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Abstract

Background: Rapid, preoperative identification of patients with the highest risk for medical complications is necessary to

ensure that limited infrastructure and human resources are directed towards those most likely to benefit. Existing risk

scores either lack specificity at the patient level or utilise the American Society of Anesthesiologists (ASA) physical status

classification, which requires a clinician to review the chart.

Methods: We report on the use of machine learning algorithms, specifically random forests, to create a fully automated

score that predicts postoperative in-hospital mortality based solely on structured data available at the time of surgery.

Electronic health record data from 53 097 surgical patients (2.01% mortality rate) who underwent general anaesthesia

between April 1, 2013 and December 10, 2018 in a large US academic medical centre were used to extract 58 preoperative

features.

Results: Using a random forest classifier we found that automatically obtained preoperative features (area under the

curve [AUC] of 0.932, 95% confidence interval [CI] 0.910e0.951) outperforms Preoperative Score to Predict Postoperative

Mortality (POSPOM) scores (AUC of 0.660, 95% CI 0.598e0.722), Charlson comorbidity scores (AUC of 0.742, 95% CI
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0.658e0.812), and ASA physical status (AUC of 0.866, 95% CI 0.829e0.897). Including the ASA physical status with the

preoperative features achieves an AUC of 0.936 (95% CI 0.917e0.955).

Conclusions: This automated score outperforms the ASA physical status score, the Charlson comorbidity score, and the

POSPOM score for predicting in-hospital mortality. Additionally, we integrate this score with a previously published

postoperative score to demonstrate the extent to which patient risk changes during the perioperative period.

Keywords: electronic health record; hospital mortality; machine learning; perioperative outcome; risk assessment
Editor’s key points

� Perioperative risk prediction models need to be accu-

rate and locally calibrated, but also clinically accessible.

� This study evaluates machine learning using readily

available healthcare data to improve risk prediction.

� Changes in patient condition throughout the perioper-

ative period can be included to update risk assessment.
A small proportion of high-risk patients comprise the majority

of patients with surgical complications.1 Many studies have

demonstrated that early interventions can help reduce or even

prevent perioperative complications.2,3 In the current value-

based care environment, it is critical to have methods to

rapidly identify patients who are at the highest risk for peri-

operative complications andmost likely to benefit from labour

or cost-intensive interventions. Unfortunately, many current

methods of risk stratification either lack patient-level preci-

sion or require a trained clinician to review each patient’s

medical record and assess a score.

Existing preoperative patient risk scores generally fall into

one of two groups. The first leverages International Statistical

Classification of Diseases and Related Health Problems (ICD)

codes in order to create models of risk.4e6 Unfortunately, ICD

codes are not available until after patient discharge. While

these scores tend to perform well at the population level, they

rely on data not available before surgery, and have been

repeatedly shown to lack precision at the patient level.7 The

second group of models relies on subjective clinician judg-

ment, as seen with the ASA physical status score (ASA score)

alone or when incorporated into another model (such as the

National Surgical Quality Improvement Program [NSQIP] risk

calculator).8 While these scores tend to have increased preci-

sion comparedwith ICD codes, they cannot be fully automated

because of the need for a highly trained clinician to manually

review the patient’s chart before calculation.

Recently, attempts have been made to leverage machine

learning techniques using healthcare data in order to improve

the predictive ability of various models.9,10 These methods

have shown progress in leveraging increasingly complex data

while still allowing for the full automation of the scoring

system.

In this manuscript, we hypothesised that machine learning

methods can be used to predict in-hospital post-surgical

mortality using only features from the electronic medical re-

cord (EMR) readily available and automatically extracted

before surgery. We compare the performance of our model

with existing clinical risk scores (ASA score, POSPOM score,4

and Charlson comorbidity score6). Lastly, we aim to integrate

our model with a previously published model11 that estimates
in-hospital mortality at the end of surgery to quantify the

