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INTRODUCTION
Modern applications are built as cloud-native, distributed 

systems. Applications supporting transactional processing are 

built as stateless, microservice-based distributed systems to 

support the scale, speed, resilience to failure, and elasticity.  For 

applications supporting analytical processing, the driving design 

need is to support the growing dataset sizes while simultaneously 

supporting higher concurrency. To scale the data tier for both types 

of applications, it’s not uncommon to find sharding middleware 

managing single-node database instances. But this approach has its 

limitations and management overhead challenges, which have led 

to distributed databases gaining in popularity across the workload 

spectrum.

In recent years, NoSQL distributed databases have become common, 

as they are built from the ground up to be distributed. Yet they force 

difficult design choices such as choosing availability over consistency, 

data integrity, and ease of query to meet their applications’ need 

for scale. Using this approach often means giving up on relational 

SQL and performing complex logic in the application such as joins. 

These tend to be error-prone and inefficient compared to traditional 

RDBMS systems, which provide much better data independence, 

meaning that query logic in applications is less tightly coupled to the 

physical structure of the data. These trade-offs characterize NoSQL 

distributed databases, which were developed to address the scale 

problems of existing traditional single-node database systems and 

to take advantage of horizontal scaling. Distributed SQL databases, 

by contrast, offer the benefits of scale-out, while also providing 

consistency and an ANSI-compliant SQL interface. This Refcard serves 

as a reference of the key characteristics of distributed SQL databases 

and provides information on the benefits of these databases, as well 

as insights into query design and execution.

THE NEED FOR DISTRIBUTED SQL
The speed at which businesses are building new applications in the 

cloud and are moving legacy applications to the cloud is increasing. 

The drivers are faster development cycles, the ability to scale on-

demand, and the ability to pay-as-you-go, avoiding large capital 

outlays — and the need for extensive justification — up front. 
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Simultaneously, large monolithic applications are being refactored 

into, or replaced by, distributed microservice-based applications, 

which offer the benefits of development independence and 

shortened development cycles. Distributed SQL databases offer an 

advantage for these new, modern, cloud-native applications. They 

provide better performance at lower cost than a solution built using 

a traditional database like PostgreSQL or MySQL, plus sharding 

middleware to achieve scale. Also, distributed SQL databases don’t 

force users to give up on ACID-compliant transactions and joins in the 

database to achieve availability and scalability. While that trade-off 

may be acceptable for some use cases and applications, it certainly is 

not for a broad set of applications like those in financial services.

SHARDING MIDDLEWARE
Sharding middleware supports the distribution of a single-server 

database, such as MySQL, across multiple independent servers. The 

user chooses a key — the shard key — that's employed to decide 

which records go to each server. Each server acts as a separate 

database, but the sharding middleware logically combines them, so 

they appear from the outside as a single, distributed database. 

The advantage of using sharding middleware, versus going to a 

NoSQL solution, is that SQL support is maintained. However, the 

downsides of using this middleware work directly against the hoped-

for benefits. Downsides are likely to include:

• Shard key choice. Choosing the shard key, or partition key in 

some systems, correctly is vital. If this is done incorrectly, or if 

needs change, the entire database must be re-sharded, which 

takes time, is likely to involve downtime, and may come at 

some risk to the data stored in the database. 

• Slower performance. The middleware is an extra layer, so 

both updates and reads will be slowed to some degree. Joins, 

in particular, become quite complex. As the join logic must 

be written in the application, it’s often less efficient and more 

error-prone than what distributed databases provide.

• Operational complexity. The sharding middleware 

introduces more moving parts, which increases the cost of 

management. It also impacts routine operations such as 

security patches, backups, and recovery. 

• Limited scalability. The problems above impose practical 

limits on the degree of scalability that’s achievable with 

sharding middleware. 

• Cost. The sharding middleware may have a license fee 

of its own, and additional servers, operations personnel, 

and operations steps are required. Whatever degree of 

redundancy needed, it is likely to be difficult to achieve 

without additional spending and staffing. All of this increases 

cost.  Moreover, developers often resort to writing distributed 

query processing logic into application software, diminishing 

their productivity.

DISTRIBUTED SQL ARCHITECTURE
Distributed SQL database software has automatic but configurable 

sharding or partitioning included in the database software itself. 

This reduces or eliminates the problems that sharding middleware 

brings with it. This software is often referred to as NewSQL database 

software. It includes databases such as Google Spanner, Google 

BigQuery, VoltDB, and SingleStore (MongoDB tries to achieve most 

of the same goals using a NoSQL architecture).

