*VTE Risk Factors Central venous catheter (including non-tunneled, Severe dehydration/hyperosmolar state (serum Personal history of venous thrombosis Blood stream infection tunneled and PICCs) Clinical Pathways Program # GUIDELINE: VENOUS THROMBOEMBOLISM (VTE) PROPHYLAXIS IN CHILDREN AND ADOLESCENTS, INPATIENT Updated: March 22, 2022 ## Clinical algorithm: or procedural intervention. # Clinical guideline summary **CLINICAL GUIDELINE NAME:** Venous Thromboembolism (VTE) Prophylaxis in Children and Adolescents, Inpatient PATIENT POPULATION AND DIAGNOSIS: VTE risk screening is strongly encouraged for all pediatric patients, regardless of age. Children 12 years old and above must be screened for VTE risk since their VTE risk profile becomes similar to that of adult patients. Initial screening should be completed within 24 hours of admission. Reassessment of risk should be done when the patient changes level of care, has a surgical/invasive procedure, or a catheter placed during the inpatient stay. Prophylaxis should be considered based on the risk score algorithm. Mechanical and pharmacologic dosing recommendations are found in this guideline. Consultation with Pediatric Hematology is not necessary unless a VTE is identified. Included: All patients admitted to the children's hospital Excluded: Patients with current venous thromboembolism Premature infants (less than 36 weeks gestation) APPLICABLE TO: Spectrum Health Grand Rapids Hospitals, Helen DeVos Children's Hospital BRIEF DESCRIPTION: The rate of venous thromboembolism (VTE) among hospitalized children and adolescents is low compared to adults, but substantially increasing over time. Recent statistics report nearly 60 events of VTE per 10,000 admissions. At Helen DeVos Children's Hospital, VTE is the second most common hospital acquired condition behind Central Line Associated Blood Stream Infection. The incidence of VTE occurrence is bimodal, peaking in children less than 1 year old (mostly associated with central venous lines) and those over the age of 10. In addition, many children's hospitals care for individuals in the 18-25-year age range who should also follow VTE prophylaxis guidelines. Although there are no validated scoring systems for VTE risk in children under 18 years of age, risk factors are clear and protocols have been established, evaluated, and published for a single center experience. **OVERSIGHT TEAM LEADER(S):** Chi Braunreiter, Rick Hackbarth, John Huntington OWNING EXPERT IMPROVEMENT TEAM (EIT): HDVCH VTE EIT MANAGING CLINICAL PRACTICE COUNCIL (CPC): Children's Health CPC CPC APPROVAL DATE: April 21, 2022 OTHER TEAM(S) IMPACTED: Hospitalist, PCICU, Nursing **IMPLEMENTATION DATE:** March 2022 **LAST REVISED:** February 2022 FOR MORE INFORMATION, CONTACT: Chi Braunreiter ## Clinical pathways clinical approach #### TREATMENT AND MANAGEMENT: #### 1. Purpose - 1.1. Background The rate of venous thromboembolism (VTE) among hospitalized children and adolescents is low compared to adults, but substantially increasing over time. Recent statistics report nearly 60 events of VTE per 10,000 admissions. At Helen DeVos Children's Hospital, VTE is the second most common hospital acquired condition behind Central Line Associated Blood Stream Infection. The incidence of VTE occurrence is bimodal, peaking in children less than 1 year old (mostly associated with central venous lines) and those over the age of 10. In addition, many children's hospitals care for individuals in the 18-25-year age range who should also follow VTE prophylaxis guidelines. Although there are no validated scoring systems for VTE risk in children under 18 years of age, risk factors are clear and protocols have been established, evaluated, and published for a single center experience. - 1.2. Target Population for Guideline Recommendation VTE risk screening is strongly encouraged for all