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ABSTRACT

Prediction models of post-liver transplant mortality are crucial so that donor organs are not
allocated to recipients with unreasonably high probabilities of mortality. Machine learning
algorithms, particularly deep neural networks (DNNs), can often achieve higher predictive
performance than conventional models. In this study, we trained a DNN to predict 90-day
post-transplant mortality using preoperative variables and compared the performance to
that of the Survival Outcomes Following Liver Transplantation (SOFT) and Balance of
Risk (BAR) scores, using United Network of Organ Sharing data on adult patients who
received a deceased donor liver transplant between 2005 and 2015 (n ¼ 57,544). The DNN
was trained using 202 features, and the best DNN’s architecture consisted of 5 hidden
layers with 110 neurons each. The area under the receiver operating characteristics curve
(AUC) of the best DNN model was 0.703 (95% CI: 0.682-0.726) as compared to 0.655
(95% CI: 0.633-0.678) and 0.688 (95% CI: 0.667-0.711) for the BAR score and SOFT
score, respectively. In conclusion, despite the complexity of DNN, it did not achieve a
significantly higher discriminative performance than the SOFT score. Future risk models
will likely benefit from the inclusion of other data sources, including high-resolution clinical
features for which DNNs are particularly apt to outperform conventional statistical
methods.
L IVER transplantation is the definitive treatment for
irreversible liver failure, with thousands of lives saved

each year in the Unites States through deceased donor or-
gan donation. Unfortunately, with the demand for donor
organs far exceeding the supply, thousands of patients die
waiting for this life saving procedure [1]. As such, the
development of predictive models of post-transplant
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mortality is crucial to avoid transplanting an individual with
an unacceptably low probability of post-transplant survival.
As the severity of recipient medical comorbidities has
grown, there is concern that an increasing number of pa-
tients are becoming too sick to transplant [2,3]. While the
prediction of preoperative mortality among those waiting
for an organ has been quite successful with the adoption of
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Fig 1. Flow chart of study cohort. The flow chart illustrates the
inclusion and exclusion criteria of liver transplant recipients
included in the study sample. STAR, Standard Transplant Anal-
ysis and Research. *Based on OPTN data as of September
9, 2016.
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the Model for End-Stage Liver Disease (MELD) score to
prioritize organ allocation [3e6], the accurate prediction of
post-transplant mortality has been difficult and less suc-
cessful [7].
Several predictive models have been developed using

preoperative recipient and organ donor factors from either
registry- or institution-level data. These have been devel-
oped with the aim of avoiding futile transplantation,
assisting with donor-recipient matching, and for comparing
outcomes across different institutions. Two of the most
commonly cited risk models are the Balance of Risk (BAR)
score [8] and the Survival Outcomes Following Liver
Transplantation (SOFT) score [9], both of which predict 90-
day post-liver transplant mortality using United Network of
Organ Sharing (UNOS) registry data. The SOFT score
incorporated a combination of 18 recipient and donor var-
iables and achieved a c-statistic of 0.7, and the BAR score
achieved a C-statistic of 0.7 using a combination of just 6
recipient and donor variables. Despite the popularity of
these models in academic circles, their clinical use has been
limited due to their modest discriminative performance with
decision making left to the judgment of the selection com-
mittee and transplant clinicians.
Risk models in medicine have traditionally been based on

regressionmodels whereby the outcome variable ismodeled as
a linear combination of predictor variables and thereby have
been limited in their ability to model high-order interactions
and nonlinear functions of the features. Machine learning al-
gorithms, which allow for more flexible modeling of the data,
can often achieve higher predictive performance than more
conventional statistical models. One class of machine learning
algorithms, deep neural networks (DNNs), also known as deep
learning, has become popular in recent years because of its
success in solving a variety of problems from computer vision
[10e15], high energy physics [16,17], chemistry [18e20], and
biology [21e23]. In clinical medicine, predictive modeling us-
ing machine learning has been applied to the prediction of
cardiorespiratory instability [24,25], 30-day readmission,
[26,27], and in-hospital postoperative mortality [28].
The use of DNNs in liver transplantation has been rela-

tively limited. To date, DNNs have been largely unexplored
in the prediction of post-liver transplant mortality using
UNOS data. In this manuscript, we present the develop-
ment and validation of a DNN model using preoperative
variables from the UNOS registry to predict 90-day post-
liver transplant mortality. We compare the discriminative
ability of the DNN model to that of the BAR and SOFT
score models.

MATERIALS AND METHODS

This manuscript follows the “Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research: A Multidisciplinary View” [29].

UNOS Data Extraction

All data for this study were extracted from the standard transplant
analysis and research (STAR) dataset, which contains patient-level
data for all transplants in the Unites States reported to the Organ
Procurement and Transplantation Network (OPTN) since October
1, 1989. The database has been used in numerous important studies
of transplantation [30] and contains data on pretransplant variables
pertaining to the recipient, donor variables reported from the organ
procurement organization, as well as post-transplantation outcome
data. The OPTN mortality data are linked by UNOS to the Social
Security Death Master file to improve ascertainment of recipient
death data [30]. In accordance with the OPTN Final Rule, 42 CFR
Part 121, the UNOS provided the author (B.E.) with the patient-
level, nonidentifiable data extracted from the STAR database
maintained by UNOS for the purpose of conducting this research.
Access to this data was approved through a data-use agreement
with UNOS.