Some database software is targeted more at transactional workloads, 

and some at analytical workloads — but the ideal for most of these 

products is to combine both kinds of workloads into one. Distributed 

SQL databases accomplish this by the use of an architecture that's 

made up of three layers: (i) SQL API, (ii) distributed query execution, 

and (iii) distributed storage.

SQL API

The SQL API allows you to interact with your tables and data stored 

inside your database, as if you are running queries against a single-

server relational database. You may leverage the SQL API to insert, 

update/delete, perform join operations, or select data from tables for 

your web application.

DISTRIBUTED QUERY EXECUTION

An efficient query optimizer should be able to deliver an efficient 

query plan with minimal resource consumption and fast response 

time. In order to avoid bottlenecks on a single node, the query 

execution is distributed across nodes in the cluster. 

DISTRIBUTED STORAGE

In a highly scalable distributed system, data is sharded automatically 

and uniformly stored across nodes in a cluster. Sharding optimizes 

query performance for both distributed aggregate queries and 

filtered queries with equality predicates. A distributed storage system 

allows scaling by adding more servers, increasing capacity and 

performance linearly. Distributed storage architecture allows you to 

scale out the cluster size horizontally based on demand. Distributed 

databases employ different architectures to achieve optimized 

execution and user experience for their target workloads. Next, we’ll 

classify these architectures and list their characteristics.
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COMPARING ARCHITECTURES OF 
DISTRIBUTED SQL DATABASES

ADDITIONAL CHARACTERISTICS OF 
DISTRIBUTED SQL DATABASES

SYSTEM ARCHITECTURE CHARACTERISTICS EXAMPLES

Shared Everything
Not distributed SQL but included for comparison. These 
are single-node database instances with local CPU, local 
memory, and local disk storage. 

MySQL, PostgreSQL

Shared Memory
Compute nodes access a common memory address 
space via high-speed network

High-end computing in scientific 
simulations. Not common in business 
practice.

Shared Storage

Distributed SQL database where compute nodes are 
independent of durable storage. Compute nodes have 
local memory and buffer pool for ephemeral data. Pays 
the penalty of not having data locality. Updates require 
messaging between compute nodes to notify them of 
the changed state.

Oracle Exadata, Snowflake, Google 
BigQuery

Shared Nothing

Distributed SQL database where each node has its own 
local CPUs, memory and local storage. This design offers 
the best performance and efficiency due to data locality, 
moving the least amount of data across the network

SingleStore, VoltDB

SYSTEM CHARACTERISTICS DESCRIPTION

Types of Nodes

Uniform or role-based. In distributed SQL systems with uniform nodes, every node is identical. The downside 
of this approach is that each node must communicate with many nodes in the cluster to obtain sufficient 
metadata for cluster operation. In systems with role-based nodes, nodes perform in one role out of two or 
more. One benefit of this approach is the isolation of metadata management to only nodes in that role. 

Distributed Storage

To leverage storage across independent storage devices, a database is partitioned, or sharded, across 
multiple nodes.

The DBMS executes query fragments on each partition and then combines the results to produce a single 
answer.  Applications and users may have no knowledge of where data is physically located or how tables are 
partitioned or replicated. A partitioning scheme should be chosen that maximizes single-node transactions 
to avoid the need to coordinate the behavior of concurrent transactions running on other nodes.

Distributed Queries

Generally, there are two approaches for where query execution is performed: (1) move the query 
computation to the data or (2) move the data to the query computation. More modern distributed SQL 
databases leverage both approaches, choosing the method which provides the greatest efficiency for the 
query type.

Replication
Data is automatically copied to multiple nodes to increase availability, protecting against node failures. The 
number of copies depends on the distributed SQL implementation. There are two approaches: (1) master-
replica and (2) multi-master.
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Some of the additional characteristics that make a distributed SQL 

database special include:

• ANSI SQL. The distributed SQL environment makes it ex-

tremely easy to query your data, whether in rowstore or col-

umnstore tables, with a well-understood set of performance 

tradeoffs involving Data Definition Language (DDL) and Data 

Manipulation Language (DML) query design.

• Distributed DDL. Every distributed table DDL has exactly one 

shard key, which can contain any number of columns.

