rates.

We are not aware of any other vector databases that support
auto vector index, except for Milvus. However, this feature is only
available in Zilliz Cloud, with technical details undisclosed [11]. It
is also unclear how Milvus’s auto index affects the write path, since
finding a suitable index is usually time-consuming. SingleStore-V
addresses this issue by quickly building IVF_PQFS and fine-tuning
the index in the background.

5 VECTOR SEARCH DESIGN
In this section, we present how SingleStore-V executes vector search
queries using the vector index. The key idea is the introduction of
a new physical operator, termed the Top() filter, enabling seamless
integration with the existing query execution engine. Supported
queries include pure vector search (Sec. 5.1), filtered vector search
(Sec. 5.2), vector search with fulltext search (Sec. 5.3), vector range
search and vector range join (Sec. 5.4).

5.1 Vector Search
In SingleStore-V, a vector search query that returns top-k similar
vectors to a query vector can be expressed in SQL as follows:
SELECT *
FROM t
ORDER BY t.v <-> @vector
LIMIT k;

where <-> is the infix operator for Euclidean distance, @vector is
a user-defined query vector, and t.v is a vector column v in the
table t.

Query Optimization and Execution. As SingleStore-V is a dis-
tributed vector database, it includes aggregator nodes that coordi-
nate SQL queries and leaf nodes that store shards of data (Figure 2).
Given the above SQL query of vector search, an aggregator node



pushes down the ORDER BY ... LIMIT to the leaf nodes. It sends
the same SQL query to each partition of t to gather the top-k rows
from each partition, thenmerge-sorts those sorted rows and outputs
the top-k globally.

Within each partition, when there is no matching vector in-
dex, SingleStore-V treats it as a kNN (k-Nearest Neighbor) query.
The leaf node conducts a full table scan, computes the distance to
@vector for each row, and uses a heap to output the top-k rows for
the current partition.

When there is a matching vector index, specifically a vector
index on column t.v, SingleStore-V treats it as an ANN (Approx-
imate Nearest Neighbor) query. The leaf node pushes down the
ORDER BY ... LIMIT clause to the table scan as a filter Top(m,
t.v <-> @vector). This is a new physical operator introduced
in SingleStore-V that conducts a vector index scan to select the
top-m candidates for the current partition based on vector indexes.
This process is similar to how SingleStore utilizes other secondary
indexes (e.g., hash indexes) in table scans, treating them as an al-
ternative data access method with a filter clause, as described in
Sec. 2.1.4. The physical plan of the corresponding SQL query on a
leaf node is:

Project [t.v <-> @vector]
TopSort limit:k [t.v <-> @vector]
ColumnStoreFilter [Top(m, t.v <-> @vector) index]
ColumnStoreScan t

Note that m, the number of candidates the vector index scan
outputs, may be larger than k, the number of vectors the user de-
sires. This is because when PQ [33, 51] is employed, vectors are
compressed within the vector indexes, and the distances computed
from these indexes are approximate. Therefore, it becomes neces-
sary to select more candidates and then refine them using exact
distances. TopSort accomplishes this refinement by reading the
candidates from disk, computing the exact distance to @vector,
and then using a heap to output the top-k for the current partition.
SingleStore-V provides good default values for the m/k ratio, but
users can override it as needed.

In order to efficiently execute the table scan with the Top() filter,
SingleStore-V will first find a set of vector indexes that exactly cover
all the segments within the current partition. These vector indexes
can be either per-segment or cross-segment, but a larger vector
index is preferred for faster search times. Next, it will find the top-m
rows from each vector index and then perform a merge sort to
obtain the top-m rows for the current partition. When conducting a
vector search for each vector index, the deleted bits for the segments
covered by the vector indexwill be passed to the vector index library
to filter out deleted rows, ensuring all m rows obtained from each
index are present. A full scan is also conducted on the in-memory
rowstore segment to include unflushed rows. The data flow is shown
in Figure 2, where <filter> is empty.

5.2 Filtered Vector Search
Many real-world applications require filtered vector search, which
combines vector search with filters to find the top-k rows while
satisfying a given filtering condition. This can be expressed in
SingleStore-V in SQL as follows:

Figure 2: Vector Search in SingleStore-V

SELECT *
FROM t
WHERE <filters>
ORDER BY t.v <-> @vector
LIMIT k;

Query Optimization and Execution. Optimizing filtered vector
search in SQL is non-trivial. If we conduct the vector search first
to select the top-k rows and then apply the filters, it is possible to
produce fewer than k rows, which is not desirable. One approach
is to predict the selectivity of the filters and compensate for it by
selecting more candidates from the vector index scan. However,
in practice, it is very difficult to accurately predict the number of
candidates needed.