change in risk during the perioperative period.
Methods

Data source and extraction

All data for this study were extracted from the perioperative

data warehouse (PDW), a custom built, robust data warehouse

containing all patients who have undergone surgery at UCLA

Health since the implementation of UCLA’s EMR (EPIC Sys-

tems, Madison, WI, USA) in March 2013. We have previously

described the creation of the PDW, which has a two-stage

design.12 Briefly, in the first stage, data are extracted from

EPIC’s Clarity database into 29 tables organised around three

distinct concepts: patients, surgical procedures, and health

system encounters. These data are then used to populate a

series of 4000 distinctmeasures andmetrics such as procedure

duration, readmissions, admission ICD codes, and others. All

data used for this study were obtained from this data ware-

house and institutional review board (IRB) approval (IRB#16-

001768) was obtained with exemption status for this retro-

spective review.
Model endpoint definition

We trained classification models to predict in-hospital mor-

tality as a binary outcome. This classification was extracted

from the PDW and was set to true if a ‘death date’ was noted

during the hospitalisation, or the final disposition was set to

‘expired’ and there were no future admissions for the patient

and a clinician ‘death note’ existed. Because of the concern

about the need to eliminate false positive results, the resulting

labels using this definition were validated by trained clinicians

in a subset of patients.
Inclusion and exclusion criteria

Patients were included in the study if they underwent a sur-

gical procedure with general anaesthesia between April 1, 2013

and December 10, 2018. The type of anaesthesia was extracted

from the post-anaesthesia hand-off note documented by the

anaesthesia provider at the end of the case. Cases were

excluded if they had an ASA physical status score of 6 (indi-

cating organ donors), were not discharged at the time of data

analysis, or were aged less than 18 yr, and patients older than

89 yr had their age redacted (because of institutional re-

strictions on data security). A Consolidated Standards of

Reporting Trials (CONSORT)13 diagram is shown in

Supplementary Figure S1.

Some patients, particularly those of highest risk, under-

wentmore than one surgery during the course of their hospital
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admission. In these cases all surgeries that met the above

criteria were included.We performed a subsequent analysis to

ensure that their inclusion would not unduly affect the results

of the entire population. This analysis is shown and described

in Supplementary Appendix S1.
Model input features

The model was created using a set of features including basic

patient information such as age, sex, BMI, BP, and HR; labo-

ratory tests frequently obtained before surgery, such as so-

dium, potassium, creatinine, and blood cell counts; and

surgery-specific information such as the surgical procedure

codes. In total, 58 preoperative features (including ASA status)

were selected by clinicians’ consensus (IH, EG) as potentially

useful for predicting the outcome, and a full list is available in

Supplementary Table S1. For all variables, only the most

recent value before surgery was included.

In order to help elucidate the relative predictive value of

different types of features, five models were created. Model 1

included all the input features, including the ASA physical

status score. The Model 2 included all input features except

the ASA physical status scoredas this score would not be able

to be fully automated before review by a trained anaesthesia

provider. In order to overcome this limitation of automation,

Model 3 included all of the input features with an automated

surrogate for the ASA score. The details of the generation of

this surrogate score can be found below. Models 4 and 5 were

variations of Models 1 and 3; however, they excluded the

timestamps of the preoperative laboratory results (relative to

the admission start time), though they included the actual

results themselves. As the time between a laboratory result

and a surgery is not a marker of the patient illness, we

excluded this information so that the model would not

incorrectly weight the significance of this feature.
Comparison of model performance

In order to assess the performance of our models against

currently used risk stratification systems, we also tested the

performance of three ‘baseline’ models: a model containing

only the ASA physical status score, a model containing only

the POSPOM score,4 and a model containing only the Charlson

comorbidity score.6 Using a model with a single feature such

as these has the effect of producing the same result format as

our more complex models and allows a direct comparison.
Data preprocessing

Data points greater than four standard deviations from the

mean were removed as they were assumed to be erroneous

outliers. Categorical features were converted into indicator

variables, and the first variable was dropped. Thus, if a cate-

gorical variable takes on k values, only k-1 values are con-

verted into indicator variables, because the kth variable

becomes the reference value. The cohort was divided into a

training dataset and a testing dataset by selecting all surgeries

that occurred between April 1, 2013 and February 28, 2018 for

training, and surgeries from March 1, 2018 and December 10,

2018 as the test set. Any patients that appeared in the test set

were removed from the training set to prevent information

leakage. Temporally splitting the cohort allows us to estimate

model performance on future surgical cases. The training data

features were rescaled to have a mean of 0 and a standard
deviation of 1, and the test data were rescaled using the

training data means and standard deviations. Missing data

were imputed in the training and testing sets separately using

the SoftImpute algorithm,14 which leverages the similarity of

groups of patients to estimate missing values. The SoftImpute

algorithm was implemented by the fancyimpute Python

package (version 0.2.0; Python Software Foundation, Beaver-

ton, OR, USA), with a maximum of 200 iterations.

The number of inpatient mortalities was much smaller

than the number of survivors, resulting in extreme class

imbalance (2.01% mortality rate). To overcome this issue, the

training set was oversampled using the Synthetic Minority

Over-sampling Technique (SMOTE) algorithm,15 implemented

in the imblearn Python package (Python Software Founda-

tion),16 using three nearest neighbours and the ‘baseline1’

method to create a balanced class distribution. The testing set

was not oversampled and, therefore, maintained the natural

outcome frequency.
Generating a surrogate for ASA physical status

While the ASA status is a strong predictor of patient health

status,17e20 this classification requires a clinician to look

through the patient’s chart and subjectively determine the

score, consuming valuable time and requiring clinical exper-

tise. In order to balance the value of this score with the desire

for automation, we sought to generate a similar metric using

readily available data from the EMRda surrogate ASA score.