• Distributed Joins. Efficiently execute any join query, taking 

advantage of opportunities to improve efficiency based on 

sharding and replicated (reference) tables. Since reference 

tables are fully replicated on every machine in the cluster, 

leaves can join against their local copies of reference tables, 

with optimal performance.

• Distributed Query Optimizer. Leverages shard keys to deter-

mine how a query should be executed. For example, queries 

that fully match the shard key can be routed directly to a 

single partition on a single leaf server.  For queries that need 

to shuffle data across nodes, data movement is minimized.

QUERY EXECUTION ARCHITECTURE
Modern query execution engines are capable of handling queries 

against fast-moving operational data with high performance and low 

latency. The reference information below covers the Data Definition 

Language (DDL) and Data Manipulation Language (DML) affecting 

query design.

Most common distributed query execution serves in one of two roles: 

master/aggregator nodes or leaf nodes. Aggregators can be thought 

of as load balancers or network proxies, through which SQL clients 

interact with the cluster. The only data aggregators store is metadata 

about the machines in the cluster and the partitioning of the data. 

The leaves function as storage and compute nodes.

As a user, you interact with an aggregator as if it were “the” database, 

running queries and updating data as normal via SQL commands. 

Under the hood, the aggregator queries the leaves, aggregates 

intermediate results (hence the name), and sends final results back 

to the client. All of the communication between aggregators and 

leaves for query execution is also implemented as SQL statements.

Data is ideally sharded across the leaves into partitions. The number 

of partitions is generally configurable on a cluster level with a set 

variable or available as an optional parameter to the DDL statement. 

In the context of query execution, a partition is the granular unit of 

query parallelism. In some systems, every parallel query is run with 

a level of parallelism equal to the number of partitions. In others, an 

additional degree of parallelism is provided which is intra-partition 

parallelism.

Note: The syntax of the SQL commands shown in this reference card 

are examples and may vary slightly from one distributed SQL database 

to another. 

Different databases provide different sharding techniques. For 

example (this varies from one database to another):  To partition the 

tables, some databases allow you to simply add a PARTITION TABLE 

statement to the database schema. 

Here is an example statement that we can add to our schema to 

partition both tables by the State num column:

PARTITION TABLE towns ON COLUMN state_num;

DISTRIBUTED DDL
Traditionally, a schema designer must consider how to lay out 

columns, types, and indexes in a table. Many of these considerations 

still apply to a distributed system, with a few new concepts.

Every distributed table has exactly one shard key, or shard index. 

This functions like a normal table index and can contain any number 

of columns. This key also determines which partition a given row 

belongs to.

When you run an INSERT query, the aggregator computes the hash 

value of the values in the column or columns that make up the shard 

key, does a modulo operation to get a partition number, and directs 

the INSERT query to the appropriate partition on a leaf machine.

The only guarantee that you have about the physical location of data 

in the system is that any two rows with the same shard key value are 

guaranteed to be on the same partition.

Modern distributed query optimizers leverage shard keys to 

determine how a query should be executed. For example, queries 

that fully match the shard key can be routed directly to a single 

partition on a single leaf server. Group-by queries where the set 

of keys are guaranteed to not overlap between partitions can be 

executed in parallel on the leaves, with the results streamed back 

without any additional processing on the aggregator.

SHARD KEYS

Most common usage of shard keys can be classified into the 

following types:

PRIMARY KEY AS THE SHARD KEY

For example: If you create a table with a primary key and no explicit 
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shard key, the primary key will be used as the shard key by default. 

This helps avoid data skew.

Note: Designating a shard key is similar to the following syntax, but the 

actual syntax for any particular distributed SQL database may vary.

CREATE TABLE clicks (

click_id BIGINT AUTO_INCREMENT PRIMARY KEY,

user_id INT,

page_id INT,

ts DATETIME);

NON-UNIQUE SHARD KEY

The general syntax for a non-unique shard key is SHARD KEY (col1, 

col2, ...). 

For example:

  CREATE TABLE clicks (

click_id BIGINT AUTO_INCREMENT,

user_id INT,

page_id INT,

ts TIMESTAMP,

SHARD KEY (user_id),

PRIMARY KEY (click_id, user_id)

    );

In this example, any two clicks by the same user will be guaranteed 

to be on the same partition. You can take advantage of this property 

in query execution for efficient COUNT(DISTINCT user_id) queries, 

which knows that any two equal (non-distinct) user_id values will 

never be on different partitions.

DISTRIBUTED DML
How a table is partitioned affects the performance of some kinds 

of SELECT queries. In this section, we will look at common query 

patterns and how they are executed through the distributed system. 

