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Abstract
Motivation: As the number of fully sequenced prokaryotic
genomes continues to grow rapidly, computational meth-
ods for reliably detecting protein-coding regions become
even more important. Audic and Claverie (1998) Proc.
Natl Acad. Sci. USA, 95, 10026–10031, have proposed
a clustering algorithm for protein-coding regions in mi-
crobial genomes. The algorithm is based on three Markov
models of order k associated with subsequences extracted
from a given genome. The parameters of the three Markov
models are recursively updated by the algorithm which,
in simulations, always appear to converge to a unique
stable partition of the genome. The partition corresponds
to three kinds of regions: (1) coding on the direct strand,
(2) coding on the complementary strand, (3) non-coding.
Results: Here we provide an explanation for the conver-
gence of the algorithm by observing that it is essentially a
form of the expectation maximization (EM) algorithm ap-
plied to the corresponding mixture model. We also provide
a partial justification for the uniqueness of the partition
based on identifiability. Other possible variations and
improvements are briefly discussed.
Contact: pfbaldi@ics.uci.edu

Introduction
As the number of fully sequenced prokaryotic genomes
continues to grow rapidly, computational methods for
reliably detecting protein-coding regions become even
more important. In Audic and Claverie (1998), a new
method is presented for predicting protein-coding regions
in microbial genomic DNA sequences. Unlike other
methods (Borodovsky and McIninch, 1993; Borodovsky
et al., 1995; Salzberg et al., 1998) that often require an
annotated pre-existing training set, this method does not
require a training set, or any prior knowledge of the statis-
tical properties of the genome under study. In this sense,
this method is also related to Hayes and Borodovsky
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(1998). It is essentially a clustering, or self-organizing
approach, that uses all the available unannotated genomic
data for its calibration and is not based on direct pairwise
comparisons.

In a slightly simplified version, the method works
essentially as follows. The genomic sequences under con-
sideration are considered to result from n Markov models
Mα of order k, each one responsible for a different kind of
non-overlapping subsequences. In order to detect protein-
coding regions, a natural number of Markov models is
n = 3, corresponding to three different regions: (1) coding
on the direct strand, (2) coding on the complementary
strand, (3) non-coding. The available genomic sequences
are then cut into non-overlapping fragments of length w.
Typical values for k and w are k = 5 and w = 100. The
resulting sequences are randomly partitioned amongst the
three models and the three Markov models are initialized
accordingly, in a semi-random fashion. The algorithm then
proceeds iteratively by cycling through all the available
fragments. At each cycle, a fragment W is assigned to one
of the three classes depending on the highest posterior
probability

P(Mα|W ) = P(W |Mα)P(Mi )∑
β P(W |Mβ)P(Mβ)

. (1)

The parameters of each Markov model are then updated
using all the sequences assigned to the corresponding
sub-model. The assignments of fragments to models could
also be based on a threshold cut-off: if the posteriors
are below a certain value, the corresponding fragment
remains unassigned. The implementation described in
Audic and Claverie (1998) is slightly different in order
to handle length variability and to avoid setting up an
arbitrary cut-off. These differences are discussed below.
The windows also are not exactly contiguous but slightly
spaced for convenience reasons that are irrelevant for
the issues raised here—alternatively the spacing can be
considered as part of the windows. Notice that k, w and n
are the only parameters of the model that need to be fixed
‘externally’ in the algorithm. Obviously, the matrices

c© Oxford University Press 2000 367



P.Baldi

of the Markov models are additional parameters of the
model—but these are directly fit to the data.

It is clear that this method can easily be applied to
unassembled genomes. In Audic and Claverie (1998), the
method is validated on 10 complete bacterial genomes
from four major phylogenetic lineages. It is empirically
observed that this simple algorithm exhibits two essential
features: (1) rapid convergence, typically within 50 itera-
tions, (2) stability of the final Markov transition matrices
and of the genomic partition under different random ini-
tializations. The resulting partition corresponds indeed to
the three putative classes described above. The algorithm
can identify protein-coding regions with an accuracy of
up to 90% while tolerating simulated error rates of 1–2%
[see also Borodovsky and Peresetsky (1994) and Mathe et
al. (1999)].

For completeness, we now provide a very concise review
of mixture models and the expectation maximization (EM)
algorithm since these are essential to understand the con-
vergence of the algorithm of Audic and Claverie (1998).

Mixture models and the EM algorithm
Markov models of order k
Consider an alphabet A, in our case A = {A, C, G, T }. An
homogeneous Markov model M of order k for sequences
over A is specified by an initial distribution π(s) over all
possible sequences of length k and an |A|k × |A| transi-
tion matrix. The transition matrix specifies the probabili-
ties P(X |s) of producing the letter X given the prefix sub-
sequence s of length k. The probability of a sequence W of
length L is then described by

P(W |M) = π(s0)

i=L−1∏

i=k

P(Xi |si−k). (2)

Mixture models
Mixture models (Everitt and Hand, 1981; Titterington et
al., 1985) are probabilistic models built using positive
convex combinations of distributions taken from a given
family. It is clear that the algorithm above corresponds to
a mixture of three Markov models of order k with

P(W |M) =
∑

α

λα P(W |Mα) (3)

where the mixing coefficients λα satisfy: λα ≥ 0 and∑
α λα = 1. The mixing coefficients represent, of course,

the proportion of sequences in each class. Such a mixture
model is also representable as a probabilistic graphical
model or Bayesian network (Baldi and Brunak, 1998).
Similar mixtures of hidden Markov models have in fact
been used to model protein sub-families (Krogh et al.,
1994).