SingleStore-V addresses this issue by incorporating the filters
into the vector index scan. Specifically, we extend the Top() filter
mentioned in Sec. 5.1 to include <filters>, resulting in Top(m,
t.v <-> @vector, <filters>). This operator selects the top-
m rows that pass <filters>. Consequently, the leaf node pushes
down the ORDER BY ... LIMIT clause to the table scan as Top(m,
t.v <-> @vector, <filters>). The physical query plan on a
leaf node is:
Project [t.v <-> @vector]
TopSort limit:k [t.v <-> @vector]
ColumnStoreFilter [

Top(m, t.v <-> @vector, <filters>) index
]
ColumnStoreScan t

During query execution, SingleStore-V will first perform seg-
ment elimination using <filters>. Next, it will find a set of per-
segment or cross-segment vector indexes that exactly cover those
segments with potential matches. It then creates an approximate
sorted iterator for each individual vector index. This iterator ex-
poses a Next() interface, which returns the next approximate near-
est neighbor. While some vector index algorithms already support
this interface [55], a generic iterator is used for those that do not.
The generic iterator wraps the typical top-k interface of the vec-
tor index algorithms. It employs a retry strategy, starting with
approximate nearest neighbors with k and double k if additional
rows are required. An internal hash table V is utilized to track
already outputted rows. If k is doubled beyond a certain threshold



Algorithm 1: Generic Approximate Sorted Iterator
1 V ← ∅;
2 while 𝑘 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
3 R ← VectorIndex.VectorSearch(𝑘,@𝑣𝑒𝑐𝑡𝑜𝑟 );
4 for (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖𝑑) in R do
5 if 𝑖𝑑 not inV then
6 emit (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖𝑑);
7 V ← V ∪ {𝑖𝑑};

8 𝑘 ← 𝑘 × 2;
9 fall back to full table scan;

where the vector index scan is worse than full scan, the iterator
falls back to full scan. Algorithm 1 shows the procedure. To output
the approximate top-n rows, the generic iterator will retry at most
⌈log2 𝑛/𝑘⌉ + 1 times.

Next, a merged iterator is used to merge the approximate sorted
rows from each individual iterator. Internally, it uses a heap to
perform a merge sort and exposes a Next() method that returns
the next approximate sorted row for all segments. It also includes
the in-memory rowstore segment by performing a full scan on it.

When executing the Top() filter, a batch of candidate rows is read
from the merged iterator using the Next() interface. Subsequently,
these candidates are sorted by segments, and then the filters are
evaluated one segment at a time. Conducting filter evaluation in
batches, instead of row by row, enables SingleStore-V to prefetch
and cache the filter column within a segment.

The initial batch size is chosen to be 𝑐 ∗𝑚 where 1/𝑐 is the esti-
mated selectivity of the filter. The execution terminates when there
are enough rows after filtering for the current batch. Otherwise,
the batch size is doubled, and we continue with the next batch.

Note that our approach differs from the pre-filtered approach [22,
50, 52], which involves first filtering data, then storing the results
in a bitmap, and subsequently performing a vector search while
checking if the candidate is present in the bitmap. The pre-filtered
approach evaluates the filter for every row, whereas our approach
only needs to evaluate the filter on a small number of candidate
rows. We utilize the pre-filtered approach for the deleted bits filter
and rely on our approach for all other filters because, in these
cases, the filter column is on disk and the filter can be arbitrarily
complicated.

5.3 Combining Fulltext and Vector Search
In many applications, each entity is associated with many attributes.
During the search, users maywant to assign a score to each attribute
and then sort by a combined score. One common example is the
hybrid search combining vector search and fulltext search. The
hybrid query can be expressed in SingleStore-V in SQL as follows:

SELECT
*,
MATCH(t.s) AGAINST ('pattern') AS score1,
t.v <-> @vector AS score2

FROM t

ORDER BY w1 * score1 + w2 * score2
LIMIT k;

Query Optimization and Execution. There are several solutions
for combining individual scores. For instance, Elasticsearch uti-
lizes a weighted sum approach, while Azure AI employs Reciprocal
Rank Fusion [24]. Currently, Elasticsearch and Azure implement the
query as a full-outer join. They execute each individual query sepa-
rately to obtain top-k candidates from each, then apply a full-outer
join to retrieve all candidates. Next, they compute the combined
score for each candidate and sort the results by the combined score.
However, this approach does not fully adhere to the semantics
of the SQL query above because it assumes that only the top-k
rows have non-zero scores. Although it is possible to instruct each
individual query to output more candidates, this encounters the
same difficulty as filtered vector search in predicting how many
candidates to produce in practice.