pediatric patients, regardless of age. Children 12 years old and above must be screened for VTE risk since their VTE risk profile becomes similar to that of adult patients. Initial screening should be completed within 24 hours of admission. Reassessment of risk should be done when the patient changes level of care, has a surgical/ invasive procedure, or a catheter placed during the inpatient stay. Prophylaxis should be considered based on the risk score algorithm. Mechanical and pharmacologic dosing recommendations are found in this guideline. Consultation with Pediatric Hematology is not necessary unless a VTE is identified. - 1.2.1. Included: All patients admitted to the children's hospital - 1.2.2. Excluded: - 1.2.2.1. Patients with current venous thromboembolism - 1.2.2.2. Premature infants (less than 36 weeks gestation) #### 2. Definitions - 2.1. <u>Altered mobility</u>: a permanent or temporary state in which the child has a limitation in independent, purposeful physical movement of the body or of one or more extremities 2.1.1. Immobility: permanent state of altered mobility (e.g., paralysis) - 2.1.2. Impaired physical mobility: temporary state of immobility (e.g., cast, post-op) - 2.1.2. Impared physical mobility. temporary state of immobility (e.g., cast, post- - 2.2. <u>Bleeding</u>, defined by The International Society of Hemostasis and Thrombosis: - 2.2.1. Major Bleeding: fatal bleeding, overt bleeding with hemoglobin drop of greater than or equal to 2 g/dL in 24 hours, bleeding into a critical organ (brain, lung, retroperitoneal), or bleeding requiring surgical intervention - 2.2.2. Minor Bleeding: overt or macroscopic bleeding that does not meet criteria for major bleeding. - 2.3. <u>Mechanical prophylaxis</u>: any method to assist the flow of blood in the deep veins of the leg (e.g., sequential compression devices). - 2.3.1. Sequential Compression Device (SCD): a device designed to intermittently squeeze blood from underlying deep veins in the leg upon compression of an inflatable sleeve, and to allow the blood to flow again when it decompresses; also known as intermittent compression device (ICD) or intermittent pneumatic compression (IPC) - 2.4. <u>Superior Vena Cava (SVC) Syndrome</u>: thrombus that obstructs the superior vena cava causing swelling of the face and neck - 2.5. <u>Thrombophilia</u>: an inherent or acquired condition that may result in the increased formation of blood clots / thrombus (blood clotting disorder) - 2.6. <u>Venous Thromboembolism (VTE)</u>: a blood clot (thrombus) in a vein or one that has broken free and is carried in the bloodstream (embolus) 2.7. <u>Critical Illness</u>: Admitted to PCCU **and** has any of the following-sepsis or systemic inflammatory response syndrome (SIRS), acute mechanical ventilation (not home vent dependent on usual settings), requires a vasoactive infusion, cyanotic heart disease or poor myocardial contractility (SF < 15%) #### 3. Guideline Recommendations - A. VTE prophylaxis with a sequential compression device (SCD) is indicated for the following- - During surgery for patients greater than 12 years old who are expected to undergo a procedure lasting greater than 60 minutes. SCDs should be applied to the lower extremities from time of induction of general anesthesia; Refer to **Table 1** for contraindications to mechanical prophylaxis. - ii. For patients falling into the moderate risk category for VTE (and a few in the low moderate risk category) who are greater than or equal to 12 years old. Evidence to support mechanical prophylaxis in younger children is sparse, but active or passive range of motion (ROM) should be encouraged in younger children with altered mobility. SCDs should be considered in younger children at risk for VTE if appropriately sized sleeves are available, especially in higher risk children for whom pharmacologic prophylaxis would