Table 1. Description of Deep Neural Network Input Features

Feature Description

abo_A† Recipient blood type A
abo_AB Recipient blood type AB
abo_B Recipient blood type B
abo_don_A Donor blood type A
abo_don_AB† Donor blood type AB
abo_don_B Donor blood type B
abo_don_O Donor blood type O
abo_mat Donor-recipient ABO match level
abo_O Recipient blood type O
age Recipient’s age
age_don Donor’s age
albumin_tx Recipient’s albumin concentration at transplant
antihype_don Donor received antihypertensives within 24 h of cross clamp
arginine_don Donor received arginine vasopressin within 24 h of cross clamp
ascites_tx* Recipient’s degree of ascites at transplantation
bact_perit_tcr Recipient had history of SBP at registration
bmi_calc Recipient’s BMI at transplantation
bmi_don_calc Donor’s BMI
bmi_tcr Recipient’s BMI at registration
bun_don Donor’s terminal blood urea nitrogen concentration
cardarrest_neuro Donor had a cardiac arrest after brain death
cdc_risk_hiv_don Donor had risk factors for blood-borne disease transition
citizenship†,* Recipient was a United States citizen
citizenship_don†,* Donor was a United States citizen
clin_infect_don Donor had a clinical infection
cmv_don* Donor’s CMV seropositivity
cmv_igg* Recipient’s CMV IGG test result at transplant
cmv_igm‡,* Recipient’s CMV IGM test result at transplant
cmv_status* Recipient’s CMV seropositivity at transplant
cod_cad_don_1 Donor’s cause of death was due to anoxia
cod_cad_don_2 Donor’s cause of death was due to stroke
cod_cad_don_3 Donor’s cause of death was due to head trauma
cod_cad_don_4† Donor’s cause of death was due to a cans tumor
cold_isch Cold ischemia time
coronary1* Donor coronary angiogram was performed, and result was normal
creat_don Donor’s terminal creatinine concentration
creat_tx Recipient’s creatinine concentration at transplant
dayswait_chron Number of days recipient was on transplant waiting list
ddavp_don Donor received DDAVP
death_circum_don* Donor’s circumstance of death was due to natural causes
death_mech_don†,* Donor’s mechanism of death
dgn_tcr_AHN†,* Recipient’s primary diagnosis at listing: acute hepatic necrosis
dgn_tcr_autoimmune†,* Recipient’s primary diagnosis at listing: autoimmune hepatitis
dgn_tcr_cryptogenic* Recipient’s primary diagnosis at listing: cryptogenic cirrhosis
dgn_tcr_etoh* Recipient’s primary diagnosis at listing: ETOH cirrhosis
dgn_tcr_etoh_hcv* Recipient’s primary diagnosis at listing: ETOH or HCV cirrhosis
dgn_tcr_HBV†,* Recipient’s primary diagnosis at listing: HBV cirrhosis
dgn_tcr_HCC* Recipient’s primary diagnosis at listing: HCC cirrhosis
dgn_tcr_HCV* Recipient primary diagnosis at listing: HCV cirrhosis
dgn_tcr_NASH* Recipient’s primary diagnosis at listing: NASH cirrhosis
dgn_tcr_PBC†,* Recipient’s primary diagnosis at listing: PBC cirrhosis
dgn_tcr_PSC†,* Recipient’s primary diagnosis at listing: PSC cirrhosis
dgn2_tcr_AHN†,* Recipient secondary diagnosis at listing: acute hepatic necrosis
dgn2_tcr_autoimmune†,* Recipient’s secondary diagnosis at listing: autoimmune hepatitis
dgn2_tcr_cryptogenic†,* Recipient’s secondary diagnosis at listing: cryptogenic cirrhosis
dgn2_tcr_etoh†,* Recipient’s secondary diagnosis at listing: ETOH cirrhosis
dgn2_tcr_etoh_hcv†,* Recipient’s secondary diagnosis at listing: ETOH or HCV cirrhosis
dgn2_tcr_HBV†,* Recipient’s secondary diagnosis at listing: HBV cirrhosis
dgn2_tcr_HCC* Recipient’s secondary diagnosis at listing: HCC cirrhosis
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Table 1. (continued)