SingleStore-V addresses this issue by using a Top() filter that
selects the top-k rows with the highest combined score. During
execution, this Top() filter employs an iterative merging algorithm,
similar to what Milvus does for their multi-vector query [50]. The
iterative merging algorithm proves effective when the function
combining individual scores is monotonic and relies solely on the
generic top-k interface provided by the vector index algorithms.
The physical query plan is described as follows:
Project [*, score1, score2]
TopSort limit:k [w1 * score1 + w2 * score2]
ColumnStoreFilter [

Top(m, w1 * score1 + w2 * score2) index
]
ColumnStoreScan t

Comments on the Top() Filter.We believe the Top() filter rep-
resents a generic approach that extends beyond vector search to
facilitate the pushdown of ORDER BY ... LIMIT. Its generic form,
Top(k, <expr>, <filters>), selects the top-k rows according to
<expr> while satisfying <filters>.

Aside from ORDER BY ... LIMIT pushdown, the Top() filter
can be used by itself as a regular leaf node (index filter) within the
filter tree. Multiple instances of Top() filters can coexist in the filter
tree, each with its own <expr> and <filters>. Filter reordering
can occur within each <filters> and throughout the filter tree
independently.

5.4 Vector Range Search and Vector Range Join
SingleStore-V also supports vector search with range filters that
return all vectors whose distance is within a certain threshold
to the target vector. This is useful in many applications, such as
plagiarism detection for documents. This query can be expressed
in SingleStore-V in SQL as follows:
SELECT *
FROM t
WHERE (t.v <-> @vector) < @threshold;

For query execution, SingleStore-V executes vector range search
filters by scanning the vector index to find all rows within that
threshold, producing a list of (segment id, row offset) pairs for the
matching rows. A vector range search filter functions as a regular



SQL filter that can be combined and reordered with other filters,
without the additional semantic considerations required for Top()
filters as described in Sec. 5.2.

Besides that, SingleStore-V also supports vector range joins,
which join the vector columns from two tables to return pairs
of vectors if their distance falls within a certain threshold. Vector
range queries are useful in applications such as document auto-
tagging [28, 48], which assigns one or multiple labels to each unseen
document by finding the label embeddings closest to a document
embedding. The SQL query can be expressed in SingleStore-V as
follows:
SELECT *
FROM s JOIN t
ON (s.v <-> t.v) < @threshold
WHERE <filters>(s);

SingleStore-V executes the query with a vector index by per-
forming a nested loop join. It loops through all rows from table s
and filters by <filters>, then applies a vector range search on t
to find t.v that are within @threshold of s.v. The physical query
plan is described as follows:
Project [*]
NestedLoopJoin

ColumnStoreFilter [<filters>(s)]
ColumnStoreScan s

ColumnStoreFilter [(s.v <-> t.v) < @threshold index]
ColumnStoreScan t

We are not aware of other vector databases that support vector
range join, except for VBase [55]. However, unlike VBase, the im-
plementation in SingleStore-V does not assume an iterator interface
from the vector index algorithm, making it compatible with a wider
range of algorithms and better integrated into SingleStore.

6 EXPERIMENTS
6.1 Experiment Design

Experimental Environment.All experiments (except the scalabil-
ity experiment in Sec. 6.3) used identically provisioned r6a.8xlarge
EC2 instances (AMD EPYC 7R13 Processor, 32 vCPUs, 256GB mem-
ory, 64MB L3 cache, AVX2) with gp2 storage (maximum 16KB IOPS
per volume, maximum 150MB/s throughput per volume). We fol-
lowed public self-administration guides, including recommended
Linux tuning, to launch single-host clusters colocated with our
benchmarking client. We set the default concurrency of 16 and
enabled SIMD with AVX2 for all experiments.

For the scalability experiment, we used SingleStore’s managed
service to provision multi-host clusters consisting of 8 r6a.4xlarge
EC2 instances (16 vCPUs, 128GB memory, AVX2) with the same
gp2 storage. We ran the benchmark scripts on a separate host.

