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Abstract

Although no universally accepted definition of causality exists, in practice one is often faced with 

the question of statistically assessing causal relationships in different settings. We present a 

uniform general approach to causality problems derived from the axiomatic foundations of the 

Bayesian statistical framework. In this approach, causality statements are viewed as hypotheses, or 

models, about the world and the fundamental object to be computed is the posterior distribution of 

the causal hypotheses, given the data and the background knowledge. Computation of the 

posterior, illustrated here in simple examples, may involve complex probabilistic modeling but this 

is no different than in any other Bayesian modeling situation. The main advantage of the approach 

is its connection to the axiomatic foundations of the Bayesian framework, and the general 

uniformity with which it can be applied to a variety of causality settings, ranging from specific to 

general cases, or from causes of effects to effects of causes.
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1 Introduction

Causality is a fundamental concept in science, technology, and our general understanding of 

the world. However its precise definition is problematic: no universally accepted definition 

of causality exists even to the point that some have advocated avoiding precise definitions of 

the concept [“The law of causality...like much that passes muster among philosophers, is a 

relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed 

to do no harm” (B. Russell); “Causality is not to be strongly defined; thus theory cannot be 

created.” (L. Zadeh)].

While it is clear that correlation is not causation, the complexity of defining “A causes B” is 

compounded by several factors. In complex, but typical, situations one is confronted with 

multiple causes and multiple effects interacting in complex ways through mechanisms that 

are often only partially understood, in both individual and general cases (e.g. relationships 

between drugs, age, and cancer in a specific individual or in the population). Furthermore, 

causal inference may proceed in the forward direction associated with the effects of causes 

(what might happen if we do A) or in the reverse direction associated with the causes of 

effects (what causes B).
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In spite of these difficulties, in practice, especially in legal or scientific settings, one is often 

faced with the problem of rationally evaluating possible causal relationships and teasing out 

whether something classified as being statistically significant is associated with a causal 

relationship or not. With the ongoing data deluge, this has become an area of intense 

research and several statistical frameworks have been developed. Among the most widely 

used or debated ones are the counterfactual approach usually associated with Rubin (Rubin, 

1974, 1977, 1990), and Pearl’s (Directed Acyclic Graph) approach (Pearl, 2000, 2009) (see 

also Illari et al. (2011); Peters et al. (2011), among many others).

While some statistical frameworks may depend on a precise definition of causality, or on the 

characteristics of the statistical problem being considered–such as causality in a specific case 

as opposed to causality in the more general setting, or the important distinction between 

reverse causal inference (causes of effects) versus forward causal inference (effects of 

causes) (Dawid et al., 2014; Pearl, 2015), it is conceivable that some frameworks may be 

more general and apply in some sense uniformly to different situations and different 

definitions of causality.

The Bayesian statistical framework, in particular, provides a general framework for 

statistical questions, and thus it is natural to ask what a Bayesian framework for the study of 

causality should look like? Thus, in short, the goal here is to go back to the foundations of 

the Bayesian approach and try to derive a complementary, general, framework for causality 

analysis derived from Bayesian first principles.

2 The Bayesian Statistical Framework and its Axioms

To begin with, it is useful to review the axiomatic foundations of the Bayesian statistical 

framework (Cox, 1964; Savage, 1972; Jaynes, 2003; Bernardo and Smith, 2001). Broadly 

speaking there are at least two related kinds of axiomatic frameworks. The first kind is based 

on “monetary” notions, such as utility and betting. As we do not think that monetary 

considerations are essential to science and statistics, we choose the second framework, based 

on the notion of “degrees of belief”.

The starting point for this framework is to consider an observer who has some background 

knowledge ℬ and observes some data D. The observer is capable of generating hypotheses 

or models, from a certain class of hypotheses or models. The process by which these models 

are generated, or by which the class of models is changed, are outside of the scope of the 

framework.