Feature Description

dgn2_tcr_HCV†,* Recipient’s secondary diagnosis at listing: HCV cirrhosis
dgn2_tcr_NASH†,* Recipient’s secondary diagnosis at listing: NASH cirrhosis
dgn2_tcr_PBC†,* Recipient’s secondary diagnosis at listing: PBC cirrhosis
dgn2_tcr_PSC†,* Recipient’s secondary diagnosis at listing: PSC cirrhosis
diab* Recipient had diabetes at registration
diabdur_don Duration of time that donor had diabetes
diabetes_don Donor had a history of diabetes
diag_AHN†,* Recipient’s diagnosis at transplant: acute hepatic necrosis
diag_autoimmune†,* Recipient’s diagnosis at transplant: autoimmune hepatitis
diag_cryptogenic†,* Recipient’s diagnosis at transplant: cryptogenic cirrhosis
diag_etoh* Recipient’s diagnosis at transplant: ETOH cirrhosis
diag_etoh_hcv†,* Recipient’s diagnosis at transplant: ETOH or HCV cirrhosis
diag_HBV†,* Recipient’s diagnosis at transplant: HBV cirrhosis
diag_HCC* Recipient’s diagnosis at transplant: HCC cirrhosis
diag_HCV* Recipient’s diagnosis at transplant: HCV cirrhosis
diag_NASH* Recipient’s diagnosis at transplant: NASH cirrhosis
diag_PBC†,* Recipient’s diagnosis at transplant: PBC cirrhosis
diag_PSC†,* Recipient’s diagnosis at transplant: PSC cirrhosis
dial_tx Recipient had dialysis in the wk prior to transplant
distance Distance from donor hospital to transplant hospital
ebv_igg_cad_don* Donor’s EBV IGG test result
ebv_igm_cad_don†,* Donor’s EBV IGM test result
ebv_serostatus* Recipient’s EBV seropositivity at transplant
ecd_donor Donor was an ECD donor per kidney allocation definition
education* Recipient’s highest education level at registration
enceph_tx* Recipient’s degree of encephalopathy at transplant
end_stat†,* Recipient was status 1 at time of transplant
ethcat_1* Recipient’s race is Caucasian
ethcat_2* Recipient’s race is of African descent
ethcat_4* Recipient’s ethnicity is Hispanic
ethcat_5†,* Recipient’s race is Asian
ethcat_don_1* Donor’s race is Caucasian
ethcat_don_2* Donor’s race is of African descent
ethcat_don_4* Donor’s ethnicity is Hispanic
ethcat_don_5†,* Donor’s race is Asian
ethcat_don_other†,* Donor’s race is other
ethcat_other†,* Recipient’s race is other
ever_approved‡ Recipient ever had a MELD exception application approved
exc_case Recipient had MELD exception points at the time of transplantation
exc_diag_id_cat1* Recipient’s exception points allotted for HCC
exc_diag_id_cat2†,* Recipient’s exception points allotted for familial amyloidosis
exc_diag_id_cat3†,* Recipient’s exception points allotted for hepatopulmonary syndrome
exc_diag_id_cat4†,* Recipient’s exception points allotted for portopulmonary hypertension
exc_diag_id_cat5†,* Recipient’s exception points allotted for metabolic diseases
exc_diag_id_cat6†,* Recipient’s exception points allotted for hepatic artery thrombosis
exc_diag_id_cat7* Recipient’s exception points allotted for other causes
exc_ever Whether an exception was ever submitted for the recipient
exc_hcc Recipient’s exception was for HCC
final_inr Recipient’s INR at transplantation
final_serum_sodium Recipient’s sodium concentration at transplantation
func_stat_tcr* Recipient’s functional status at registration
func_stat_trr* Recipient’s functional status at transplantation
gender Recipient’s gender
gender_don Donor’s gender
hbv_core* Recipient’s HBV core seropositivity
hbv_core_don* Donor’s HBV core seropositivity
hbv_sur_antigen†,* Recipient’s HBV surface antigen seropositivity
hbv_sur_antigen_don†,* Donor’s HBV surface antigen seropositivity
hcc_ever_appr‡ Whether recipient ever had an approved HCC exception

DEEP NEURAL NETWORKS 249



Table 1. (continued)

Feature Description

hcv_serostatus Recipient’s HCV seropositivity
hematocrit_don Donor’s hematocrit
hep_c_anti_don† Donor’s HCV seropositivity
heparin_don Donor received heparin
hgt_cm_calc Recipient’s height at transplantation
hgt_cm_don_calc Donor’s height
hgt_cm_tcr Recipient’s height at registration
hist_cancer_don† Donor had a history of cancer
hist_cig_don Donor had a history > 20 pack-years of smoking
hist_cocaine_don Donor had a history of cocaine use
hist_insulin_dep_don‡ Donor had a history of insulin dependent diabetes
hist_oth_drug_don Donor had a history of other drug use in the past
history_mi_don† Donor had a history of myocardial infarction
hypertens_dur_don* Donor’s history and duration of hypertension
index2* Recipient’s number of previous liver transplants prior to current one
init_age Recipient’s age at listing
init_albumin* Recipient’s albumin concentration at listing
init_ascites Recipient’s degree of ascites at listing
init_bilirubin Recipient’s bilirubin concentration at listing
init_bmi_calc Recipient’s BMI at listing
init_dialysis_prior_week† Recipient at listing had received dialysis twice in the prior wk
init_enceph* Recipient’s degree of encephalopathy at listing
init_hgt_cm Recipient’s height at listing
init_inr Recipient’s INR at listing
init_meld_peld_lab_score Recipient’s laboratory MELD score at listing
init_serum_creat Recipient’s creatinine concentration at listing
init_serum_sodium Recipient’s sodium concentration at listing
init_stat†,* Recipient was status 1 at listing
init_wgt_kg Recipient’s weight at listing
inotrop_support_don Donor was on inotropic medications at procurement
inr_tx Recipient’s INR at transplantation
insulin_dep_don* Donor had a history of insulin dependent diabetes
insulin_don Recipient received insulin within 24 h of cross clamp
life_sup_tcr† Recipient was on “life support” at registration
life_sup_trr Recipient was on “life support” at transplant
lityp* Donor graft was a split or whole graft
macro_fat_li_don* Donor organ was biopsied and macrosteatosis was greater than 30%
Malig Recipient had a history of malignancy at transplantation
malig_tcr Recipient had a history of malignancy at registration
malig_type†,‡ Recipient’s malignancy type was HCC
med_cond_trr Recipient’s medical condition at transplant (1¼ home, 2 ¼ hospital, 3 ¼ ICU)
meld_diff_reason_cd_1†,* MELD score and laboratory MELD score difference is because of status 1
meld_diff_reason_cd_2* MELD score and laboratory MELD score difference is because of HCC
meld_peld_lab_score Recipient’s laboratory MELD score at transplant
micro_fat_li_don* Donor organ was biopsied and microsteatosis was greater than 30%
non_hrt_don Donor is a donation after cardiac death organ
num_prev_tx Recipient’s number of previous transplants
on_vent_trr Recipient was on ventilator at time of transplant
oth_life_sup_tcr† Recipient was on other type of “life support” at registration
oth_life_sup_trr† Recipient was on other type of “life support” at transplantation
ph_don Donor pH
portal_vein_tcr† Recipient had portal vein thrombosis at registration
portal_vein_trr Recipient had portal vein thrombosis at transplant
prev_ab_surg_tcr Recipient had previous abdominal surgeries at registration
prev_ab_surg_trr Recipient had previous abdominal surgeries at transplant
prev_tx Recipient ever had a previous liver transplant
pri_payment_tcr Projected payment for transplant at registration is from private insurance
pri_payment_trr* Payment source for transplant is from private insurance
protein_urine Donor had protein in urine
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Table 1. (continued)

