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AbstractmProtein kinase C-α (PKC-α) activation is an
important contributing factor in human breast cancer
MCF-7 MDR cell drug resistance. We recently reported
the use ofN-myristoylated PKC-α pseudosubstrate peptides
with potent PKC-α inhibitory activity as reversal agents of
drug resistance in MCF-7 MDR cells. The peptides potently
inhibit phosphorylation of the PKC-α substrates P-glyco-
protein (P-gp), raf kinase and PKC-α itself in MCF-7 MDR
cells in association with a severalfold induction of intra-
cellular uptake of P-gp substrate chemotherapeutics and a
statistically significant twofold increase in cellular chemo-
sensitivity. We now report that theN-myristoylated PKC-α
pseudosubstrate peptideN-myristoyl-RFARKGALRQKNV
(P3) is not a P-gp substrate in MCF-7 MDR cells based on a
comparison of the cellular uptake of [125I]-radiolabeled P3
in MCF-7 MDR vs MCF-7 WT cells. The extent of cellular
uptake of the radiolabeled peptide in the drug-resistant cell
line MCF-7 MDR was either greater than or equivalent to
the uptake in the parental drug-sensitive MCF-7 WT cell
line over a time course of 30 min to 6 h, and across a
peptide concentration range of 25–100µM. Additionally,
treatment of the MCF-7 MDR cells with verapamil (VPL),
a known P-gp efflux inhibitor, had no effect on the cellular
accumulation of radiolabeled P3. Our results provide direct
evidence that the N-myristoylated pseudosubstrate peptide
is taken up equivalently by drug-sensitive and MDR cancer
cells and therefore has potential value as an MDR reversal
agent that operates by a novel mechanism.
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Introduction

The failure of aggressive chemotherapy to eradicate malig-
nant disease because of innate or acquired drug resistance
mechanisms is a major obstacle to successful cancer treat-
ment [11]. A broad category of multidrug resistant (MDR)
cancer cells is characterized by reduced intracellular accu-
mulation of chemotherapeutic drugs as a result of over-
expression of the drug efflux pump P-glycoprotein (P-gp)
[6, 11]. The abundant expression of P-gp and its message
mdr-1 observed in specimens of intrinsically resistant
cancers and malignant human and canine tumors that
have relapsed during or after chemotherapy indicates the
potential relevance of P-gp-associated MDR in clinical
drug resistance [1, 9, 11, 21].

Protein kinase C (PKC) is an isozyme family that
includes at least 11 mammalian members [15]. There are
several lines of evidence suggesting that PKC activation is
integrally related to P-gp-associated MDR. First, selective
PKC activators such as phorbol esters induce resistance to
cytotoxic P-gp substrates in cancer cells [7, 12]. Second, the
isozyme PKC-α is overexpressed in several drug-selected
MDR cancer cell lines, including MCF-7 MDR [2, 7].
Third, both selective activation of PKC-α in human colon
cancer cells [12] and PKC-α overexpression in anmdr-1-
transfected human breast cancer MCF-7 subline [22] induce
MDR. Finally, PKC phosphorylates the linker region of
P-gp in MDR human KB-VI cancer cells, and the phos-
phorylation is tightly coupled to the regulation of intracel-
lular drug accumulation [3, 4]. However, because recent
studies [8, 10] have shown that specific mutations of P-gp
at the phosphorylation sites do not affect the function or
expression of the transporter, the effects of PKC activation
on P-gp are most likely indirect and probably result from
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phosphorylation of other PKC substrates that influence
P-gp function and expression.

We have previously characterized the inhibition of PKC
by N-myristoylated peptides corresponding to the autoinhi-
bitory pseudosubstrate sequence of PKC-α and other PKC
substrate recognition sequences [20]. We subsequently
reported that theN-myristoylated PKC-α pseudosubstrate
peptidesN-myristoyl-FARKGALRQ (P1) andN-myristoyl-
RFARKGALRQKNV (P3) function as MDR reversal
agents in human breast cancer MCF-7 MDR cells operating
by a novel mechanism involving a sharp increase in
intracellular drug accumulation concomitant with potent
inhibition of the phosphorylation of P-gp and two other
PKC-α substrates, Raf-1 kinase and PKC-α itself, whereas
the non-myristoylated counterparts (P2 and P4, respec-
tively) neither increase drug accumulation nor inhibit
phosphorylation of substrates [13]. Classical MDR reversal
agents such as verapamil (VPL) and cyclosporin A cannot
be used to reverse clinical drug resistance because of their

severe toxicity at therapeutic concentrations [18]. Impor-
tantly, the N-myristoylated PKC-α pseudosubstrate pep-
tides can be distinguished from VPL and other classical
MDR reversal agents [5, 19, 23] in that they did not
compete with [3H]azidopine for drug binding sites on
P-gp [13]. Other compounds have also been recently
described with partial inhibition of MDR without compet-
ing for drug binding sites on P-gp [16]. Because P-gp has
multiple drug binding sites [19], the possibility remained
that the peptides could serve as P-gp substrates.

P-gp substrates are typically hydrophobic and positively
charged [6, 11] and in some cases peptidic in nature [17,
19], features shared by theN-myristoylated PKC-α pseu-
dosubstrate peptides [20]. P-gp-mediated efflux of the
pseudosubstrate peptides would compromise their value
as MDR reversal agents by limiting their availability to
drug-resistant cancer cells. To ascertain whether theN-
myristoylated pseudosubstrate peptide P3 was a P-gp sub-
strate in MCF-7 MDR cells, we compared the uptake of a
radiolabeled P3 analog in MCF-7 MDR vs MCF-7 WT
cells.