be contraindicated: Refer to Table 1 for contraindications to mechanical prophylaxis. ### Table 1: Contraindications to Mechanical Prophylaxis - Lower extremity Deep Vein Thrombosis (DVT), present or suspected - Extremity with an acute fracture - Extremity with peripheral IV (PIV) access in place - Skin conditions involving the extremity (e.g., dermatitis, burn) - Unable to achieve correct fit due to patient size - B. Patients should be assessed for VTE risk factors (see **Table 2**) and assigned to the risk category (see **Table 3**) respective to their assessment: - i. At the time of inpatient admission, and - ii. Reassessed every 72 hours of hospitalization, and - iii. With procedural intervention, any change in level of care, or catheter placement #### Table 2: VTE Risk Factors* - Blood stream infection - Central venous catheter (including non-tunneled, tunneled and Peripherally Inserted Central Catheters (PICC)) - Personal history of venous thrombosis - Severe dehydration / hyperosmolar state (serum osmolality > 320 mOsm/kg) - Inflammatory diseases acute and/or chronic (e.g., elevated inflammatory markers, Inflammatory Bowel Disease (IBD), Systemic Lupus Erythematosus (SLE) - COVID/ MISC - Medications: e.g., Asparaginase - Medications: Estrogen use (within past two months) - Obesity Body Mass Index (BMI) > 95th percentile for age, use BMI > 30 if > 18 years old) - · Oncologic diagnosis, - · Recent surgery- within the last 30 days - Protein losing disorders (protein-losing enteropathy, nephrotic syndrome, persistent chylothorax) - Thrombophilia known, or family history of clots - Major Trauma: > 1 lower extremity long bone fracture, complex pelvic fractures, spinal cord injury, or requiring admission to the Pediatric Critical Care Unit - Critical Illness- as defined in section 2.7 ^{*}to be used in conjunction with risk category scoring Table 3 (see below) | Table 3: Determining VTE Risk Category | | | |--|------------------------------|-----------------| | Expected altered mobility > 48 hours | Number of VTE + risk factors | = Risk category | | NO | None | Very Low | | NO | 1 or more | Low Moderate | | YES | 0 or 1 | Moderate | | YES | 2 or more | High | - C. VTE risk assessment will be completed by an ordering provider (i.e. attending physician, resident, Physician Assistant, Nurse Practitioner) and documented accordingly in the medical record. - D. When indicated, it is recommended that VTE prophylaxis (see **Table 4**) begin no later than 24 hours after admission, unless contraindicated (see **Table 1** and **Table 5**). - i. <u>NOTE:</u> Example strategies for risk factor mitigation include removing venous catheters as soon as possible, treating infections, encouraging mobility, and avoiding estrogen therapy | Table 4: VTE Prophylaxis Stratified by Risk Category | | | |---|--|--| | Very Low/ Low Moderate risk | Moderate risk | High risk | | Encourage early ambulation | Encourage early ambulation | Encourage early ambulation | | Mitigate risk factors (see NOTE under 3D) | Mitigate risk factors (see NOTE under 3D) | Mitigate risk factors (see NOTE under 3D) | | Low/Moderate- also consider
SCD while at rest for those
patients with risk factors for
lower extremity DVT | Administer mechanical prophylaxis (see Table 1) SCD preferred Make efforts to achieve 18 hours of daily use | Administer mechanical prophylaxis (see Table 1) SCD preferred Make efforts to achieve 18 hours of daily use | | | | Consider pharmacologic prophylaxis (see Table 5) Consider Pediatric Hematology consult when weighing risk versus benefit in patients at risk of bleeding | | Table 5: Contraindications to Pharmacologic Prophylaxis | | | |---|--|--| | Absolute contraindications | Relative contraindications | | | Bleeding disorder; known or tendency | Intracranial mass | | | Hemorrhage; present, or at high risk | Neurosurgical procedure | | | Unable