Datasets.We ran benchmarkworkloads using VectorDBBench [20],
an open-source benchmarking tool for testing vector database per-
formance. We utilized three well-known datasets: SIFT in different
sizes (SIFT1M, SIFT10M, SIFT100M, SIFT1B) and GIST1M, in addi-
tion to the Cohere10M dataset chosen by the benchmark authors.
The Cohere dataset consists of vector embeddings of Wikipedia arti-
cles in various languages, each divided into passages. Each passage

Table 2: Statistics of Real-world Datasets

Dataset # Dimensions # Vectors # Queries
SIFT1M [19] 128 1,000,000 10,000
SIFT10M [19] 128 10,000,000 10,000
SIFT100M [19] 128 100,000,000 10,000

SIFT1B [19] 128 1,000,000,000 10,000
GIST1M [19] 960 1,000,000 1,000

Cohere10M [3] 768 10,000,000 1,000

is assigned a 768-dimensional embedding vector. Table 2 shows a
summary of the datasets.

Competitors. We compare SingleStore-V with both specialized
and generalized vector databases. For specialized vector databases,
we choose Milvus [50] as it is a leading specialized vector database
in this area. For generalized vector databases, we choose pgvec-
tor [15], as it is a popular implementation based on PostgreSQL. We
believe they are representative in the vector database space. Using
them as comparisons provides a reliable indication of our system’s
performance. Since pgvector [15] is very slow in VectorDBBench
during index construction and search phases, only a limited number
of experiments are conducted.

We do not compare SingleStore-V with AnalyticDB-V [52] be-
cause AnalyticDB-V is significantly slower than both pgvector and
Milvus, as demonstrated in [56] and [50]. We also do not compare
SingleStore-V with PASE [53], due to the considerably slower per-
formance of PASE compared to specialized vector databases like
Milvus, as indicated in [56].

As Milvus is an in-memory vector database that stores every-
thing in memory, to ensure a fair comparison, we allocate enough
buffer memory in both pgvector and SingleStore-V to cache the
entire vector data and vector index in memory.

Indexes. For vector indexes, we evaluate both quantization-based
and graph-based indexes in SingleStore-V. Specifically, we choose
IVF_PQFS as it is the fastest quantization-based index. We also
choose HNSW because it is a widely used graph-based index in
many vector databases due to its high search performance and
recall.

Parameters. We largely follow the terminology for each database
or platform to introduce the parameters and set default values,
as shown in Table 3. Unless otherwise noted, we use the default
parameters for experiments.

Evaluation Metrics.We adopt commonly used metrics for mea-
suring vector search, which include throughput (queries per second
(QPS)), recall, and index construction time. We utilize recall to eval-
uate the accuracy of the returned top-k results. Specifically, we
compare the set G of ground truths with the set R of top-k results
returned by the system. Recall is then calculated as |𝑅 ∩ 𝐺 |/|𝐺 |,
representing the percentage of correctly identified items in the
ground truths.

6.2 Performance Comparison
In this subsection, we compare our SingleStore-V with Milvus and
pgvector in terms of search performance and index construction
time on IVF_PQFS and HNSW in different datasets.



Table 3: Parameters and Default Values

Parameters Meaning and Default Value

k
The number of results selected from vector similarity
search
Default Value: 100

reorder_k
The number of results selected for each segment in
IVF_PQFS
Default Value: 1000

nlist
The number of centroids in IVF_FLAT and IVF_PQFS
Default Value: 1000 in GIST1M, 3162 in SIFT10M and
Cohere10M, 10000 in SIFT100M, 31622 in SIFT1B

𝑛𝑝𝑟𝑜𝑏𝑒
The number of selected centroids in IVF_FLAT and
IVF_PQFS
Default Value: 20

qr
Quantization ratio, dimension/qr is the number of
subvectors into which each vector will be divided in
IVF_PQFS.
Default Value: 4

M
The number of neighbors for a vector node in HNSW
Default Value: 16

efc
The queue length in HNSW build
Default Value: 128

efs
The queue length in HNSW search
Default Value: 200

6.2.1 Search Performance
With indexes built using the same parameters, we present the

throughput (QPS) for each system under different recalls. Figure 3a,
4a and 5a show the the search performance of SingleStore-V com-
paring with Milvus and pgvector in different datasets.

SingleStore-V achieves comparable performance comparing
to Milvus in different datasets. For HNSW, SingleStore-V can reach
81.8% ∼ 94.7% QPS of Milvus and 1.7× ∼ 2.6× faster than pgvec-
tor among different datasets. In terms of IVF_PQFS, the QPS of
SingleStore-V is 78.7% ∼ 98.9% of Milvus and 47× ∼ 110× better
than the IVF_FLAT in pgvector among different datasets under
different recalls. The minor performance gap is due to some con-
stant O(1) overhead in SingleStore-V’s SQL pipeline as a generalized
database.