Recent works have similarly attempted to develop machine

learning approaches to predict ASA scores.21,22 However, these

methods have difficulty differentiating ASA scores of 4 and 5

because of the low frequency of occurrence of 5 scores, and

resort to either grouping classes together or ignoring patients

with an ASA status of 5. The goal in our work is not to predict

the ASA score, but to estimate a measure of general patient

health for use as a feature in our model to predict in-hospital

mortality, without needing the time-consuming clinician

chart review.

Using the existing ASA physical status classification

extracted from the EMR data, we trained a gradient boosted

tree regression model to predict the ASA status of new pa-

tients using preoperative features unrelated to the surgery.

The model was implemented using the XGBoost package23

with 2000 trees and a maximum tree depth of 7. We used

five-fold cross-validation to generate predictions. This

surrogate-ASA value is a continuous number, unlike the actual

ASA status which is limited to integers. We call it the ‘ASA

surrogate’ score to distinguish it from an actual ASA score.

This score is a continuous score of patient risk that uses the

ASA score to supervise parameter learning in the model.
Model creation, training, and testing

We evaluated four different classification models: logistic

regression, Elastic Net24 logistic regression, random forests,

and gradient boosted trees. Logistic regression is a statistical

model that assumes a binary outcome can be predicted as a

weighted combination of independent variables. The Elastic

Net24 logistic regression adds additional constraints to a

linear prediction model by forcing the weights to be both

small and sparse. A random forest classifier uses an ensemble

of independently-trained decision trees, which classify data

based on a series of binary questions about the values of

particular features, to determine the most likely outcome



Table 1 Patient characteristics. Patient characteristics for the
cohort used for training and testing models. Number of pa-
tients and percent of the cohort are shown. The selected
surgical services represent the top fourmost frequent surgical
services.

Property Training
data

Testing
data

Patients, n 46 400 6494
Admissions, n 54 813 6853
Surgeries, n 58 916 7378
Average number of surgeries
per patient

1.27 1.14

Average number of
admissions per patient

1.18 1.06

Average number of surgeries
per admission

1.07 1.08

Patients with more than one
admission, n (%)

6400 (13.79) 328 (5.05)

Admissions with more than
one surgery, n (%)

2817 (5.14) 351 (5.12)

Mortalities, n (%) 1243 (2.11) 124 (1.68)
Mean age 55.99 (18e89) 56.07 (18e89)
Female patients, n (%) 29 770 (50.53) 3680 (49.88)
ASA physical status 1, n (%) 3592 (6.10) 383 (5.19)
ASA physical status 2, n (%) 21 093 (35.80) 2412 (32.69)
ASA physical status 3, n (%) 27 395 (46.50) 3751 (50.84)
ASA physical status 4, n (%) 6432 (10.92) 779 (10.56)
ASA physical status 5, n (%) 404 (0.69) 53 (0.72)
Ronald Reagan operating
room, n (%)

39 599 (67.21) 4935 (66.89)

Santa Monica operating
room, n (%)

19 317 (32.79) 2443 (33.11)

Types of surgery, n (%)
- Orthopaedics 9113 (15.47) 1083 (14.68)
- General surgery 7456 (12.66) 958 (12.98)
- Urology 7255 (12.31) 931 (12.62)
- Neurosurgery 6404 (10.87) 843 (11.43)
- Other 28 688 (48.69) 3563 (48.29)
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based on a majority vote. Like random forests, gradient

boosted tree classifiers predict using an ensemble of decision

trees, but instead of building each decision tree indepen-

dently, the trees are created sequentially such that each new

tree is fit to the residual error remaining after the previous

step.

Model hyperparameters were chosen using five-fold cross-

validation on the training dataset, where surgeries from the

same patient were grouped together such that they appeared

only in a training or testing fold, but not both. In five-fold

cross-validation, the dataset is divided into five partitions,

where four-fifths of the data are used to train the models and

the remaining one-fifth are used as the testing set. This pro-

cess is repeated such that each partition is used as a testing

set only once and a training set four times. Cross-validation

provides a better assessment of model performance by aver-

aging metrics over multiple trials. Logistic regression classi-

fiers were trained with both an L2 penalty and an ElasticNet24

penalty, where alpha (regularisation constant) and the L1/L2

mixing parameter were set using five-fold cross-validation.