Feature Description

prvtxdif* Number of days between current liver transplant and prior liver transplant
pt_diuretics_don Donor received diuretics within 24 h of procurement
pt_oth_don Donor received prerecovery medications
pt_steroids_don Donor received steroids within 24 h of procurement
pt_t3_don† Donor received T3 within 24 h of procurement
pt_t4_don Donor received T4 within 24 h of procurement
recov_out_us† Donor organ was recovered outside of the United States
resuscit_dur* Time from cardiac arrest to resuscitation for brain dead donors with arrest
sgot_don Donor’s terminal AST concentration
sgpt_don Donor’s terminal ALT concentration
share_ty†,* Donor’s allocation type (local/regional/other)
tattoos Donor had tattoos
tbili_don Donor’s terminal bilirubin concentration
tbili_tx Recipient’s bilirubin concentration at transplant
tipss_tcr Recipient had a TIPS at registration
tipss_trr Recipient had a TIPS at time of transplant
vasodil_don Donor received vasodilators within 24 h of cross clamp
vdrl_don† Donor’s RPR seropositivity
ventilator_tcr† Recipient was on ventilator at registration
warm_isch_tm_don†,* Duration of warm ischemia time for DCD donors
wgt_kg_calc Recipient’s weight at transplant
wgt_kg_don_calc Donor’s weight
wgt_kg_tcr Recipient’s weight at registration
work_income_tcr Recipient was working for income at registration
work_income_trr Recipient was working for income at time of transplantation

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CMV, cytomegalovirus virus; DCD, donation after cardiac
death; DDAVP, desmopressin; EBV, Epstein-Barr virus; ECD, expanded criteria donor; ETOH, alcoholic; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV,
hepatitis C virus; ICU, intensive care unit; IGM, Immunoglobulin M; IGG, Immunoglobulin G; INR, international normalized ratio; MELD, Model for End-Stage Liver
Disease; NASH, nonalcoholic steatohepatitis; PBC, primary biliary cirrhosis; PSC, primary sclerosing cholangitis; RPR, rapid plasma regain; SBP, spontaneous
bacterial peritonitis; TIPS, transjugular intrahepatic portosystemic shunt.

*Input feature was engineered; see Supplemental Table 1 for description.
†Feature excluded from RFS due to greater than 95% of values were equal to zero.
‡Feature excluded from RFS due to greater than 50% of values were missing.
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Study Sample

The study sample included adult deceased donor liver transplants
performed from 2005 to 2015. Transplants performed from 2016
onward were not included in this analysis to ensure adequate time
for ascertainment of outcome data, and transplants performed prior
to 2005 were excluded because 1. transplants before 2002 were
performed prior to implementation of the MELD score allocation
system and 2. data on several predictor variables were either not
reported or were inconsistently recorded prior to that time.
Exclusion criteria included age less than 18 years, living donor
transplantation (n ¼ 2347), multiple-organ transplantation (n ¼
5267), as well as those lost to follow-up within 90 days post-
transplantation (n ¼ 70) as these cases were excluded in the
development of the SOFT score and BAR score (Fig 1). For pa-
tients who underwent more than 1 liver transplantation (n ¼ 3503),
we included each of the transplantations in the analysis, as did other
comparable prediction models. The study sample included split
liver as well as donation after cardiac death donors. In sum, we
analyzed 57,544 recipients.
Model Endpoint Definition

The occurrence of death within 90 days from transplantation was
extracted as a binary event (0, 1). An event occurred if the value of
the variable “pstatus” from the STAR dataset was equal to “1”, and
the variable “ptime” was less than or equal to 90. The variable
“pstatus” indicates whether the recipient had died post-transplant,
and the variable “ptime” indicates the time from transplantation
to either death or censoring. These variables are based on the
combination of mortality data from OPTN database as well as
verified external sources of death (described above) and not based
on the variable “PX_STAT,” which only accounts for death as
documented by the OPTN alone.