We also compare the trend of performance on vector range search
with varying𝑛𝑝𝑟𝑜𝑏𝑒 and 𝑟𝑎𝑑𝑖𝑢𝑠 . We find that comparing with vector
search, IVF_PQFS has a relatively large performance drop trend in
QPS in pursuit of high recall, while the performance drop is not very
obvious in the case of using HNSW. This is because PQ approximate
distance has a larger side-effect on range search compared to vector
search. As more distance information lost, using IVF_PQFS for
range search requires a larger candidate set for filtering.

6.2.2 Index Construction Performance
Figure 3b, 4b, and 5b show the index construction times on differ-

ent datasets. These figures indicate that SingleStore-V exhibits the
fastest index build performance among the systems compared. In
terms of the HNSW index, pgvector requires 40.3× ∼ 74.8×more
time than SingleStore-V on GIST1M and SIFT10M, and Milvus
requires 1.6× ∼ 2.7× more time than SingleStore-V on various
datasets. For the quantization-based index, despite IVF_PQFS incor-
porating a PQ calculation process that IVF_FLAT lacks, pgvector

Figure 3: Comparing Vector Databases on SIFT10M

Figure 4: Comparing Vector Databases on GIST1M

Figure 5: Comparing Vector Databases on Cohere10M

still requires 4.6×more time on SIFT1M and 4.5×more time on
GIST1M for IVF_FLAT than SingleStore-V’s IVF_PQFS. Milvus’s
IVF_PQFS also takes 5.2× ∼ 6.0×more time than SingleStore-V on
different datasets. The higher performance of SingleStore-V com-
pared to Milvus is attributed to SingleStore-V having an optimized
API for loading data into the table before index building, with the



Figure 6: Scalability of SingleStore-V

Figure 7: Varying Different Portions of Data in Rowstore of
SingleStore-V

time spent on index construction being mostly the same in both
systems. We compare the memory usage of the SingleStore-V and
Milvus on the GIST1M dataset. We use 3.8G and 3.7G of memory
for vector index on HNSW and IVF_PQFS, respectively, which is
comparable to Milvus’ total memory usage of 4.6G and 3.7G.

6.3 Evaluation of Scalability
In this experiment, we evaluate the scalability of SingleStore-V
with respect to data size. We use the SIFT1M, SIFT10M, SIFT100M,
and SIFT1B datasets, which range from 1 million vectors to 1 bil-
lion vectors. In this experiment, we use the IVF_PQFS index in
SingleStore-V and the IVF_FLAT index in pgvector. We conduct
experiments on multi-host clusters consisting of 8 CPU instances of
r6a.4xlarge (16 vCPUs, 128GBmemory, AVX2) and gp2 storage with
32 concurrency, also using the default parameters as outlined in Ta-
ble 3. Figure 6 demonstrates that the QPS decreases proportionally
with the increase in data sizes.

We similarly verify the impact of having data present in the
non-indexed rowstore portion of the table in SingleStore-V. We
execute this experiment on SIFT10M dataset, using 1 r6a.8xlarge
EC2 instance with 16 concurrency. Each time we delete a portion
of data and re-insert it back, with the background flusher process
disabled, such that a portion of data gets moved into the in-memory
rowstore portion of the table. We find that the query performance
drops linearly with the amount of datamoved, as shown in Figure 7a.
Due to more data are in the rowstore portion which uses exact
search rather than ANN, the recall increases as demonstrated in
Figure 7b. Note that this experiment tests an extreme case - with the
background flusher running, the rowstore portion is only expected
to contain recently written data, which would normally be much
less than 10% of the entire dataset.

Figure 8: Evaluating Cross-Segment Index Merger

6.4 Evaluation of Vector Index Merger
In this experiment, we evaluate the performance of the indexmerger
in SingleStore-V with regard to a varying number of segments per
vector index on the Cohere10M dataset. We used the same type of
instance as in the search performance experiment, r6a.8xlarge. We
chose the default values shown in Table 3, and used different search
parameters to measure throughput at various recall levels. The
per-segment size is limited to at most 80,000 to achieve 8 segments
in each of the 16 partitions. We conducted experiments on the per-
segment index as a baseline and evaluated the performance boost
from the index merger when it creates cross-segment indexes for 2,
4, and 8 segments, respectively. Figure 8 shows that the through-
put scales well as the index merger creates larger cross-segment
indexes.