to sustain platelet count > 50,000 mm³ | Spine surgery within the past 48 hours | | | Twice daily dosing of Low Molecular Weight | Pelvic fracture within past 48 hours | | | Heparin (LMWH) with epidural catheter in place | Uncontrolled hypertension | | | Lumbar puncture within the last 4 hours | Incomplete or complete spinal cord injury with | | | Epidural catheter removal within the last 4 hours | suspected/known paraspinal hematoma | | | or planned epidural catheter placement; decision | Heparin use in patients with Heparin-Induced | | | must be <u>discussed</u> and <u>approved</u> by | Thrombocytopenia (HIT) or allergy to pork | | | anesthesiology | products | | - E. Recommendations to consider prior to prescribing pharmacologic prophylaxis: - i. In surgical patients seek input regarding bleeding risk prior to initiation - a. Discuss timing of initiation or delay in therapy with surgical team (e.g., neurosurgery, orthopedic surgery). - ii. Consider Pediatric Hematology consultation when considering alternative pharmacologic agents, when weighing risk versus benefit in patients at risk of bleeding, or if patient is thought to have a confirmed VTE - F. Review dosing and monitoring section for pharmacologic prophylaxis - Evaluate renal function (i.e., serum creatinine) upon initiation & every 2 weeks while receiving anticoagulation prophylaxis; dose may need to be adjusted for patients with renal dysfunction. - Obtain a complete blood count (CBC) upon initiation & approximately every 2 weeks while receiving anticoagulation prophylaxis. - a. Maintain platelet count>50,000 mm³; risk of bleeding may outweigh benefit of prophylaxis if the patient is unable to maintain the platelet parameter. - b. Monitor for evidence of heparin-induced thrombocytopenia (HIT) - c. A significant drop in hemoglobin should prompt re-assessment. #### 4. Pharmacologic Prophylaxis Medication Recommendations - A. Pharmacologic agent dosing and administration - i. Subcutaneous (SQ) administration of prophylactic unfractionated heparin (UFH) or LMWH (enoxaparin) is recommended. - a. continuous infusion of UFH can be used in certain situations at any dose ≤ 10 units/kg/hr. No monitoring is required unless signs or symptoms of bleeding - ii. **Always** discuss prophylaxis start and timing thereof with attending surgeon or anesthesia (when neuraxial procedure has been done or epidural catheter is in place or recently removed) prior to initiation - iii. Initiate prophylactic therapy as described in Tables 6, 7 - a. UFH: is preferred for patients who are recent post-op patients and those who are anticipated to go to surgery soon due to the ease of reversal with protamine and short half-life of the drug. It also may be considered instead of LMWH for patients with significant renal dysfunction or burn patients requiring VTE prophylaxis. - b. LMWH (enoxaparin) is the preferred agent for thromboprophylaxis unless there is evidence of CNS bleeding, anticipated surgery, or epidural catheter in place. - iv. The anti-factor Xa level is used as a measure of efficacy for low-molecular weight heparins (LMWH), when appropriate. - a. **Note:** Epic identifies anti-factor Xa levels for LMWH as "LMWH level" - b. Monitor anti-factor Xa when indicated, as noted in Table 6 - c. Check the anti-factor Xa level 4 hours following dose administration (subcutaneous delivery). - d. Maintain an anti-factor Xa level between 0.2 to 0.4 units/mL in patients receiving prophylactic LMWH therapy (hyperbilirubinemia or high plasma hemoglobin levels may interfere with assay and cause anti Xa levels to be falsely low). Consult lab for the most recent reference range for LMWH. - e. Close monitoring is recommended for the following patient populations: young patients, obese patients, and patients with renal impairment or failure. - v. Rivaroxaban (direct Xa inhibitor) may be used for VTE prophylaxis in some adolescent young adult patients with cancer. Discuss management with Pediatric Hematology and Oncology. - vi. On rare occasions, agents other than LMWH, heparin, or rivaroxaban may be indicated for VTE prophylaxis. Consider Pediatric Hematology and pharmacy consultation. | Table 6: Prophylactic LMWH (enoxaparin) Dosing & Monitoring | | | |---|---|--| | Patient type/age | Enoxaparin dosing | Monitoring / Notes* | | < 2 months | 0.75 mg/kg/dose SQ Q12 hours | Monitoring of anti-factor Xa levels indicated/recommended | | 2 months or < 60 kg
