
Bitwyre
chart-mixed FINTECH

Case Study

Overview
Cryptocurrency is a financial instrument with values that can fluctuate widely, or
perhaps a better term would be: “wildly.” Most cryptocurrency exchanges are spot
markets, which process trades in real time, but some exchanges also offer
derivatives: financial contracts that guarantee traders can buy cryptocurrency at a
specific value on a certain date, similar to stock options.

Bitwyre is a next gen, low latency cryptocurrency derivatives exchange where
investors can trade Bitcoin, Ethereum, Zcash, Monero, Tezos, Cosmos, Chia,
Solana, and other cryptocurrencies and stablecoins.

Challenges and Goals
Performance and scalability are table stakes in most verticals today, but nowhere
more so than in the high-speed, high-stakes world of financial exchanges.

The foundation of any financial exchange is mark-to-market (MTM) pricing: the
current market value of any investment, in real time, rather than book value. Any
financial exchange that cannot deliver MTM every millisecond of every day can be
subjecting itself and all who trade on the exchange to financial ruin fast.

Mark-to-Market Pricing and Real-Time Decisions 

MADE ON SINGLESTORE

Bitwyre Trades Redis for SingleStore — And
Powers an Ultra-fast, Scalable, Resilient,
Secure Cryptocurrency Exchange

About
Bitwyre is a cryptocurrency
exchange platform designed for
institutional and retail traders,
offering advanced trading features
such as low-latency execution,
customizable APIs, and multi-party
computation for secure transactions.

Industry
Fintech

Use case
SECURITY SCALABILITY

HIGH AVAILABILITY

Solutions
SingleStore Self-Managed

times 02

Traders are placing trades and entering into contracts that can either make or
lose massive amounts of money for themselves and themselves and millions of
investors every trading day. The risks are high enough when traders do this
based on real-time data. If it turns out that at any point in time traders were
placing these substantial financial bets based on stale data — due to an outage
or disruption in service, or simply slow data caused by an underperforming
database — the implications can be staggering. Traders can lose millions or
billions of dollars in seconds. Lawsuits filed by angry traders can cripple or close
an exchange — and if a trader was in a leveraged position on a transaction
(meaning they borrowed money to invest), the lawsuits can get overwhelming
very quickly. Even in the absence of a lawsuit, the exchange can lose fees
associated with trades.

What if a Cryptocurrency Becomes a Global Currency Standard? 
Better Be Ready. Better Be Ultra-Scalable 
The ability to scale to meet demand is crucial for any financial exchange, and even
more so for an exchange such as Bitwyre that handles high-frequency trading
(HFT). If/when a cryptocurrency becomes a global standard currency, potentially
every person on the planet (nearly 7.9 billion at time of publication) could be
engaged in buying and selling cryptocurrency, and entering into financial
contracts, on a daily basis.

“Most cryptocurrency exchanges create their own challenges and risks. They
focus on rapid bootstrapping and delivery, and fail to focus on the performance
and scalability of the data platform upon which every trade — and their business
— depends,” said Dendi Suhubdy, CEO and Co-Founder, Bitwyre.

The founders of Bitwyre were determined to take a different approach.

Bitwyre initially used Redis. Redis was single-threaded. It was optimized for fast
writes but not simultaneous reads and writes, and trading applications need both
for order updates. As a result, Suhubdy and Bitwyre found themselves racing
headlong into major issues.

A race condition occurs when two or more parts of an app that rely on each other
get locked in an infinite loop, bringing the app to a standstill. “Dirty reads” occur
when a transaction is allowed to read data from a row that has been modified by
another running transaction and not yet committed. When multiple users or
sessions are trying to update or delete the same data in a table, it creates
concurrency update problems, so the database locks the data for the first user or
session and allows them to update/delete the data — while temporarily locking
out other users/sessions. This slows down the database.

With Redis, Bitwyre was hit with race conditions, dirty reads, and database locks.
This negatively impacted Bitwyre’s performance, accuracy, durability, and
resilience. One real-world example of the impacts this had on the business came
in the form of stranded sell and buy orders. The Risk Engine in Bitwyre’s
architecture (more on this below) could not consistently define whether an order
needed to be sent to the Matching Engine, and orders failed. On Redis, not only
did orders fail, but the entire exchange experienced failures and outages. Redis
lacked durability and resilience in the face of those outages.