7 CONCLUSION
In this work, we have presented SingleStore-V, a generalized vec-
tor database designed to achieve both high performance and high
interoperability. By employing per-segment vector indexes and vec-
tor index merger, SingleStore-V ensures scalability and efficiency
on vector search queries. The pluggable vector index architecture
allows SingleStore-V to leverage a wide range of algorithms and li-
braries, while also providing a user-friendly interface through auto
vector indexing. Moreover, the Top() filter introduced in this paper
facilitates the pushdown of ORDER BY ... LIMIT to the table scan,
enabling seamless integration with other SQL constructs. Through
expressive SQL semantics, SingleStore-V empowers complicated
analytic queries that combine vector similarity, filters, fulltext, and
joins to provide insights in real-time.

For future work, it would be beneficial to explore vector index
algorithms that support efficient merge operations. Additionally,
further investigation into the applications of vector search in SQL
and alternative methods for performing analytics on both vector
and non-vector data would be valuable. Moreover, investigating
broader uses of the Top() filter beyond ORDER BY ... LIMIT
pushdown presents an interesting opportunity.

8 ACKNOWLEDGMENTS
We extend our gratitude to Eric (Yongzhu) Li, Viacheslav
Ocheretnyi, Eeshwar Gurushankar, Sofiia Melnyk, Alex Moore,
and Kristin Tufte for their work on SingleStore-V. Jianguo Wang ac-
knowledges the support of the National Science Foundation under
Grant Number 2337806.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2337806


REFERENCES
[1] [n. d.]. AutoFaiss (https://github.com/criteo/autofaiss).
[2] [n. d.]. ClickHouseApproximate Nearest Neighbor Search Indexes [Experimental]

(https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/ann
indexes).

[3] [n. d.]. Cohere (https://huggingf ace.co/datasets/Cohere/wikipedia-22-
12/tree/main/en/).

[4] [n. d.]. ElasticSearch Github (https://github.com/elastic/elasticsearch).
[5] [n. d.]. Facebook Faiss. https://github.com/facebookresearch/faiss
[6] [n. d.]. Faiss AutoTune (https://github.com/facebookresearch/faiss/wiki/Index-

IO, - cloning-and-hyper-parameter- tuning#auto- tuning- the- runtime-
parameters).

[7] [n. d.]. Faiss Indexes. https://github.com/facebookresearch/faiss/wiki/Faiss-
indexes

[8] [n. d.]. Fast Accumulation of PQ and AQ Codes (FastScan) (https://github.c
om/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-
(FastScan)).

[9] [n. d.]. Guidelines to Choose an Index in Faiss (https://github.com/facebookres
earch/faiss/wiki/Guidelines-to-choose-an-index).

[10] [n. d.]. Introducing Vector Search on Rockset: How to Run Semantic Search with
OpenAI and Rockset (https://rockset.com/blog/introducing-vector-search-on-
rockset/).

[11] [n. d.]. Milvus AUTOINDEX Explained (https://docs.zilliz.com/docs/autoindex-
explained).

[12] [n. d.]. Milvus Knowhere (https://milvus.io/docs/knowhere.md).
[13] [n. d.]. MongoDB (https://www.mongodb.com).
[14] [n. d.]. MongoDB Vector Search (https://www.mongodb.com/products/platform/

atlas-vector-search).
[15] [n. d.]. pgvector (https://github.com/pgvector/pgvector).
[16] [n. d.]. Pinecone (https://www.pinecone.io/).
[17] [n. d.]. Qdrant (https://qdrant.tech/).
[18] [n. d.]. Recommender System in Milvus (https://milvus.io/docs/recommendatio

n_system.md).
[19] [n. d.]. SIFTData (http://corpus-texmex.irisa.fr/).
[20] [n. d.]. VectorDBBench: A Benchmark Tool for VectorDB (https://github.com/zil

liztech/VectorDBBench).
[21] [n. d.]. Vespa (https://vespa.ai/).
[22] [n. d.]. Weaviate (https://weaviate.io/).
[23] 2023. Oracle Introduces Integrated Vector Database to Augment Generative AI

and Dramatically Increase Developer Productivity (https://www.oracle.com/n
ews/announcement/ocw-integrated-vector-database-augments-generative-ai-
2023-09-19/).

[24] 2023. Relevance Scoring in Hybrid Search using Reciprocal Rank Fusion (RRF)
(https://learn.microsoft.com/en-us/azure/search/hybrid-search-ranking).

[25] 2023. Vector Search with Azure SQL Database (https://devblogs.microsoft.com/a
zure-sql/vector-search-with-azure-sql-database/).

[26] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A Modern Optimizer
for Real-time Analytics in a Distributed Database. Proceedings of the VLDB
Endowment (PVLDB) 9, 13 (2016), 1401–1412.