(up to 18 years) | 0.5 mg/kg/dose SQ Q12 hours
(max starting dose of 30
mg/dose) | Monitoring of anti-factor Xa levels
may be indicated if enoxaparin
continued ≥ 3 days | | > 18 years or ≥ 60 kg
(up to 125 kg) | 40 mg SQ once daily OR
30 mg SQ every 12 hours | Monitoring of anti-factor Xa levels
may be indicated if enoxaparin
continued ≥ 7 days | | > 125 kg | 40 mg SQ every 12 hours | Monitoring of anti-factor Xa levels indicated/recommended | | Renal dysfunction | Consider decreasing dose, switching to UFH, and/or consult pharmacy) | Monitoring of anti-factor Xa levels indicated/recommended | |-------------------|--|---| ^{*} Anti-Xa levels should be drawn 4 hours post the 3rd or 4th SQ dose and should be 0.2-0.4 units/mL for prophylaxis. Consult lab for the most recent reference range for LMWH. Consult with pharmacy for dose change recommendations. | Table 7: Prophylactic Unfractionated Heparin (UFH) Dosing & Monitoring | | | |--|-------------------------------|-------------------------| | Patient type/age | UF Heparin dosing | Monitoring / Notes | | <u><</u> 60 kg | 75 units/kg/dose SQ Q12 hours | | | > 60 kg | 5000 units SQ every 12 hours | | | > 18 yrs or > 125 kg | 5000 units SQ every 8 hours | Consider CBC monitoring | | Continuous infusion | ≤ 10units/kg/hr | | | Renal dysfunction | No adjustment required | | - B. Adhere to the following precautions when administering LMWH: - Always discuss prophylaxis timing with attending surgeon prior to initiation / re-initiation - ii. Avoid intramuscular injections and arterial punctures while receiving LMWH prophylaxis; consider appropriate precautions if arterial punctures are warranted. - iii. Avoid aspirin or other antiplatelet drugs while receiving LMWH prophylaxis; acetaminophen is the preferred drug if analgesia or an antipyretic is required. - iv. Hold the 2 doses of LMWH prior to a scheduled lumbar puncture (at least 12 hours from last injection). - a. Note: Paraspinal hematomas and paralysis have been reported in patients having a lumbar puncture while receiving LMWH. - v. Do NOT use twice daily dosing of LMWH in patients receiving continuous epidural anesthesia. **Any** VTE prophylaxis with an epidural catheter in place should be discussed with anesthesia. - vi. Discontinue LMWH 24 to 36 hours prior to scheduled surgical procedures (e.g., administer the last dose of LMWH in the morning the day prior to the procedure). - C. American Society of Regional Anesthesia and Pain Medicine Guidelines Spectrum Health Anesthesia follows these guidelines for **ADULT** VTE prophylaxis and neuraxial blockage. - i. Refer also to Neuraxial Anesthesia and Anticoagulation Guidelines - ii. Discuss with anesthesiology, primary care team, and pharmacy - a. about how long to hold prophylaxis anticoagulation prior to epidural catheter placement or manipulation - b. whether prophylaxis anticoagulation can be restarted while a catheter remains in place, and - c. when to restart prophylaxis anticoagulation after a catheter is removed. - D. Medication management - The primary care team is responsible for communicating with involved surgical teams regarding recommendations on holding anticoagulation prior to and following procedures / surgeries - ii. Primary care team is responsible for entering appropriate orders into the Electronic