The random forest classifiers were trained with 2000 estima-

tors, Gini impurity as the splitting criterion, and nomaximum

tree depth was specified. The gradient boosted tree classifiers

were trained using 2000 estimators and a maximum tree

depth of 5. The logistic regression and random forest classi-

fiers were implemented using Scikit-learn,25 and the gradient

boosted tree classifiers were implemented using the XGBoost

package.23 All performance metrics were calculated on

the held-out test set using methods implemented by Scikit-

learn.25

We generate confidence intervals (CIs) for the test set per-

formance metrics using block bootstrapping of the pre-

dictions. As patients in the test set can undergo multiple

surgeries, their risk predictions for each surgery are correlated.

However, the general bootstrapping procedure typically sam-

ples cases randomly, and assumes each case is independent,

but under this assumption, the correlation structure would be

lost. Therefore, instead of randomly sampling cases, we

randomly sample patients, and include all predictions in the

bootstrap sample. This block bootstrap procedure is repeated

1000 times. For each bootstrap sample we calculate perfor-

mance metrics; these metrics are then sorted, and we select

the 25th and 975th values of the sorted list of metrics to

determine the 95% CI.

As described above, we compared our method with the

Charlson comorbidity index scores,6 a well-known and proved

existing method for prediction of risk of postoperative mor-

tality, for each patient in the cohort. We used the updated

weights as described by Quan and colleagues.26 Scores were

calculated using the R package icd (R Foundation, for Statistical

Computing, Vienna, Austria) on all ICD10 codes associated

with each surgery admission.

Another respected preoperative risk score is the POSPOM

score.4 While the POSPOM risk score was shown to have

excellent discriminative ability, the features used in the

model present an issue when trying to implement such a

model in a medical centre that does not use the French clas-

sification for medical procedures (Classification Commune

des ActesM�edicaux [CCAM]). The POSPOM score groups CCAM

surgery codes to 25 categories, where each category has an

associated risk score as determined by their model. In order to

replicate their model on our dataset, HCUP (or CPT) surgery
codes must be mapped to CCAM codes. However, a mapping

between HCUP (or CPT) codes to CCAM codes currently does

not exist. Therefore, we created an approximate mapping

between the case service group and the POSPOM surgical

category. For each patient, we generated the ICD-based POS-

POM score and the approximate surgical POSPOM score to

compare the predictive capability of the POSPOM risk score to

our method.

To determine which features were most important to

the classification models, we examined the model weights

for linear models, the feature (Gini) importance for the

random forest models, and the feature weight (number of

times a feature appears in a tree) for the gradient boosted tree

models.
Model calibration

A well-calibrated binary classification model outputs proba-

bilities that are close to the true label (in our case, either a 1 for

patients who die in the hospital, or 0 for survivors). Model

calibration is often measured using the Brier score, which is

the average squared distance between the predicted proba-

bility of the outcome and the true label; thus, a lower Brier



Table 2 Mortality prediction performance using area under the receiver operating characteristic (AUROC) curve. AUROC curve values
for eachmodel and each of the eight input feature sets on the held-out test set. Models with the highest AUROC are shown in bold. The
mean value of the AUROC is shown, along with the 95% confidence interval (CI) from bootstrapping the test predictions 1000 times
shown in parenthesis. When using the ASA status or the Charlson comorbidity score as the only input feature, the linear models
(logistic regression, ElasticNet) outperform the non-linear models (random forest, XGBoost). However, for the other feature sets, the
non-linear models outperform the linear models. In particular, the random forest has the highest AUROC compared with the other
models. POSPOM, preoperative score to predict postoperative mortality; Preop, preoperative.

Model/AUC (95% CI) Logistic regression ElasticNet classifier Random forest XGBoost classifier

POSPOM 0.653 (0.602e0.705) 0.653 (0.602e0.705) 0.660 (0.598e0.722) 0.660 (0.598e0.722)
Charlson comorbidity 0.742 (0.658e0.812) 0.742 (0.658e0.812) 0.740 (0.658e0.811) 0.740 (0.658e0.811)
ASA status 0.866 (0.829e0.897) 0.866 (0.829e0.897) 0.855 (0.819e0.888) 0.855 (0.819e0.888)
Preop features 0.900 (0.863e0.931) 0.919 (0.891e0.942) 0.925 (0.900e0.947) 0.920 (0.894e0.944)
PreopþASA status 0.913 (0.880e0.940) 0.924 (0.895e0.947) 0.936 (0.915e0.956) 0.922 (0.894e0.948)
Preopþsurrogate-ASA 0.908 (0.872e0.937) 0.923 (0.895e0.946) 0.931 (0.909e0.952) 0.929 (0.907e0.948)
Preop (no time)þASA status 0.919 (0.887e0.944) 0.932 (0.908e0.951) 0.936 (0.917e0.955) 0.923 (0.895e0.950)
Preop (no time)þsurrogate-ASA 0.911 (0.877e0.941) 0.924 (0.898e0.948) 0.932 (0.910e0.951) 0.915 (0.887e0.940)
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score usually indicates a better performing model. We used

this metric to assess the calibration of our models.
Precision and recall calculations