If the data D consists of N sequences W1, . . . , WN as-
sumed to be independent, then the likelihood is given by

P(W1, . . . , WN |M) =
N∏

i=1

∑

α

λα P(Wi |Mα). (4)

By Bayes theorem, the posterior for an example W to
belong to class α is given by

P(Mα|W ) = λα P(W |Mα)

P(W |M)
. (5)

By differentiating the log-likelihood, augmented by the
normalization constraints on the mixing coefficients and
using equation (5), one obtains

N∑

i=1

P(Mα|Wi ) − Nλα = 0 (6)

and
N∑

i=1

P(Mα|Wi )
∂ log P(Wi |Mα)

∂θα

= 0 (7)

where θα is any free parameter of Mα . In reality the entries
of the transition matrix of Mα are not entirely free since
they must satisfy the normalization constraints. Such
constraints can be added to the log-likelihood with the
use of Lagrange multipliers. Alternatively the θαs can
be reparametrized using, for instance, normalized expo-
nentials as in Baldi and Chauvin (1994). But in general,
this suggests a natural iterative algorithm to maximize
the likelihood given by a mixture whereby the mixing
coefficients are first set to the optimal empirical average

λ∗
α =

N∑

i=1

P(Mα|Wi )/N . (8)

The parameters θα are obtained by solving equation (7),
which is a weighted average of the maximum likelihood
equations for each individual component, weighted by the
class membership posterior probabilities. This is in fact a
special case of the EM algorithm.

Expectation maximization
The EM algorithm is useful in models and situations with
hidden variables. Typical examples of hidden variables
are missing or unobservable data, mixture parameters in
a mixture model, and hidden states in graphical models,
such as hidden states in HMMs (Hidden Markov Models).
If D denotes the data, we assume that there is available
a parametrized joint distribution on the hidden and ob-
served variables P(D, H |θ), parametrized by θ . Let us
assume that the objective is to maximize the likelihood
log P(D|θ). Since in general it is difficult to optimize
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log P(D|θ) directly, the basic idea is to try to optimize
the expectation E(log P(D|θ)). The EM algorithm is an
iterative algorithm that proceeds in two alternating steps,
the E (expectation) step and the M (maximization) step.
During the E step, the distribution of the hidden variables
is computed, given the observed data and the current
estimate of θ . During the M step, the parameters are
updated to their best possible value given the presumed
distribution on the hidden variables. The algorithm starts
with an estimate θ0 at time 0. At time t , the EM algorithm
can be written as:

1. E step: Compute the distribution Q∗(H) over H ,
such that Q∗(H) = P(H |D, θ t−1).

2. M step: Set θ t = argθ max EQ∗[log P(D, H |θ)].
This can also be interpreted in terms of a double free
energy optimization with respect to Q and θ (Baldi and
Brunak, 1998).

In the case of a mixture, the hidden variables are the in-
dicator variables corresponding to the choice of one of the
components and θ represents the component parameters.
The E step estimates the mixture coefficients using equa-
tion (8). The M step maximizes the likelihood associated
with each component according to equation (7).

It should be clear now that the algorithm described in
the introduction is an approximation to EM. The prob-
abilities P(Mα|Wi ) are implicitly approximated by the
counts Nα/N where Nα is the total number of sequences
assigned to class α. The parameters of each Markov model
are updated by maximum likelihood using counts based on
the corresponding set of sequences. This approximation
to EM where probabilities are thresholded to 1 or 0 is
routinely used in HMMs when emission or transition
counts are based only on the most likely paths associated
with each sequence in what is called Viterbi learning. In
the clustering literature, this algorithm is also known as
k-means.

Convergence
It can be shown (Dempster et al., 1977) that each step of the
EM algorithm tends to increase the likelihood. Thus in gen-
eral the EM algorithm converges to a maximum of the like-
lihood function, albeit not necessarily a global one. In gen-
eral, Viterbi-like approximations to EM are also conver-
gent and are used as such in HMM applications. This pro-
vides an explanation for the convergence of the clustering
algorithm described in Audic and Claverie (1998). It does
not prove, however, convergence to a global optimum, nor
the fact that such global optimum might be unique.