Medical Record and communicating the plan. ## References: - 1. Alhazzani, W.; LimW.; Jaeschke, RZ; Murad, MH; Cade J; and Cook DJ: Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. *Crit Care Med*, 41(9): 2088-98, 2013. - Arabi, YM; Khedr, M; Dara SI; Dhar GS; Bhat SA; Tamim, HM; and Afesh LY: Use of intermittent pneumatic compression and non-graduated compression stockings is associated with lower incident VTE in critically ill patients: A multiple propensity scores adjusted analysis. *Chest*, 144(1): 152-9, 2013. - 3. Askegard-Giesmann, JR; O'Brien, SH; Wang, W; Kenney, BD: Increased use of enoxaparin in pediatric trauma patients. *J Pediatr Sura*. 47(5): 980-3. 2012. - 4. Azu, MC; McCormack, JE; Scriven, RJ; Brebbia, JS; Shapiro, MJ; and Lee, TK: Venous thromboembolic events in pediatric trauma patients: is prophylaxis necessary? *J Trauma*, 59(6): 1345-9, 2005. - 5. Barrera, LM; Perel, P; Ker, K; Cirocchi, R; Farinella, E; and Morales Uribe, CH: Thromboprophylaxis for trauma patients. *Cochrane Database Syst Rev*, 3: CD008303, 2013. - Bidlingmaier, C; Kenet, G; Kurnik, K; Mathew, P; Manner, D; Mitchell, L; Krumpel, A; and Nowak-Gottl, U: Safety and efficacy of low molecular weight heparins in children: a systematic review of the literature and meta-analysis of single-arm studies. Semin Thromb Hemost, 37(7): 814-25, 2011. - 7. Christopher M Bono, William C Watters, Michael H Heggeness, Daniel K Resnick, William O Shaffer, Jamie Baisden, Peleg Ben-Galim, John E Easa et.al: An evidence-based clinical guideline for the use of antithrombotic therapies in spine surgery. Spine J, 9 (12): 1046-51, 2009. - 8. Branchford, B; Wang, M; Wathen, B; Ranade, D; Neiman, J; Coughlin, R; Pickard, D; and Children's Hospital of Colorado: *Unpublished document*. Clinical Care Guideline: VTE prophylaxis 2012. - 9. Branchford, B; Mourani, P; Bajaj, L; Manco-Johnson, M; Wang, M; and Goldenberg, NA: Risk factors for in-hospital venous thromboembolism in children: a case-control sudy employing diagnostic validation. *Haematologica*, 97(4): 509-15, 2012. - 10. Candrilli, SD; Balkrishnan, R; and O'Brien, SH: Effect of injury severity on the incidence and utilization-related outcomes of venous thromboembolism in pediatric trauma inpatients. *Pediatric Critical Care Medicine*, 10(5): 554-557, 2009. - 11. Coleridge-Smith, PD; Hasty JH; and Scurr, JH: Venous stasis and vein lumen changes during surgery. *Br J Surg*, 77(9): 1055-9, 1990. - 12. Cyr, C; Michon, B; Pettersen, G; David, M; and Brossard, J: Venous thromboembolism after severe injury in children. *Acta Haematol*, 115(3-4): 198-200, 2006. - 13. Falck-Ytter, Y, et al: Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*, 141(2 Suppl): e278S-325S, 2012. - 14. Galson, SK: The Surgeon General's call to action to prevent deep vein thrombosis and pulmonary embolism. Report for *Call to Action*: 1-49, 2008. - 15. Gould, MK; Garcia, DA; Wren, SM; Karanicolas, PJ; Arcelus, JI; Heit, JA; Samama, CM; and American College of Chest, P: Prevention of VTE in non-orthopedic surgical patients: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*, 141(2 Suppl): e227S-77S, 2012. - 16. Grandas, OH; Klar, M; Goldman, MH; and Filston, HC: Deep venous thrombosis in the pediatric trauma population: an unusual event: report of three cases. *Am Surg*, 66(3): 273-6, 2000. - 17. Greenwalk, LJ; Yost, MT; Sponseller, PD; Abdullah, F; Ziegfeld, SM; and Ain, MC: The role of clinically significant venous thromboembolism and thromboprophylaxis in pediatric patients with pelvic or femoral fractures. *J Pediatr Orthop*, 32(4): 357-61, 2012. - 18. Handoll, HGH; Farrar, MJ; McBirnie, J; Tytherleigh-Strong, GM; Milne, AA; and Gillespie, WJ: Heparin, low molecular weight heparin and physical methods for preventing deep vein thrombosis and pulmonary embolism following surgery for hip fractures. *Cochrane Database Syst Rev*, (4), 