Receiver operating characteristic (ROC) curves are very infor-

mative of binary classification prediction performance in

general, as they illustrate how the performance changes as the

discriminative threshold varies. However, precision-recall

curves can be more informative when the classes are highly

imbalanced.27 ROC curves show the true positive rate (recall,

sensitivity) as a function of the false positive rate (1-

specificity), but for imbalanced datasets, the false positive

rate can be misleading. The false positive rate is inversely

related to the total number of negative samples and, therefore,

amodel that predicts a large number of false positives (relative

to the number of true positives) may still achieve a small false

positive rate. Therefore, precision (or positive predictive value)

which penalises a model for a large number of false positives

relative to the number of true positives, is a useful metric.

Precision-recall curves show the precision of a classifier as a

function of recall. An optimal model would reach the point in

the upper-right corner of the precision-recall plot (i.e. perfect

recall and perfect precision).
Integration of preoperative risk with postoperative
risk

Previous work11 has shown that integrating a measure of

preoperative risk, such as the ASA score, into a postoperative

mortality risk prediction model increases the model perfor-

mance. We aimed to conduct a similar approach, but instead

of using the ASA status as a measure of preoperative risk, we

replaced it with the preoperative predictions from our model.

First, we used the deep neural network architecture and fea-

tures described by Lee and colleagues.11 However, we replaced

the ASA status feature with the preoperative risk scores which

were generated using the random forest model, which was

trained using the preoperative features and surrogate ASA

scores as described in the previous section. Next, we trained

the postoperative model using the training cohort used for

preoperative risk prediction using five-fold cross-validation,
where the intraoperative data was pre-processed in the same

manner as described by Lee and colleagues.11 We then

compared the area under the ROC of the postoperative model

trained using the ASA status and intraoperative features to the

model that was trained using our preoperative risk score and

intraoperative features. Lastly, in order to attempt to assess

the degree to which risk changes during the intraoperative

period, we compared on a per-patient basis the risk scores

generated by our preoperative model with those generated by

the incorporation of our results with the model described by

Lee and colleagues.11
Results

Patient characteristics

The patient dataset contained 66 294 surgical records

encompassing 52 894 patients. Patients were between the ages

of 18 and 89 yr, with amean age of 56 yr, and were classified as

either inpatients, same-day admits, emergencies, or overnight

recoveries. The frequency of mortality in the dataset was

approximately 2.01%. An ASA status of 3 was the most com-

mon, comprising 47% of the dataset. Detailed information on

patient characteristics can be found in Table 1.
Model performance

Area under the ROC curve

The area under the ROC curve values for each model are

shown in Table 2 and ROC curves are shown for the random

forest model in Figure 1a and for all models in Supplementary

Figure S2. For all models except the ASA status alone, the

random forest model produced the best results, although

these differences often did not reach statistical significance.

Models using the preoperative features have higher area under

the ROC values (0.925, 95% CI 0.900e0.947) than the models

that use the Charlson comorbidity score (0.742, 95% CI

0.658e0.812), the POSPOM score (0.660, 95% CI 0.598e0.722), or

the ASA status (0.866, 95% CI 0.829e0.897) alone. Adding the

surrogate ASA status values to the preoperative features did

not improve the area under the ROC (0.931, 95% CI 0.909e0.952)

as compared with the preoperative features alone (0.925, 95%



Fig 1. Receiver operating characteristic (ROC) and precision

recall curves for the random forest model. Plots were generated

using the predictions from the held-out test dataset. ROC curves

(a) show the false positive rate on the X-axis and the true pos-

itive rate on the Y-axis. The optimal point is the upper-left

corner. Precision-recall curves (b) show the recall on the X-

axis and precision on the Y-axis. The optimal point is in the

upper-right corner. POSPOM, preoperative score to predict

postoperative mortality; Preop, preoperative.
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CI 0.900e0.947). While adding the true ASA value assigned by

anaesthesiologists to the preoperative features (0.936, 95%CI

0.915e0.956, P>0.05 as compared with preoperative features

with surrogate ASA score) and reducing the preoperative

feature set by removing variables indicating when the labo-

ratory tests resulted ([0.932, 95% CI 0.910e0.951] and the pre-

operative features and true ASA status [0.936, 95% CI

0.917e0.955]) increased the AUC; these increases were not

statistically significant (P>0.05). Table 3 contains the accuracy,

F1 score, precision, recall, and specificity for all five random

forest models.
Calibration

The non-linear models (random forest, XGBoost) had much

lower (better) Brier scores compared with the linear models

(logistic regression, ElasticNet). When using either the POS-

POM score, the Charlson comorbidity score, or the ASA status

as the only feature, the random forest and XGBoost classifiers

had the lowest Brier score (0.098, 0.091, and 0.086, respec-

tively). For the other five feature sets, the XGBoost models

obtained the lowest Brier scores (0.015, 0.015, 0.016, 0.016, and

0.017, respectively). These data are shown in Supplementary

Table S2.
Precision-recall

Using the random forest model, precision and recall curves for

each of the sets of features are shown in Figure 1b and, for all

models, in Supplementary Figure S3. Overall the various sets

of preoperative features had better performance than the ASA

score, the Charlson comorbidity score, and the POSPOM score.