Identifiability
As far as the uniqueness of the global optimum is
concerned, here we prove a slightly weaker result by

restricting ourselves to the space of exact mixtures of
Markov models of order k. In other words, if the data
we are modeling is indeed produced by a mixture of
Markov models of order k, then this mixture is unique or
identifiable. Specifically, if for every W

∑

α

λα P(W |Mα) =
∑

β

µβ P(W |Nβ) (9)

then there exists a permutation of the indices such that
for each α, λα = µγ and Mα = Nγ for some γ .
Mixtures over a family F are identifiable if and only if
the set F is linearly independent over the real numbers
(Everitt and Hand, 1981; Titterington et al., 1985). Thus
we need only show that the set of Markov models of order k
is linearly independent. The proof of this fact is given in the
Appendix. One observation is that the identifiability result
is valid in the case of large data sets—which is usually the
case in genomic applications. It is of course possible for
two completely different mixtures to coincide on a small
data set, but not on all W s.

Discussion
The model introduced in Audic and Claverie (1998) is
a mixture of Markov models. The learning algorithm
described in the introduction is a Viterbi approximation to
the EM algorithm and as such is convergent—as observed
in the original simulations. A simple mixture model does
not capture the length of the different type of genomic
regions, nor the transition events from one class to the
next. This deficiency is addressed in Audic and Claverie
(1998) by a slight modification of the training algorithm.
Instead of using all the windows for training, only those
corresponding to sufficiently homogeneous stretches of
DNA are used—a stretch being homogeneous if and
only if the windows it contains are classified in the same
way. Such procedure does not alter the convergence
qualities of the algorithm—it may even reinforce them
since in a sense the training set gets cleaner and cleaner
as the mixture model improves. When k is small with
respect to w, it should not matter also whether fitting
is done using the windows separately or the contiguous
sequences themselves. Furthermore, in cases where only
a relatively small fraction of the data is discarded the
fitting operations are similar. An alternative approach of
course is to incorporate a model of the region lengths
and/or transitions into the probabilistic model itself, as
in several current gene finders (Burge and Karlin, 1997).
This can be achieved, for instance, by the use of hidden
Markov models. The arrangement of hidden states and
their transition probabilities can be used to model duration
(Rabiner, 1989; Durbin et al., 1998).

There are additional modeling possibilities that are
suggested by the mixture framework, such as the use of
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hierarchical modeling or the introduction of priors—in
particular of Dirichlet priors. Markov models of order 5
seem to be optimal because of the well-recognized (Fickett
and Tung, 1992) and important differences between DNA
hexamer statistics in coding and non-coding regions. Yet
another reason, as pointed out in Audic and Claverie
(1998), is also because there is often not enough data to
train Markov models of higher orders. Such problems
could be addressed by using Dirichlet prior distributions
equivalent to introducing pseudo-counts to handle nmers
that are poorly represented in the available fitting data.
The connection to EM suggests also a number of possible
algorithmic variations such as smooth (non-Viterbi) and
on-line training (Baldi and Chauvin, 1994) although
it is unlikely that these alone could lead to substan-
tial performance improvements. The experimentally
observed—although not quantified—robust convergence
of the algorithm to a single point suggests the presence of
a strong attractor with a broad basin. Several elements of
small stochasticity present in the algorithm may further
help the convergence by escaping small local minima.
We have shown that the mixtures considered here are
identifiable. Thus the optimal mixtures have a unique
representation and are likely to be non-degenerate.

The clustering method analysed here seem to work well
with shotgun sequencing and with bacterial genomes,
where coding regions often represent more than 90%
of the total DNA. With more than 40 genomes already
shotgun sequenced to date, such computational methods
are useful for parsing the rapidly growing data. Their
extension to eukaryotic genomes—where the fraction
of coding sequences is often less than 10%—remains a
challenge however.

Appendix: Independence of Markov models
Here we prove that Markov models of order k are indepen-
dent. For simplicity, we prove it in the case where the al-
phabet has only two symbols A = {0, 1} and when k =
0. The general case can be studied along the same lines.
When k = 0, a Markov model M is entirely described by
a single number P(0|M) = p. Assume for contradiction
that there are n different Markov models M1, . . . , Mn de-
scribed by the probabilities p1, . . . , pn which are depen-
dent. Then there exists a vector of non-zero real numbers
a1, . . . , an such that for every W :

∑
i ai P(W |Mi ) = 0.

For each word containing r 0s and s 1s, this translates into

n∑

i=1

ai pr
i (1 − pi )

s = 0. (10)

Notice that if p1 = 1 for instance, then for every s: a1 +∑s
i>1 ai ps

i = 0. Since all the models are different by
assumption, all the other pi are strictly less than one. By
letting s → ∞, we see that a1 = 0 which contradicts our

starting assumption. Thus, without any loss of generality,
we can assume that all the pi s are strictly between 0 and
1. The set of equations obtained when s + r = n is
an homogeneous linear system in the ai s with a classical
Van der Monde matrix. The only cases where it can have
additional solutions involves equations of the form pi = 0
or pi = 1, which is impossible by the remark above, or
pi = p j which is equivalent to Mi = M j for some i and
some j . The latter is also impossible since all Mi s must be
different. Therefore, the models Mi must be independent.
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