[27] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In Annual Conference on Neural
Information Processing Systems (NeurIPS). 5199–5212.

[28] Sheng Chen, Akshay Soni, Aasish Pappu, and Yashar Mehdad. 2017. Doc-
Tag2Vec: An Embedding Based Multi-label Learning Approach for Document
Tagging. In Proceedings of the 2nd Workshop on Representation Learning for NLP,
Rep4NLP@ACL 2017. 111–120.

[29] Jens Dittrich and Alekh Jindal. 2011. Towards a One Size Fits All Database
Architecture. In Conference on Innovative Data Systems Research (CIDR). 195–198.

[30] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proceedings
of the VLDB Endowment (PVLDB) 12, 5 (2019), 461–474.

[31] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In International Conference on Very Large Data
Bases (VLDB). 518–529.

[32] Samuel Leonardo Gracio. 2023. Reinvent your recommender system using Vector
Database and Opinion Mining (https://medium.com/dailymotion/reinvent-
your-recommender-system-using-vector-database-and-opinion-mining-
a4fadf97d020).

[33] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 33, 1 (2011), 117–128.

[34] Madhukar Kumar, Yaroslav Demenskyi, and Pranav Aurora. 2024. How We
Built a Real-Time RAG Application for Free With SingleStore and Vercel (https:
//www.singlestore.com/blog/real-time-rag-app-with-singlestore-and-vercel/).

[35] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization (CGO). 75–88.

[36] Yuliang Li, Jianguo Wang, Benjamin S. Pullman, Nuno Bandeira, and Yannis
Papakonstantinou. 2019. Index-Based, High-Dimensional, Cosine Threshold
Querying with Optimality Guarantees. In International Conference on Database
Theory (ICDT), Vol. 127. 11:1–11:20.

[37] Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. 2020. VHP: Approxi-
mate Nearest Neighbor Search via Virtual Hypersphere Partitioning. Proceedings
of the VLDB Endowment (PVLDB) 13, 9 (2020), 1443–1455.

[38] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2017. In-
telligent Probing for Locality Sensitive Hashing: Multi-Probe LSH and Beyond.
Proceedings of the VLDB Endowment (PVLDB) 10, 12 (2017), 2021–2024.

[39] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 42 (2020),
824–836.

[40] Michal Nowakiewicz, Eric Boutin, Eric N. Hanson, Robert Walzer, and Akash
Katipally. 2018. BIPie: Fast Selection and Aggregation on Encoded Data using
Operator Specialization. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD). 1447–1459.

[41] James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of Vector Database
Management Systems. CoRR abs/2310.14021 (2023).

[42] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Vector Database Manage-
ment Techniques and Systems. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD).

[43] Adam Prout, Szu-PoWang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan
Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, and Nikita Shamgunov.
2022. Cloud-Native Transactions and Analytics in SingleStore. In Proceedings of
the ACM International Conference on Management of Data (SIGMOD). 2340–2352.

[44] Alex Skidanov, Anders J. Papito, and Adam Prout. 2016. A Column Store Engine
for Real-time Streaming Analytics. In Proceedings of the International Conference
on Data Engineering (ICDE). 1287–1297.

[45] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All": An Idea
Whose Time Has Come and Gone. In Proceedings of the International Conference
on Data Engineering (ICDE). 2–11.

[46] Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang. 2024. Vexless: A Server-
less Vector Data Management System Using Cloud Functions. In Proceedings of
ACM Conference on Management of Data (SIGMOD).

[47] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnaswamy, and Rohan Kadekodi. 2019. Rand-NSG: Fast Accurate Billion-
point Nearest Neighbor Search on a Single Node. In Annual Conference on Neural
Information Processing Systems (NeurIPS). 13748–13758.

[48] Yukihiro Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for
Extreme Multi-label Classification. In Proceedings of the ACM International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD). 455–464.

[49] Jianguo Wang, Eric Hanson, Guoliang Li, Yannis Papakonstantinou, Harsha
Simhadri, and Charles Xie. 2024. Vector Databases: What’s Really New and
What’s Next? Proceedings of the VLDB Endowment (PVLDB) 17 (2024).

[50] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo,
Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built Vector
Data Management System. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD). 2614–2627.

[51] Runhui Wang and Dong Deng. 2020. DeltaPQ: Lossless Product Quantization
Code Compression for High Dimensional Similarity Search. Proceedings of the
VLDB Endowment (PVLDB) 13, 13 (2020), 3603–3616.

[52] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proceedings of the VLDB
Endowment (PVLDB) 13 (2020), 3152–3165.