Hospitals have limited resources and must decide how to

allocate those resources. One option is to allocate prioritised

care to individuals who are at the highest risk of adverse

outcomes, particularly mortality. A hospital could choose to

use the ASA score, the Charlson comorbidity score, the POS-

POM score, or the score generated by the random forest model

as an estimate of the risk. Our score is continuous and there-

fore has a definitive ordering of patients, while the ASA score,

the Charlson comorbidity score, and the POSPOM score, being

discrete, have random intra-score level ordering. To assess the

effectiveness of the ordering based on the proposed score

compared with the ASA score, the Charlson comorbidity score,

and the POSPOM score, in Figure 2 we order the individuals by

their risk of mortality and calculate the number of mortalities

in our set of high-risk patients as we vary the size of the set. In

other words, if we have a fixed set of resources such that we

can allocate additional care to n patients, we would like to

know how many of the n patients are true positives. While

receiving prioritised care does not imply that a specific indi-

vidual will not die, we argue that a population should have

improved outcomes, as care levels are better matched to

patients.
Feature importance

To determine the most important features for each of the

models, we examined the feature weights of the linear models

and feature importance of the non-linear models. In

Supplementary Table S3, the feature importance for the

random forest model is shown using four different sets of

input features. For the feature sets that include laboratory

result timestamps, many of the most important features are

the laboratory result timestamp features for laboratories, such

as brain natriuretic peptide (BNP) and bicarbonate. However,

when these features are removed, the feature importance

shifts to the laboratory results themselves, for example, al-

bumin, international normalised ratio (INR), prothrombin

time, haemoglobin, and total bilirubin. Surgery-specific fea-

tures such as the patient class (inpatient, same-day admis-

sion) and the location of the patient in the hospital before

surgery are also highly informative. Additionally, the ASA

score is the most important feature in every model where it is

contained.



Table 3 Performancemetrics for random forest model. Random forest model performancemetrics for predicting in-hospital mortality
using different sets of features. Confidence intervals derived by bootstrapping the predictions using 1000 samples shown in paren-
thesis. Accuracy¼(TPþTN)/(TPþTNþFPþFN). Precision¼TP/(TPþFP). Recall¼TP/(TPþFN). Specificity¼TN/(TNþFP). F1 score¼2/([1/
Recall]þ[1/Precision]). FN, false negatives; FP, false positives; Preop, preoperative; TN, true negatives; TP, true positives

Model Accuracy F1 score Precision Recall Specificity

POSPOM 0.861 (0.851
e0.869)

0.047 (0.021
e0.078)

0.026 (0.012
e0.045)

0.201 (0.097
e0.318)

0.872 (0.864
e0.881)

Charlson comorbidity 0.895 (0.885
e0.904)

0.112 (0.064
e0.165)

0.065 (0.037
e0.098)

0.390 (0.240
e0.538)

0.904 (0.895
e0.913)

ASA status 0.897 (0.889
e0.906)

0.160 (0.110
e0.222)

0.093 (0.061
e0.133)

0.587 (0.472
e0.709)

0.903 (0.895
e0.911)

Preop features 0.985 (0.981
e0.988)

0.275 (0.115
e0.446)

0.610 (0.333
e0.814)

0.179 (0.069
e0.315)

0.998 (0.997
e0.999)

Preop featuresþASA status 0.984 (0.980
e0.988)

0.284 (0.119
e0.464)

0.590 (0.333
e0.810)

0.189 (0.074
e0.329)

0.998 (0.997
e0.999)

Preopþsurrogate-ASA 0.984 (0.980
e0.988)

0.280 (0.125
e0.452)

0.541 (0.294
e0.750)

0.191 (0.078
e0.331)

0.997 (0.996
e0.998)

PreopþASA status, w/o lab times 0.982 (0.977
e0.986)

0.302 (0.172
e0.449)

0.420 (0.245
e0.615)

0.239 (0.127
e0.379)

0.994 (0.992
e0.997)

Preopþsurrogate-ASA status, w/o lab
times

0.980 (0.976
e0.985)

0.258 (0.127
e0.412)

0.358 (0.180
e0.551)

0.204 (0.094
e0.342)