You can use the EXPLAIN command, or graphical EXPLAIN in 

SingleStore Studio, to examine a query’s aggregator-level and leaf-

level query plans.

Note: An example to determine how query patterns are executed 

through the distributed system is similar to the following syntax, but 

the actual syntax for any particular distributed SQL database may 

vary.

Let’s assume the following schema:
  CREATE TABLE a (

a1 int,

a2 int,

a3 int,

SHARD KEY (a1, a2),

KEY (a3)

    );

    CREATE TABLE b (

b1 int,

b2 int,

b3 int,

SHARD KEY (b1, b2)

    );

    CREATE REFERENCE TABLE r (

r1 int,

r2 int,

PRIMARY KEY (r1),

KEY (r2)

    );

INDEX MATCHING

Matching the Shard Key. If you specify an equality on every column 

in the shard key, then the aggregator will direct the query to exactly 

one partition. Most queries do not fall into this pattern; instead, the 

aggregator must send queries to every partition in the cluster for 

intermediate results, then stitch them together.

These queries are sent to one partition:

  SELECT * FROM a WHERE a1 = 4 AND a2 = 10;

  SELECT a3, count(*) FROM a WHERE a1 = 4 AND a2 = 10 

GROUP BY a3;

These queries are sent to all partitions:

   SELECT * FROM a WHERE a1 = 4;

   SELECT * FROM a WHERE a1 = 4 OR a2 = 10;

Secondary Index Matching. If your query uses a secondary (non-

shard) index, then the aggregator must send the query to every 

partition in the cluster. Locally, each partition’s table will use its 

part of the secondary index to speed up the query. While the overall 

performance of the query is dictated by the seek and scan time of 

these indexes, the fact that the query must be sent everywhere in the 

cluster can increase the variance (and therefore overall latency) of 

the query.

This query matches the secondary index on the column a3:

   SELECT * FROM a WHERE a3 = 5;

No Index Matching. Queries that do not match any index perform 

a full table scan on all partitions. From the perspective of the 

aggregator, these queries are the same as queries that match a 

secondary index.
CODE CONTINUES IN NEXT COLUMN
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AGGREGATOR MERGING

Most queries that don’t involve aggregates, group-bys, or order-bys 

don’t require any further processing on the aggregator. These queries 

are forwarded verbatim to one or many partitions, and the partition’s 

results are streamed back to the client. More complex queries do 

require additional processing on the aggregator to merge the results 

from the leaves.

Order By. ORDER BY queries that don’t involve aggregates or 

group-bys can sort rows on the leaves and then merge the sorted 

intermediate results on the aggregator. For example, a query like 

SELECT * FROM a WHERE a3 = 5 ORDER BY a1 will follow this 

pattern. These queries leverage distributed (leaf) processing to do 

the majority of filtering and sorting, which makes them scalable with 

the amount of data in the system.

Aggregates. Queries with aggregates compute aggregate values 

on the leaves and then use aggregate merging on the aggregator to 

compute a final result. Each non-associative aggregate is converted 

into an expression that is associative. For example, AVG(expr) 

is converted to SUM(expr)/COUNT(expr) automatically by the 

aggregator. This is also known as local-global aggregation.

Distinct Aggregates. Distinct aggregates like COUNT(DISTINCT 

...) are not as efficient as simple aggregates like COUNT(*). Distinct 

values must be resolved across partition boundaries (you could have 

a3=10 on two different partitions in SELECT COUNT(DISTINCT a3) 

FROM a), so each partition must send every distinct value it has back 

to the aggregator. Queries with distinct aggregates ship one row per 

distinct value per partition back to the aggregator, and can therefore 

be expensive if there are a lot of distinct values.

There is an exception to this rule: if you run a DISTINCT aggregate 

over the shard key, distinct values can be resolved on the leaves, 

and the aggregator can merge aggregate values as it would with 

simple aggregates. An example of such a query would be SELECT 

COUNT(DISTINCT a1, a2) FROM a.

Group By. GROUP BY queries are spread very efficiently across the 

leaves. The aggregator sends the GROUP BY construct to the leaves 

so that the leaves process data down to the size of the final, grouped 

result set. The aggregator then merges together these grouped 

results (combining aggregates along the way) and sends the final 

result back to the client. The cost of a distributed GROUP BY query 

is usually proportional to the number of rows in the final result 

set, since the traffic through the system is roughly the number of 

partitions multiplied by the size of the grouped result set.