[53] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL Ultra-High-
Dimensional Approximate Nearest Neighbor Search Extension. In Proceedings of
the ACM International Conference on Management of Data (SIGMOD). 2241–2253.
https://github.com/alipay/PASE

[54] Alan Zeichick. 2023. What Is Retrieval-Augmented Generation (RAG)? (https:
//www.oracle.com/artif icial-intelligence/generative-ai/retrieval-augmented-
generation-rag/).

[55] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi
Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. 2023.
VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 377–395.

[56] Yunan Zhang, Shige Liu, and Jianguo Wang. 2024. Are There Fundamental
Limitations in Supporting Vector Data Management in Relational Databases?
A Case Study of PostgreSQL. In International Conference on Data Engineering
(ICDE).

https://github.com/criteo/autofaiss
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes
https://huggingface.co/datasets/Cohere/wikipedia-22-12/tree/main/en/
https://huggingface.co/datasets/Cohere/wikipedia-22-12/tree/main/en/
https://github.com/elastic/elasticsearch
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss/wiki/Index-IO,-cloning-and-hyper-parameter-tuning#auto-tuning-the-runtime-parameters
https://github.com/facebookresearch/faiss/wiki/Index-IO,-cloning-and-hyper-parameter-tuning#auto-tuning-the-runtime-parameters
https://github.com/facebookresearch/faiss/wiki/Index-IO,-cloning-and-hyper-parameter-tuning#auto-tuning-the-runtime-parameters
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://rockset.com/blog/introducing-vector-search-on-rockset/
https://rockset.com/blog/introducing-vector-search-on-rockset/
https://docs.zilliz.com/docs/autoindex-explained
https://docs.zilliz.com/docs/autoindex-explained
https://milvus.io/docs/knowhere.md
https://www.mongodb.com
https://www.mongodb.com/products/platform/atlas-vector-search
https://www.mongodb.com/products/platform/atlas-vector-search
https://github.com/pgvector/pgvector
https://www.pinecone.io/
https://qdrant.tech/
https://milvus.io/docs/recommendation_system.md
https://milvus.io/docs/recommendation_system.md
http://corpus-texmex.irisa.fr/
https://github.com/zilliztech/VectorDBBench
https://github.com/zilliztech/VectorDBBench
https://vespa.ai/
https://weaviate.io/
https://www.oracle.com/news/announcement/ocw-integrated-vector-database-augments-generative-ai-2023-09-19/
https://www.oracle.com/news/announcement/ocw-integrated-vector-database-augments-generative-ai-2023-09-19/
https://www.oracle.com/news/announcement/ocw-integrated-vector-database-augments-generative-ai-2023-09-19/
https://learn.microsoft.com/en-us/azure/search/hybrid-search-ranking
https://devblogs.microsoft.com/azure-sql/vector-search-with-azure-sql-database/
https://devblogs.microsoft.com/azure-sql/vector-search-with-azure-sql-database/
https://medium.com/dailymotion/reinvent-your-recommender-system-using-vector-database-and-opinion-mining-a4fadf97d020
https://medium.com/dailymotion/reinvent-your-recommender-system-using-vector-database-and-opinion-mining-a4fadf97d020
https://medium.com/dailymotion/reinvent-your-recommender-system-using-vector-database-and-opinion-mining-a4fadf97d020
https://www.singlestore.com/blog/real-time-rag-app-with-singlestore-and-vercel/
https://www.singlestore.com/blog/real-time-rag-app-with-singlestore-and-vercel/
https://github.com/alipay/PASE
https://www.oracle.com/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/
https://www.oracle.com/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/
https://www.oracle.com/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/


[57] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and
Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework for

High-Dimensional Approximate NN Search. Proceedings of the VLDB Endowment
(PVLDB) 13 (2020), 643–655.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 SingleStore
	2.2 Vector Similarity Search
	2.3 Vector Databases
	2.4 Comparison with Other Vector Databases

	3 System Overview
	4 Vector Index Design
	4.1 Per-Segment Vector Index
	4.2 Vector Index Merger
	4.3 Pluggable Vector Index
	4.4 Auto Vector Index

	5 Vector Search Design
	5.1 Vector Search
	5.2 Filtered Vector Search
	5.3 Combining Fulltext and Vector Search
	5.4 Vector Range Search and Vector Range Join

	6 Experiments
	6.1 Experiment Design
	6.2 Performance Comparison
	6.3 Evaluation of Scalability
	6.4 Evaluation of Vector Index Merger

	7 Conclusion
	8 Acknowledgments
	References