Model Input Features

The original STAR dataset contained 395 variables, many of
which were not considered for inclusion in the model. Variables
that were excluded from model development included those
pertaining to post-transplant data, living donor transplants, mul-
tiorgan transplants, and identifier code variables. Variables with
zero or near zero variances, high levels of missing data (> 98%)
or those that were highly correlated to other variables (r > 0.99)
were removed. A few variables with > 50% missing data com-
bined with low clinical significance based on domain experts (B.E.
and C.W.) were not analyzed. This resulted in 202 features,
including 132 recipient variables and 70 donor-related variables
(Table 1). To further reduce the feature set, variables with greater
than 50% missing data or those containing greater than 95% zero
values were removed, and the remaining variables comprised a
reduced feature set (RFS).



Fig 2. Calculation of BAR score
and SOFT score. The BAR score
and SOFT score are calculated
by adding the points assigned to
each attribute. BMI, body mass
index; CVA, cerebrovascular acci-
dent; MELD, Model for end-stage
liver disease. *Feature not avail-
able in STAR dataset. SOFT score
in this manuscript was calculated
on the available 17 features.
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While most of the categorical features had a simple binary
encoding (Table 1), categorical features identified by domain
expert (B.E. and C.W.) that required more complex encoding
were encoded based on clinician judgment. For example,
the variable “DIAG,” which indicates a recipient’s primary
Table 2. Best Deep Neural Network H

# of Hidden Layers # of Neurons pe

DNN w/original 202 features (OFS) 5 100
DNN w/OFS þ softbin 5 110
DNN w/reduced 140 features (RFS) 5 100
DNN w/RFS þ softbin 5 110

Description of the architecture and selected hyperparameters of the trained neura
Abbreviations: DNN, deep neural network; OFS, original feature set; RFS, reduced
liver disease diagnosis at transplantation, contains 70 possible
unique diagnosis codes. Rather than creating 70 new binary
categorical features, groups of diagnosis codes were used
to collapse the 70 unique codes into 11 new categorical
features.
yperparameters for Each Model

r Layer L2 Lambda Dropout Probability Learning Rate Momentum

0.001 0.5 0.01 0.5
0.001 0 0.01 0.5
0.001 0.5 0.01 0.5
0.001 0 0.01 0.5

l networks.
feature set.



Fig 3. Receiver operating char-
acteristic curves to predict 90-
day post-liver transplant mortality.
The figure illustrates the receiver
operating characteristic curves
for the BAR score, SOFT score,
and each of the DNN models
that were developed.
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BAR Score and SOFT Score

The BAR score and SOFT score are 2 models used to predict 90-
day post-liver transplant survival using UNOS data. To compare
the discriminative ability of the DNN to that of these models, the
BAR score and SOFT score were calculated for recipients in this
dataset. The formula for calculating the BAR score and SOFT
score are provided in Fig 2 [8,9]. Data on cold ischemia time was
missing for 2.8% of recipients; therefore, the BAR score could not
be calculated for these subjects. The amount of missing data for
other variables was < 0.1%, and these cases were removed from the
calculation of the BAR score’s area under the receiver operating
characteristics curve (AUC). Missing data for the SOFT score was
handled by assigning the missing value to the reference group
category, as indicated by the scoring methodology. One of the 18
variables that comprises the original SOFT score is the presence of
a portal bleed within 48 hours of transplantation. This variable was
not available in the STAR dataset and therefore was not included in
Table 3. Area Under the ROC Curve Results With 95%
Confidence Intervals for the Test Set (n[ 11,509) and on the Test

Set With No Null BAR Scores (n [ 11,207).

AUC (95% CI)

n ¼ 11,509 n ¼ 11,207*

BAR score* 0.655 (0.633-0.678) 0.655 (0.633-0.678)
SOFT score 0.691 (0.671-0.714) 0.688 (0.667-0.711)
DNN w/Original 202

Features Set (OFS)
0.697 (0.678-0.72) 0.695 (0.675-0.717)

DNN w/OFS þ softbin 0.708 (0.689-0.73) 0.703 (0.682-0.726)
DNN w/Reduced 140

Features Set (RFS)
0.699 (0.681-0.722) 0.698 (0.679-0.72)

DNN w/RFS þ softbin 0.707 (0.688-0.729) 0.702 (0.68-0.725)
*For the entire test set results, BAR score was calculated on 11,207 test

patients.
the calculated SOFT score. In the original development of the
SOFT score model, only 3% of patients had a portal bleed, and data
for this variable were missing for 50% of recipients [9]. In our
analysis, we calculated the SOFT score using the remaining 17
components.

Data Preprocessing

Prior to model development, missing values were imputed with the
mean value for continuous variables and with 0 for categorical
variables. The data were then randomly divided into training (80%)
and test (20%) data sets. The training data was rescaled to have a
mean of 0 and standard deviation of 1 per feature. The test data was
rescaled to the training mean and standard deviation.

“Soft” Binning Features

Besides following the standard approach of normalizing individual
input features, we also experimented with a novel idea that we will
refer to as “soft binning.” Similar to standard/“hard” binning, the
data representation of any feature is replaced by a fixed number of
bins, containing numbers between 0 and 1. Ordinary binning dis-
cretizes a feature by representing it as a single “1” in 1 bin and
zeroes in all other bins, potentially resulting in loss of information
and making the classification task harder. “Soft” binning is the most
straightforward generalization of binning without loss of informa-
tion, where 2 bins are assigned values in the range of 0 to 1, which
sum to 1. These values encode the fraction to which the feature’s
value falls into the given bins. For example, if in standard binning a
value would fall exactly on the boundary between 2 bins, then it
would instead be represented as 2 neighboring entries of “0.5” in
the neighboring bins in “soft” binning. Our motivation for creating
“soft” binning was that binning alleviates the burden for the neural
network to learn individual features thresholds (ie, “high,”
“average,” or “low”) and thus improves classification accuracy.