Having. HAVING clauses are processed entirely on the aggregator, 

since they perform filtering after the GROUP BY operation is complete. 

HAVING can be pushed down if the GROUP BY is fully partitioned.

DISTRIBUTED JOINS
Reference Joins. Distributed SQL architecture is fundamentally 

designed to efficiently execute any join query with a single sharded 

table and as many reference tables as you’d like. Since reference 

tables are fully replicated on every machine in the cluster, leaves can 

join the shards they own against their local copies of reference tables.

Note: An example to execute any join query with a single sharded table 

and as many reference tables is similar to the following syntax, but the 

actual syntax for any particular distributed SQL database may vary.

These queries leverage reference joins:

   SELECT * FROM a INNER JOIN r ON a.a1 = r.r1;

   SELECT * FROM r LEFT JOIN a ON a.a1 = r.r1;

   SELECT * FROM a INNER JOIN

(SELECT DISTINCT r1 FROM r) x

ON a.a1 = x.c;

Aligning Shard Keys for Performance. Aligning the shard keys of 

large tables enables more efficient joining, known as collocated join. 

It is possible to perform arbitrary distributed joins across any tables 

and along any column. However, if you join two tables with identical 

shard key signatures along that shard key, the joins will be performed 

local to the partitions, reducing network overhead.

  CREATE TABLE users (

id BIGINT AUTO_INCREMENT,

user_name VARCHAR(1000),

account_id BIGINT,

PRIMARY KEY (id)

    );

    CREATE TABLE clicks (

click_id BIGINT AUTO_INCREMENT,

account_id BIGINT,

user_id BIGINT,

page_id INT,

ts TIMESTAMP,

SHARD KEY (user_id),

PRIMARY KEY (click_id, user_id)

    );

In this example, id is the shard key of the users table, and the shard 

key on the clicks table has the same signature (a single BIGINT). 

These queries join locally without network overhead:

SELECT * FROM users INNER JOIN clicks ON users.id = 

clicks.user_id WHERE clicks.page_id = 10;

SELECT avg(c1.t - c2.t) FROM clicks c1 INNER JOIN 

clicks c2 ON c1.user_id = c2.user_id WHERE c1.page_id > 

c2.page_id;
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Whereas this query will stream rows between leaves:

SELECT u.account_id, count(distinct user_id), count(1) 

FROM users u INNER JOIN clicks c ON u.account_id = 

c.account_id GROUP BY u.account_id;

If you identify your data layout and join patterns in advance, this 

technique can be an extremely effective way to run performant joins 

between distributed tables.

CONCLUSION
Distributed SQL databases have numerous advantages over single-

process SQL databases that are scaled through sharding middleware 

and over NoSQL databases, which lack the expressive power and 

computational efficiency of relational SQL: 

Horizontal Scaling with Ease. The ability to distribute and process 

data evenly across all the machines in the cluster supports horizontal 

scale-out operation with considerably less operational complexity 

than the approach with sharding middleware and with greater ease 

than NoSQL databases in many cases. Also, the elastic scale-out 

architecture, with distributed massively parallel data processing, 

helps to easily manage large volumes of data.

Elasticity. The flexibility to grow or shrink the cluster size to match 

with the workload fluctuations can be easily achieved in modern 

distributed SQL databases.

Fault-Tolerance. Providing fault-tolerance through the crash 

recovery mechanisms is another major benefit offered by 

distributed SQL architecture, as the modern web applications are 

expected to be available all the time and site outages will have a 

direct impact on the business.

Partitioning/Sharding. Offers the flexibility to horizontally divide 

the data into multiple fragments based on table’s columns (i.e., 

partitioning attributes). This approach enables distributed systems 

to handle query execution against large tables in an efficient 

manner, by distributing the execution of queries to multiple 

partitions across multiple nodes and then combining their results 

together into a single result.

Data Resilience and High Availability. Distributed systems can 

process data across clusters of machines to maximize resilience 

and high availability, with options to leverage in-memory and disk 

infrastructure. Durability can be achieved with the flexibility in 

writing transactions directly to disk, or writing to memory, with 

full data persistence and archiving. Many of the database solutions 

ensure that each data shard remains highly available in case of 

any unexpected failures. In case of any failures at instance level, 

the native self-healing mechanism in modern distributed systems 

can automatically kick off the shard replicas within a fraction of a 

second and keep the database application running without any 

major outages.
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