2002. - 19. Hanson, S.J.; Punzalan, R.C.; Greenup, R. A.; Uu, H.; Sato, T.T.; and Havens, P.L.: Incidence and risk - factors for venous thromboembolism in critically ill children after trauma. J Trauma, 68(1): 52-6.2010. - 20. Ho,K. M.,and Tan,J. A.: Stratified meta-analysis of intermittent pneumatic compression of the lower limbs to prevent venous thromboembolism in hospitalized patients. Circulation, 128(9): 1003-20, 2013. - 21. Horlocker, T.T. et al.:Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Fourth Edition). Reg Anesth Pain Med, 43:263-309, 2018. - 22. Kahn,S.R.et al.: Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis,9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 141(2 Suppi): e195S-226S,2012. - 23. Kakkos,S.K.;Caprini,J. A.;Geroulakos,G.;Nicolaides,A.N.;Stansby,G.P.;Tsolakis,I. A.;and Reddy,D.J.: Can combined (mechanical and pharmacological) modalities prevent fatal VTE? Int Angiol. 30(2): 115-22. 2011. - 24. Michota, F.A.: Bridging the gap between evidence and practice in venous thromboembolism prophylaxis: the quality improvement process. J Gen Intern Med, 22(12): 1762-70, 2007. - Monagle, P.; Chan, A.K.; Goldenberg, N. A.; Ichord, R.N.; Journeycake, J.M.; Nowak-Gatti, U.; Vesely, S.K.; and American College of Chest Physicians: Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 141(2 Suppl): e737S-801S, 2012. - 26. O'Brien,S.H.,and Candrilli,S.D.: In the absence of a central venous catheter, risk of venous thromboembolism is low in critically injured children, adolescents, and young adults: evidence from the National Trauma Data Bank. Pediatr Crit Care Med, 12(3): 251-6, 2011. - 27. Raffini,L.;Huang,Y.S.;Witmer,C.;and Feudtner,C.: Dramatic increase in venous thromboembolism in children's hospitals in the UnitedStates from 2001to 2007. Pediatrics, 124(4): 1001-8, 2009. - 28. Raffini L, Trimarchi T, Beliveau J, Davis D. Thromboprophylaxis in a pediatric hospital: a patient-safety and quality-improvement initiative. *Pediatrics*. 2011;127(5):e1326–32. doi:10.1542/peds.2010-3282. - 29. Rana, A.R.; Michalsky, M.P.; Teich, S.; Groner, J.1.; Caniano, D. A.; and Schuster, D.P.: Childhood obesity: a risk factor for injuries observed at a levei-tlrauma center. J Pediatr Surg, 44(8): 1601-5, 2009 - 30. Schwenk,W.;Bohm,B.;Fugener,A.;and Muller,J.M.: Intermittent pneumatic sequential compression (ISC) of the lower extremities prevents venous stasis during laparoscopic cholecystectomy. A prospective randomized study. Surg Endosc, 12(1): 7-11, 1998. - 31. Sharathkumar, A. A.; Mahajerin, A.; Heidt, L.; Doerfer, K.; Heiny, M.; Vik, T.; Fallon, R.; and Rademaker, A.: Risk-prediction tool for identifying hospitalized children with a predisposition for development of venous thromboembolism: Peds-Clot clinical Decision Rule. J Thromb Haemost, 10(7): 1326-34, 2012. - 32. Stein, P.D.; Kayali, F.; and Olson, R.E.: Incidence of venous thromboembolism in infants and children: data from the National Hospital Discharge Survey. J Pediatr, 145(4): 563-5, 2004. - 33. Stem,J.;Christensen,A.;Davis,D.;and Raffini,L.: Safety of prophylactic anticoagulation at a pediatric hospital. J Pediatr Hematol Oncol,35(7): e287-91, 2013. - 34. Takemoto, C.M. et al.: Hospital-Associated Venous Thromboembolism in Children: Incidence and Clinical Characteristics. J Pediatr, 2013. - 35. Truitt,A.K.;Sorrells,D.L.;Halvorson,E.;Starring,J.;Kurkchubasche,A. G.;Tracy,T. F.,Jr.;and Luks,F.1.: Pulmonary embolism: which pediatric trauma patients are at risk? J Pediatr Surg, 40(1): 124-7, 2005. - 36. Vavilala, M.S.; Nathens, A. B.; Jurkovich, G. J.; Mackenzie, E.; and Rivara, F.P.: Risk factors for venous thromboembolism in pediatric trauma. J Trauma, 52(5): 922-7, 2002. - 37. Vu,L.T.;Nobuhara,K. K.;Lee,H.;and Farmer,D.L.: Determination of risk factors for deep venous thrombosis in hospitalized children. J Pediatr Surg, 43(6): 1095-9, 2008.