Table 4. F1 Score, Sensitivity, Specificity, and Number of Correctly Identified Patients With 95% Confidence Intervals (CI) for the Test
Set (n [ 11,509) and on the Test Set With No Null BAR Scores (n [ 11,207) for the Thresholds That Maximize F1 Score

ALL Test Patients (n ¼ 11,509)

Threshold
F1 Score
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Precision
(95% CI) # TN # FP # FN # TP

BAR Score* 15 0.179 0.319 0.873 0.124 9269 1343 405 190
(0.159-0.2) (0.287-0.357) (0.867-0.88) (0.109-0.141)

SOFT Score 20 0.223 0.38 0.881 0.158 9571 1298 397 243
(0.201-0.247) (0.344-0.419) (0.874-0.887) (0.14-0.177)

DNN w/OFS 0.092 0.212
(0.19-0.236)

0.348
(0.316-0.385)

0.886
(0.88-0.892)

0.153
(0.135-0.171)

9632 1237 417 223

DNN w/OFS þ softbin 0.113 0.22 0.322 0.906 0.167 9843 1026 434 206
(0.197-0.246) (0.289-0.359) (0.9-0.911) (0.148-0.188)

DNN w/RFS 0.095 0.212 0.358 0.881 0.151 9581 1288 411 229
(0.19-0.235) (0.323-0.397) (0.875-0.888) (0.133-0.169)

DNN w/RFS þ softbin 0.105 0.221 0.345 0.895 0.162 9727 1142 419 221
(0.197-0.245) (0.311-0.382) (0.889-0.901) (0.144-0.182)

ALL Test Patients w/BAR Score (n ¼ 11,207)

Threshold F1 Score (95% CI) Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI) # TN # FP # FN # TP

BAR Score* 15 0.179 0.319 0.873 0.124 9269 1343 405 190
(0.159-0.2) (0.287-0.357) (0.867-0.88) (0.109-0.141)

SOFT Score 20 0.215 0.375 0.881 0.151 9354 1258 372 223
(0.191-0.238) (0.336-0.416) (0.875-0.888) (0.132-0.169)

DNN w/OFS 0.092 0.206 0.345 0.887 0.147 9418 1194 390 205
(0.183-0.231) (0.309-0.384) (0.882-0.893) (0.129-0.165)

DNN w/OFS þ softbin 0.114 0.21 0.309 0.908 0.159 9638 974 411 184
(0.186-0.235) (0.274-0.346) (0.903-0.913) (0.138-0.18)

DNN w/RFS 0.095 0.204 0.353 0.882 0.144 9361 1251 385 210
(0.181-0.227) (0.315-0.391) (0.876-0.888) (0.126-0.162)

DNN w/RFS þ softbin 0.105 0.21 0.334 0.896 0.153 9513 1099 396 199
(0.187-0.236) (0.299-0.372) (0.891-0.902) (0.135-0.174)

Performance metrics for all models at the threshold that maximized F1 score. Among the trained DNN models, DNN w/RFS þ softbin achieved the highest F1 score.
Abbreviations: DNN, deep neural network; FN, false negative; FP, false positive; OFS, original feature set; RFS, reduced feature set, TN, true negative; TP, true positive.
*For the full test set results, BAR score metrics were calculated only on the 11,207 recipients with BAR scores available.
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Development of the Model

The primary aim of the study was to classify recipients with 90-day
post-liver transplant mortality using DNNs, also referred to as deep
learning. During development of DNNs, there are many unknown
model parameters that need to be optimized during training. These
model parameters are first initialized and then optimized to
decrease the error of the model’s output to correctly classify mor-
tality. The type of DNN used in this study was a feedforward
network with fully connected layers and a logistic output. “Fully
connected” refers to the fact that all neurons between 2 adjacent
layers are fully pairwise connected. A logistic output was chosen so
that the output of the model could be interpreted as probability of
mortality (0-1). We used stochastic gradient descent with mo-
mentum (0.2, 0.5, 0.9) and initial learning rates (0.01, 0.001, 0.1)
and a batch size of 500. We also assessed DNN architectures of 1 to
5 hidden layers with (10, 50, 100, 110, 115, 120, 130, 140, 150)
neurons per layer and rectified linear unit activation functions. The
loss function was cross entropy. To minimize overfitting, we used 3
methods: 1. early stopping with a patience of 10 epochs, 2. L2
weight decay, and 3. dropout [31,32]. We assessed L2 weight pen-
alties of (0.01, 0.001, 0.0001), and dropout was applied to all layers
with a probability of (0,0.2, 0.5, 0.9). We used 5-fold cross validation
with the training set (80%) to select the best hyperparameters and
architecture based on mean cross-validation performance. These
best hyperparameters and architecture were then used to train a
model on the entire training set (80%) prior to testing final model
performance on the separate test set (20%).
Model Performance

All model performances were assessed on 20% of the data held out
from training as a test set. Model performance was assessed using
AUC and was compared to the BAR score and the SOFT score.
Choosing a Threshold

The F1 score, sensitivity, and specificity were calculated for
different thresholds for the DNN, as well as for the BAR score and
SOFT score models. The F1 score is a measure of precision and
recall, ranging from 0 to 1. It is calculated as 1 ¼ 2 � precision�recall

precisionþrecall.
Thresholds that optimized the F1 score were then chosen for each
model/score. The minimum thresholds to achieve a sensitivity or
specificity of 90% for each model/score were also calculated.
Ninety-five percent confidence intervals were calculated for all
performance metrics using bootstrapping with 1000 samples.