0.994 (0.992
e0.996)
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Integrating preoperative risk with postoperative risk

Replacing the ASA status with the preoperative risk pre-

dictions in the postoperative risk prediction model generated

similar results to what were previously published by Lee and

colleagues.11 The postoperative risk model that was trained
Fig 2. Number of in-hospital mortalities captured as a function

of the number of patients flagged as high-risk. Using the

random forest predicted probabilities for each set of features,

surgeries were ranked from highest to lowest risk. For each

feature set, we count the number of mortalities captured as we

vary the number of high-risk patients flagged for additional

resources. POSPOM, Preoperative Score to Predict Postoperative

Mortality; Preop, preoperative.
using the preoperative risk scores had an area under the ROC

of 0.943 (95% CI 0.934e0.953), whereas the postoperativemodel

trained using the ASA status had an area under the ROC of

0.935 (95% CI 0.926e0.947) (P>0.05). This is in line with the

previously published results of this model.11

In order to examine how mortality risk changes from

immediately before surgery to after surgery, the pre- and

postoperative risk scores for all patients were grouped by

percentiles and the counts of each grouping are displayed in

Figure 3a. For the majority of patients, we see a slight increase

or decrease in their postoperative risk compared with the

initial preoperative risk, as demonstrated by the colouring just

above/below the diagonal line in Figure 3a. Figure 3b demon-

strates the same plot but contains only those patients who

eventually died during that admission. Most of these patients

fall above the line indicating that their risk increased during

the intraoperative period, and all patients in this cohort

who had a preoperative risk below the 50th percentile had

a postoperative risk that was substantially increased.

Supplementary Tables S4a and b quantify this change in

risk for the entire cohort and the in-hospital mortalities,

respectively.
Discussion

We were able to successfully create a fully automated preop-

erative risk prediction score that can better predict in-hospital

mortality than the ASA score, the POSPOM score, and the

Charlson comorbidity score. In contrast to the ASA score, the

POSPOM score, or the Charlson comorbidity scores, this score

was built using purely objective clinical information that was

readily available from the EMR before surgery and does not

require a clinician’s assistance for score calculation. Unlike

previous models,11 the results indicate that inclusion of the

ASA score in the model did not improve the predictive ability.

We were additionally able to integrate the results of our model

into a previously developed postoperative risk prediction

model and achieve a performance that was comparable to the

use of the ASA physical status score in that model. Lastly,

when using the preoperative and postoperative scores



Fig 3. Heatmap of preoperative risk vs postoperative risk. Pre-

operative (X-axis) and postoperative (Y-axis) risk scores were

binned by percentile, and the counts per bin visualised as a

heatmap in log scale. Preoperative risk predictions were

generated using the random forest model trained on the pre-

operative features, including laboratory times, and the

surrogate-ASA status. In (a) all patients are displayed, and in (b)

only the in-hospital mortalities are shown. Some 78% of pa-

tients who die and have a preoperative risk percentile below

95% have an increased postoperative risk percentile. This is

substantially greater than the percent of matched patients from

a null distribution who have an increased percentile.
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together, we were able to demonstrate that, on a patient level,

risk does change during the perioperative perioddindicating

that choices made in the operating room may have profound

implications for our patients.

The challenge of perioperative risk stratification is certainly

not new. In fact, the presence of so many varied risk scores
(ASA score, Charlson comorbidity index,6 POSPOM,4 risk

quantification index (RQI),28 NSQIP risk calculator8) speaks to

the importance with which clinicians view this problem. A

major limitation of many of these models has been that they

either rely on data not available at the time of surgery (i.e. ICD

codes), or they require an anaesthesiologist to review the chart

(those that contain the ASA score). Thus, the creation of a

model that can be fully automated and perform better than

these models implies that it may have broad applicability. Of

note, in this study, the non-linear machine learning models

outperformed logistic regression both regarding AUC and

calibration (Brier score). This is different than what has been

shown in other work11 where the logistic regression per-

formed similarly to non-linear machine learning approaches.

As demonstrated in many previous studies,17e20 the ASA

score itself remains a good predictor of postoperative out-

comes. This is likely because the ASA score is essentially a

predictor generated by the most advanced neural network

knowndthe human brain. However, the ASA score alone did

not perform as well as our baseline model. The discrepancy

may have several possible explanations. One possibility is that

the introduction of the EMR has led to an explosion of infor-

mation, making it challenging for a clinician to consume

everything. It would be essentially impossible for an anaes-

thesiologist to review every note, laboratory result, and pa-

thology report before surgery. A second possible explanation is

that the ASA score is not a predictor of mortality per se, but

rather a marker of overall patient complexity. Thus, a score

that is designed to predict a specific complication, such as

mortality, will perform better than a measure of overall pa-

tient complexity. Regardless of the exact reason, we believe

this highlights the advantage of an automated scoring system

such as thisdnot as a replacement for physiciansdbut as a

tool to help them better focus their efforts on those patients

most likely to benefit.