Materials and methods

The effects of P3 on the intracellular accumulation of P-gp substrate
chemotherapeutics and on the phosphorylation of PKC substrates in
MCF-7 MDR cells were observed during a period of 30 min to 6 h with
a P3 concentration range of 25–100µM [13]. [Y-125I] N-myristoyl-
RYARKGALRQKNV (125I-P3) was synthesized at The M. D. Ander-
son Cancer Center Synthetic Antigen Facility and radiolabeled and
HPLC purified at New England Nuclear Laboratories (Wilmington,
Del.). A stock solution ofN-myristoyl-RYARKGALRQKNV was
spiked with125I-P3, resulting in a specific activity of 100–200 cpm/
pmol. MCF-7 MDR and the parental WT cell lines were plated at
40 000 cells per well in 48-well plates (CoStar, Cambridge, Mass.)
with Eagle’s modified essential medium (Gibco-BRL, Grand Island,
N.Y.) supplemented with 5% heat-inactivated fetal bovine serum
(FBS), nonessential amino acids, vitamins, sodium pyruvate,L-gluta-
mine, and penicillin/streptomycin [13]. After incubation overnight at
37 °C in a humidified atmosphere of 5% CO2 and 95% air, the medium
was removed and replaced with medium containing 0µM, 25 µM,
50 µM, or 100µM 125I-P3. After the indicated incubation period, the
medium was removed and the wells were washed with ice-cold
phosphate-buffered saline three times [13]. The cells were then
trypsinized for 45 min and the radioactivity counted using a Packard
Auto Gamma Counter [13]. For each peptide concentration and
incubation period employed, the counts retained by control wells
lacking cells provided background values; these values were 23+3%
of the total counts per minute. Cellular uptake of125I-P3 was defined as
total minus background counts per minute and converted to picomoles
125I-P3/10 000 cells. Cell viability of495% was demonstrated prior to
the assay by Trypan Blue exclusion and before trypsinization by
morphology with light microscopy.

Results

The results shown in Fig. 1A indicate that the extent of125I-
P3 (25–100µM) uptake was similar in the drug-sensitive
and MDR MCF-7 cell lines after a 30-min incubation
period, with somewhat higher125I-P3 uptake values in the
MDR line, arguing against P-gp-mediated125I-P3 efflux
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Fig. 1A, BmA comparison of125I-P3 uptake by MCF-7 WT (WT) and
MCF-7 MDR (MDR) cells. Experimental values shown are the means
(+SEM) of four experiments done in quadruplicate (A 30-min
incubation period,B 2-h incubation period)
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from the drug-resistant cells. Likewise, there was no
difference in 125I-P3 uptake between the two cell lines
after incubation periods of 2 h (Fig. 1B) and 6 h (data not
shown). The concentration-dependent rise in intracellular
125I-P3 uptake (Fig. 1) correlated with the concentration
dependence observed in the inhibition of P-gp phosphor-
ylation by the N-myristoylated pseudosubstrate peptide
[13].

VPL is a potent inhibitor of MCF7-MDR efflux of P-gp
substrates [7]. VPL at a concentration of 10µM induces a
severalfold increase in the accumulation of doxorubicin and
other P-gp substrates in MCF-7 MDR cells after incubation
for 30 min to 2 h [13]. As an independent test of whether
125I-P3 was a P-gp substrate in MCF-7 MDR cells, we
determined the effect of VPL on125I-P3 accumulation in
the cells. Figure 2A shows that 10µM VPL had no effect on
125I-P3 uptake by MCF-7 MDR cells after a 30-min
incubation period. Figure 2B shows that 10µM VPL was
also without effect on125I-P3 uptake at the 2 h time-point.
In separate experiments, the addition of 10µM VPL to
MCF7-MDR cells significantly increased the accumulation
of the P-gp substrates [14C]doxorubicin and [3H]vincristine

severalfold, whereas accumulation of [3H]5-fluorouracil
(which is not a P-gp substrate) was unaffected (data not
shown).

Discussion

Our results provide direct evidence that theN-myristoylated
pseudosubstrate peptide125I-P3 is not a P-gp substrate in
MCF7-MDR cells. We found that MCF-7 MDR accumu-
lated as much or slightly more125I-P3 than the drug-
sensitive parental cell line under conditions where P3 was
a potent modulator of PKC substrate phosphorylation and
chemotherapeutic drug uptake in the cells. We also found
that VPL had no effect on125I-P3 uptake in the MCF-7
MDR cells. It is well-established that PKC substrate motifs
contain multiple basic residues which are of critical impor-
tance to the affinity of the substrate at the active site [14].
Thus, the PKC substrate recognition motif in P3, which
contains five basic residues, is typical in this respect.
Therefore, our results demonstrate that a peptide containing
a typical PKC substrate motif is not recognized as a
substrate by P-glycoprotein. TheN-myristoylated PKC-α
pseudosubstrate peptides represent a distinct and novel
modality for MDR reversal and PKC-α blockade which
may escape the commonly encountered toxicities presently
recognized with P-gp binding reversal agents, such as
cyclosporin and VPL, and which is not compromised by
P-gp-mediated efflux of the peptidic reversal agent.
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