All DNN models were developed and applied using Keras [33].
All performance metrics were calculated using scikit-learn [34].
Code is available upon reasonable request.
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RESULTS
Patient Characteristics

The data consisted of 57,544 liver transplant recipients.
These data were split into training (n ¼ 46,035) and test
(n ¼ 11,509). The 90-day post-liver transplant mortality in
the training and test sets were 5.4% (n ¼ 2483) and 5.6%
(n ¼ 640), respectively.

Development of the Model

The best DNN model used the 202 original feature set
(OFS) with “softbin” preprocessing of input features (DNN
with OFSþ softbin). The model consisted of 5 hidden layers
of 110 neurons per layer with rectified linear unit activations
and a logistic output and was trained with no dropout, an L2
weight decay of 0.001, a learning rate of 0.01, and a mo-
mentum of 0.5 (Table 2).

Model Performance

All performance metrics reported below refer to the test
dataset.

Area Under the Receiver Operating Characteristics Curves

Receiver operating characteristics curves and AUC results
are shown in Fig 3 and Table 3. The best DNN model (DNN
with OFS þ softbin) had a higher AUC (0.703 [95% CI:
0.682-0.726]) compared to that for the BAR score and
SOFT score models (0.655 [95% CI: 0.633-0.678]; 0.688
[95% CI: 0.667-0.711]), respectively, on the 11,207 patients
with available BAR scores. In addition, softbin pre-
processing of input features improved performance of both
the OFS and RFS models. While the best DNN had a
significantly higher AUC than the BAR score, the DNN did
not achieve a significantly higher AUC than the SOFT
score. The DNN with the reduced feature set and softbin
preprocessing (DNN with RFS þ softbin) performed
comparably (AUC 0.702 [95% CI: 0.68-0.725]) to the DNN
with OFS þ softbin.

Choosing a Threshold

For comparison of F1 scores, sensitivity, and specificity at
different thresholds, the DNN models were compared to the
BAR score and SOFT score models (Table 4). Additionally,
for each of the thresholds, the number of correctly and
incorrectly classified patients is displayed for all test set
patients. As the BAR score could not be calculated on 302
patients in the test set due to missing data, Table 4 provides
metrics applied to test sets that contain all patients with
available data for the model, as well as to the set of patients
for which the BAR scores could be calculated.
By choosing a threshold that optimizes the F1 score, the

SOFT score achieved the highest F1 score (0.215 [95% CI:
0.191-0.238]) at a threshold of 20, with sensitivity and
specificity of 0.375 (95% CI: 0.336-0.416) and 0.881 (95%
CI: 0.875-0.888), respectively, for the 11,207 patients with
available BAR scores. This score was not significantly
different from the highest F1 score among the DNN models,
which was achieved by DNN with RFS þ softbin (0.21 [95%
CI: 0.187-0.236]) at a threshold of 0.106, with sensitivity and
specificity of 0.331 (95% CI: 0.296-0.369) and 0.898 (95%
CI: 0.892-0.904), respectively. At this threshold, the SOFT
score had slightly more true positives compared to the DNN
model (223 vs 199) as a result of the higher sensitivity but
with more false positives (1194 vs 1099) as a result of the
lower specificity. The best DNN model based on AUC,
namely DNN with OFS þ softbin, had a comparable F1
score 0.209 (95% CI: 0.184-0.234) at a threshold of 0.113.
Adjusting the thresholds of the risk models will increase

either the sensitivity or specificity with a consequent
decrease in the complementary measure. By choosing the
minimal threshold to achieve a sensitivity of at least 90%,
the BAR score achieved a sensitivity of 93.8 at a threshold
of 3, whereas the DNN w/OFSþ softbin achieved a sensi-
tivity of 0.91 at a threshold of 0.025. However, the specificity
of the BAR score was substantially lower at 0.15 versus 0.26
for the DNN model. For the SOFT score, a sensitivity of
0.92 was achieved at a threshold of 5, with a corresponding
specificity of 0.23, which is lower than that for the DNN. By
choosing the threshold to achieve a minimum specificity of
90%, the SOFT score achieved a specificity of 0.91 at a
threshold of 22, whereas the DNN w/RFS þ softbin ach-
ieved a specificity of 0.9 at a threshold of 0.107. At these
thresholds, the sensitivity of the SOFT score was 0.30 versus
0.33 for the DNN model.
DISCUSSION