“SingleStore offered the
millisecond performance,
scalability, high availability,
and fault tolerance upon
which we can confidently run
a global cryptocurrency
exchange.”

Dendi Suhubdy 
CEO and Co-Founder, Bitwyre

All in all, Bitwyre knew it was impossible to run its growing cryptocurrency exchange on Redis going forward.

Bitwyre’s business goals for its exchange included:�

� Minimizing potential outages through a reliable syste�
� Achieving millisecond performance to support MTM and the other demands of a modern financial exchang�
� Achieving massive scalability to support rapid growth in cryptocurrency and its customer bas�
� Avoiding lawsuits and loss of trading volume due to outages and poor performance

Technology Requirements
Bitwyre had the vision to set itself apart from other crypto exchanges in two crucial ways. It first made the decision to own
its data center and use baremetal servers rather than the cloud. It also wanted to avoid the monolithic software
architecture that other popular exchanges use, and instead implement a microservices architecture for improved
scalability, resiliency, and availability.

The figure below illustrates the design decisions Bitwyre has made to ensure scalability, top performance, and reliability
compared with the design tradeoffs being made at other cryptocurrency exchanges.

Building the exchange on a microservices foundation addresses a large or complex problem by using a set of smaller,
simpler services that work together to achieve the business goal. Each microservice is a self-contained process delivering
a specific capability that rolls up into the business application. Each sprint team operates its own microservice, managing
its own product backlog, developing its portion of the app, and implementing updates and fixes as needed, all
independently from the other sprint teams. No team has to wait for another team to complete its work — and no one
microservice can take down the entire business application.

Design/Infrastructure Difference Other Exchanges Bitwyre

Monolithic vs Microservices Monolithic - Single Database Microservices - Multiple Databases

Single Threaded vs. Multi Threaded Multi Threaded
Single Threaded containers with multiple

partitioned message queues

Matching Engine
Database Operations (eg. Big Query, KX

Sytsems kdb+)
All in-memory data structures with event

sourcing

Cloud vs. Baremetal Cloud Baremetal

Why SingleStore
Bitwyre wanted an in-memory database that worked with RedPanda, the Kafka-compatible event streaming platform, as well as
a Kafka-compatible API and REST API gateways. The database had to support baremetal deployment in Bitwyre’s own data
center running a Kubernetes operator; support a distributed, microservices architecture; and deliver ultra-fast performance to
keep up with the millisecond market demands of all financial markets, but particularly cryptocurrencies.

SingleStore met all of these requirements and more. It supports microservices design and Kubernetes on baremetal machines,
and is designed for scaling simultaneous reads, writes, and order updates.

Another key factor in Bitwyre’s strategy was cost. “We are not VC funded; we’re bootstrapping the company to profitability, but
unlike others in our position, we’re doing it with a vision and a scalable data strategy to actually help us get there,” said Suhubdy.
“SingleStore offered the millisecond performance, scalability, high availability, and fault tolerance upon which we can confidently
run a global cryptocurrency exchange.”

times 03

Solution
Bitwyre is running SingleStore Self-Managed on baremetal hardware in Bitwyre’s own data center, on top of four virtual
machines (VMs). The application is built with 100 microservices running Risk Engines, Matching Engines, Feed Engines, and a
Gateway. Every engine except the matching engine is running in Kubernetes for added resiliency.

Suhubdy explained a key feature of Bitwyre’s architecture. The Order Management System (OMS) and Risk Engine each have
their own state, and with SingleStore, “You can support microservices principles, with each microservice reporting its own
state, while connecting to one SingleStore cluster.”

The concept of a pod in Kubernetes makes it easy to tag multiple containers for treatment as a single unit of deployment.
They are co-located on the same host and share the same network, memory and storage resources. Essentially, a pod is the
new VM in the context of microservices and Kubernetes.

Financial exchanges are graded on round-trip time: total elapsed time from the moment an order enters the system to the
moment it flashes back out to the customer. Bitwyre’s Matching Engine built on SingleStore delivers matching throughput of
six million orders/second and event consumers and producers are capable of one million orders/second, respectively; so
resulting system throughput, or round-trip time, is 1M orders/second.