Another advantage of an automated model such as this is

that it allows for the continuous recalculation of risk longitu-

dinally over time. As shown in Figure 3, most patients have

either a minor increase or decrease in risk in the time from

before to after surgery and, unsurprisingly, in patients who

eventually die, that risk tends to increase. Given the chal-

lenges of continually monitoring the risk of all patients in the

hospital, advanced analytical models, such as the one

demonstrated in this manuscript, have great potential to act

as early warning systems alerting clinicians to sudden

changes in risk profiles and facilitating the use of rapid

response teams.

More importantly, the frequency with which risk changed

substantially during the operative period highlights the effect

to which intraoperative interventions may have implications

far beyond the operating room.Multiple specific interventions,

including the avoidance of intraoperative hypotension and

hypothermia, have been shown to have effects on longer-term

outcomes, and currently enhanced recovery after surgery

pathways have promoted the standardisation of intra-

operative interventions. We believe that our findings should

add to the evidence that a well-prescribed anaesthetic plan

may be of significant long-term benefit to patient outcomes.

One potential promise of the use of machine learning in

medicine is the ability to leverage these models in order to

better understand what features are truly driving outcomes.

In an effort to better understand this, we extracted the

weights of the features in both the linear and non-linear

models. Removing some features, specifically the relative
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time of laboratory tests, actually improved the results of our

model (though not to a level of statistical significance). This

could potentially be caused by multiple correlated features

tagging an underlying cause, and the correlation introduces

noise in the model as the importance is distributed among

multiple features rather than focused on a single feature. In

theory, a machine learning model should be able to remove

these features by setting a coefficient to zero. However, in

practice, this may not always be the casedas illustrated here,

where we force this behaviour by manually removing the

features from the model. We believe that this finding high-

lights the importance of having collaborative relationships

between experts in machine learning and clinicians who are

able to help guide which features to include in a model.

Simply entering large amounts of data from an EMR, without

proper clinical context, is unlikely to create the most effective

or efficient models.

There are several key limitations of this study. The most

significant is the low frequency of the outcome in ques-

tiondin-hospital mortality. The incidence of mortality in the

testing set was less than 2%dimplying that a model that

blindly reports ‘survives’ every time will have an accuracy

greater than 98%. Predicting such a rare outcome makes it

highly challenging to produce results with very high precision.

Nonetheless, the models presented in this paper do outper-

form othermodels currently in use, asmeasured by area under

the ROC curve, and had precision-recall curves that were su-

perior to the ASA score, POSPOM score, or Charlson comor-

bidity scores alone. Secondly, the large amount of missing

data in the EMR makes imputation a complex task, in partic-

ular because the data are not necessarily missing at random.

Many of the missing values are attributable to systematic

reasons, such as forgoing a set of laboratory tests because the

clinician believes the patient’s laboratory values are relatively

normal. In fact, creating optimal imputation algorithms is

whole field of work on its own and suboptimal imputation

algorithms will reduce the prediction performance. However,

given the sparsity of the data, some form of imputation is

necessary and our choice of imputation algorithm, while not

optimal, is better than a trivial method such as mean impu-

tation (see Supplementary Figs S4 and S5aec). In fact, our al-

gorithm performed better than the same algorithm using

mean imputation (see Supplementary Fig. S6a and b). We

believe that the overall strong performance of our models,

despite these limitations, indicates the value of machine

learning in predicting postoperative outcomes. Thirdly, the

data used here are from a single large academic medical

centre. Thus, it is possible, though unlikely, that this model

will not perform similarly at another institution. More likely is

that the model would require recalibration in order to be

transferred from one institution to another. However, with

such a recalibration, the exact weights of the various features

might change. One last limitation lies not necessarily with the

study itself but with the overall landscape of EMR data. While

the promises of fully automated risk scores are great, the re-

ality remains that most institutions still have trouble access-

ing the data stored in the EMRs. Thus, in order to truly

automate processes such as these, robust data interoperability

standards (such as Fast Healthcare Interoperability Resources)

will be needed in order to allow access to data.

The promise of using machine learning techniques in

healthcare is great. In this work we have presented a novel set
of easily accessible (via EMR data) preoperative features that

are combined in a machine learning model for predicting in-

hospital post-surgical mortality, which outperforms current

clinical risk scores; however, a model that incorporates both

physician judgement (via the ASA score) with machine

learning produces the best results. We have also shown that

the risk of in-hospital mortality changes over time. It is our

hope and expectation that the next few years will produce a

plethora of research leveraging data obtained during routine

patient care to improve care deliverymodels and outcomes for

all of our patients.
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