The results demonstrate that a DNN can be used to predict
90-day post-liver transplant mortality using UNOS registry
data. While the AUC for the best performing DNN (DNN
with OFS þ softbin) was the highest among the tested
models, significantly outperforming the BAR score, it did
not achieve significantly higher performance compared to
the SOFT score. Similarly, the DNN’s maximal F1 measure,
which reflects a balanced valuation of sensitivity and speci-
ficity, was not significantly different from that of the SOFT
score. At the thresholds that maximized the F1 measures for
the DNN with OFS þ softbin and SOFT score, the DNN
model had significantly higher specificity with fewer false
positive (990 vs 1258). However, the SOFT score had more
true positives (223 vs 185), reflecting the higher sensitivity of
the SOFT score. It is important to note that by adjusting the
threshold value, arbitrarily high sensitivities or specificities
can be achieved for both models with a consequent decrease
in the complimentary metric. While the F1 measure values
sensitivity and specificity equally, the relative costs of a false
positive (i.e., failing to transplant a patient who otherwise
would live) versus the cost of a false negative (transplanting
a patient who will die) is a decision that must be made by
the transplant community. Rana et al argue that a SOFT
score greater than or equal to 40 may indicate futile trans-
plantation [9]. However, in our cohort, a threshold of 40 for
the SOFT score carried a sensitivity of only 0.025 (95% CI:
0.014-0.038), raising questions about its clinical utility.
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While several predictive models exist, we chose to
compare the DNN to the BAR score and SOFT score as
they were both derived from UNOS registry data and have
the highest AUC in predicting 90-day post-transplant mor-
tality. While both models report an AUC of 0.7, in our study
the calculated AUC were slightly lower at 0.66 and 0.69 for
the BAR score and SOFT score, respectively. These dif-
ferences may be explained by differing exclusion criteria
with the dataset used to derive the BAR score excluding
split livers and donation after cardiac death donors. The
SOFT score in our dataset was based on 17 of the original
18 features, as the variable indicating portal bleed within 48
hours of transplantation was not available in the UNOS
dataset.
Given the scarcity of organ donors, when adverse out-

comes occur, the logical question is whether the organ
would have been better served by being allocated to another
recipient. As such, many have questioned whether to
transplant a patient based solely on need or whether to do
so based on expected outcomes [2]. The concept of futile
transplantation is not new, and defining futility is difficult
[35]. An underlying theme, however, points to the need to
estimate postoperative mortality and not solely focus on
preoperative survival. Authors have suggested models that
account for both waitlist mortality and the probability of
post-transplant survival [36], and some have called for novel
liver allocation models that achieve collective survival ben-
efits [37]. Given the success that DNNs have had in various
classification tasks, we tested the hypothesis of whether they
could perform superiorly in this classification problem and
therefore be an important step to ultimately achieving bet-
ter allocation models.
Machine learning algorithms can model more complex

interactions and nonlinearities among the input features
and often achieve higher predictive performance than con-
ventional statistical models. To date, though, few groups
have explored these methods to predict post-liver transplant
morbidity and mortality. Lau et al recently used a random
forest to classify graft failure within 30 days following liver
transplantation using a study sample of 180 recipients from
institution-level data and achieved an AUC of 0.818,
although performance was significantly diminished when
applying the model to the validation set. [38]. While some
have explored using neural networks to predict liver trans-
plant mortality, most were based on a small number of
patients at individual institutions [39e41]. Raji et al applied
a neural network using UNOS level data to predict post-
transplantation graft failure, but the authors only included
a few hundred patients in the model [42].
While DNN have achieved improved performance in

various classification tasks, there are several possible rea-
sons why the DNN failed to significantly outperform a
logistic regression model in this study. There are likely
features that are predictive of post-transplant mortality that
were not included in this risk model. Multiple cardiac risk
factors, for example, have been found to be associated with
adverse events including survival, and several studies have
shown that cardiac morbidity is 1 of the leading causes of
post-transplant mortality [43]. Single-center studies have
identified cardiovascular risk [37], preoperative troponin
levels [44], coronary artery disease [45], and echocardio-
graphic measures [46,47] as predictors of survival. As these
data are not included in the UNOS database, we were un-
able to account for this variability in the outcome. It is
possible that other machine learning algorithms, either
alone or in combination with a DNN, may be able to achieve
superior performance given the same training data. While a
DNN can, in theory, approximate any complex function that
maps the predictors to the response variable, given limited
training data this may not be achieved, and other machine
learning algorithms may achieve better discriminative
performance.
As researchers are using machine learning more

frequently, an emerging theme is how these sophisticated
algorithms do not always outperform conventional statistical
models such as regression. In a recent study, our group
applied deep learning to the prediction of postoperative
mortality using institution-level data and found that it did
not outperform logistic regression [28]. Similarly, machine
learning algorithms failed to outperform logistic regression
in the prediction of heart failure readmission [26]. Machine
learning algorithms such as DNNs are more likely to excel in
the analysis of complex, high granularity data that is lacking
from the UNOS database. Finally, all machine learning
models are limited by whether relevant features can be
appropriately encoded in such a way that can be included as
a variable in the model. Several tacit knowledge variables,
such as the physical appearance of a patient, are difficult to
quantify and therefore include in a DNN model. The future
may allow such variables to be represented in models, but
for the foreseeable future, the clinician will be involved in
risk assessment.
CONCLUSIONS

To date, there has been a dearth of research using the rich
set of complex data within a patient’s electronic health re-
cord to develop more accurate patient-specific estimates of
outcomes following transplantation. To achieve improved
discriminative performance, future studies should incor-
porate higher-resolution clinical data from a patient’s
electronic health record. The development of more patient-
specific estimates of transplant risk can help achieve
improved organ allocation with improvement of outcomes
for the recipient and the transplant community at large.

Data Availability Statement

All data is from the United Network for Organ Sharing
Standard Transplant Analysis and Research File, which is
based on the Organ Procurement and Transplantation
Network data as of September 9, 2016.
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