“We’re self-hosting SingleStore Self-Managed on four VMs on baremetal. Our SingleStore Premium Enterprise license enabled
us to scale our trading engine to one million orders/second with one millisecond latency, or round-trip time. Other crypto
exchanges have an 18 millisecond round-trip time,” said Suhubdy. “SingleStore is able to deliver this level of latency even
while supporting multiple pods with parallel reads and writes,” said Suhubdy.

Speed, scalability, and high availability are critical at Bitwyre. So, too, is security & compliance.

‘Wash trading’ is the illegal process of buying shares of a company through one broker while selling shares through a different
broker so the trades essentially cancel each other out. HFT firms and cryptocurrency exchanges can also use wash trading to
manipulate prices, e.g., by creating fake volumes for a stock at one investment firm to pump its price — then shorting the
stock at another firm to reap a windfall.

SINGLESTORE

Pipelines

Pipelines

Pipelines

Pipelines

Aggregator

Aggregator

Leaf 1

Leaf 2

Bitwyre’s Architecture With SingleStore

Order
Management

System

Risk Engine

Rest API
Gateway

user
Bitwyre User

Matching EngineWebsocket API
Gateway

times 04

Bitwyre manages time series data inside ColumnStore for further analysis to detect and prevent fraud including ‘wash trades’
and other insider trading, and to support various forms of real-time market analytics.

“One thing we are particularly proud of is that we do not use soft matching of data,” said Suhuby. “Our matching algorithm
ensures speed and precision in our system to help prevent insider trading and fraud.”

Suhubdy added, “We migrated approximately 100 micro-services from Redis to SingleStore in less than two months. We didn’t
have any major challenges moving to SingleStore because the developer experience was that good.”

Bitwyre’s Order Management System

Deployment

SingleStore

Pod 1 Pod 2 Pod 3 Pod 4 Pod 5

Kubernetes

Proxmox

Baremetal

Outcomes
The visionaries at Bitwyre have implemented SingleStore to power their ultra-fast, massively scalable, resilient, and secure
cryptocurrency exchange that differentiates them from competitive exchanges and future-proofs their business.

times 05

A Millisecond-Speed, and Durable,
Exchange. And No “Dirty Reads”

“After we made the move to
SingleStore, we got no more dirty
reads. It really scales for simultaneous
reads and writes. The data uses tiered
storage, so order states are very
recent. Since we have nanosecond
timestamps, we see everything that
happened within the last second. It’s
very fast,” said Suhubdy.

Reduced Risk of Disruptions and
Outages

Bitwyre put SingleStore’s High
Availability nodes to the test — not in
test, but in production — to confirm
that the system would be resilient and
accurate in the event of failure. “We
deleted one leaf and multiple pods to
see if it impacted the trading system in
live production,” said Suhubdy. “The
system performed like there was no
problem with the Order Management
System.”

Fraud Detection to Ensure Trader
Confidence and Regulatory
Compliance

Bitwyre is using SingleStore to manage
time series data in order to detect and
prevent fraud. Beyond that, this same
time series data enables Suhubdy and
team to support a range of other
analytics about the market.

times 06

Increased Profitability for Bitwyre

Bitwyre’s ability to handle higher daily trading volumes drives
more revenue and is supporting its bootstrapping efforts to
drive trading volume in excess of $1.5 million per day.

“We can handle more daily trading volumes, and our net
profit is determined by 4.5 basis points of that volume. The
higher the throughput is, the higher our profitability,”
concluded Suhubdy.

Better Experiences for Traders

“Throughput allows you to monetize volume, but speed is
what gets people to keep trading. If they don’t have fast
execution, they’ll probably look for a different exchange,”
said Suhubdy.

Bitwyre’s Matching Engine design leverages SingleStore’s
all in-memory data structures with event sourcing to keep
existing traders trading and new ones coming in the door.

	Bitwyre_Case-Study_01
	Bitwyre_Case-Study_02
	Bitwyre_Case-Study_03
	Bitwyre_Case-Study_04
	Bitwyre_Case-Study_05
	Bitwyre_Case-Study_06