Bayesian analysis is concerned with the assessment of the quality of the hypotheses given 

the data and the background model. Given an hypothesis H, the fundamental object of 

Bayesian statistics is the “observer’s degree of belief” π H |D, ℬ  in H, given D and ℬ. If the 

background knowledge ℬ changes, the degree of belief may change, one of the main reasons 

this approach is sometimes called “subjective” (incidentally, a major marketing error of the 

Bayesian camp and a main argument for the detractors of this approach). Although 

“subjective”, the approach aims to be rational in the sense that the fundamental quantity 
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π H |D, ℬ  should satisfy a set of reasonable axioms. Usually three axioms are imposed on 

π H |D, ℬ .

First π should be transitive, in the sense that given three hypotheses H1, H2, and H3 if 

π H1 |D, ℬ π H2 |D, ℬ  and π H2 |D, ℬ π H3 |D, ℬ , then:

π H1 D, ℬ π H3 D, ℬ (1)

Here X Y is meant to represent that hypothesis Y is preferable to hypothesis X. The 

transitivity hypothesis essentially allows mapping degrees of beliefs to real numbers and 

replacing with ≤.

The second axiom states that there exists a function f(x) establishing a systematic 

relationship between the degree of belief in an hypothesis H and the degree of belief in its 

negation ¬H. Intuitively, the greater the belief in H, the smaller the belief in ¬H should be. In 

other words:

π H D, ℬ = f π ¬H D, ℬ . (2)

Finally, the third axiom, states that given two hypotheses H1 and H2, there exists a function 

F(x, y) establishing a systematic relationship such that:

π H1, H2 D, ℬ = F π H1 D, ℬ , π H2 H1, D, ℬ . (3)

The fundamental theorem that results from these axioms is that degrees of beliefs can be 

represented by real numbers and that if these numbers are re-scaled to the [0,1] interval, then 

π H |D, ℬ  must obey all the rules of probability. In particular, f (x) = 1−x and F(x, y) = xy. 

As a result, in what follows we will use the notation P H |D, ℬ  and call it the probability of 

H given D and ℬ.

In particular, when re-scaled to [0,1], degrees of belief must satisfy Bayes theorem:

P H D, ℬ = P D H, ℬ P H ℬ
P D ℬ . (4)

which is the fundamental tool for inversion, where P H |ℬ  is called the prior of the 

hypothesis, P D |H, ℬ  the likelihood of the data, and P D |ℬ  the evidence.

Thus fundamentally, in this framework, probabilities are viewed very broadly as degrees of 

beliefs assigned to statements (or hypothesis or models) about the world, rather than the 

special case of frequencies associated with repeatable events.

In practical situations, the elegance and flexibility of the Bayesian framework is often faced 

with two well-known challenges: (1) the choice of the prior degree of belief P H |ℬ ; and 

(2) the actual computation of the posterior P H |D, ℬ , and any related expectations, which 
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may not always be solvable analytically and may require Monte Carlo approaches (Gelman 

et al., 1995; Gilks et al., 1995).

3 Causal Relationships as Hypotheses about the World

Given this foundational framework, how then should causality be viewed from a Bayesian 

standpoint? It is best to consider a simple example.

Suppose that Mr. Johnson is driving his car at 80 miles per hour and frontally collides with 

another stationary car. After the collision, we observe that Mr. Johnson is dead and wish to 

ask the simple causality question: was the death of Mr. Johnson caused by the high-speed 

collision? From our past experiences and background knowledge, we immediately get a 

feeling that this is likely to be the case. However, upon reflection, we also realize that one 

cannot be absolutely certain of this causal relationship. What if Mr. Johnson suffered a 

deadly heart attack two seconds before the collision? With additional data, such as the 

results of an autopsy, these two possibilities could perhaps be disentangled, but one may, or 

may not, have access to this additional data.

In short, it should be clear that the statement “the death of Mr. Johnson was caused by the 

high-speed collision” should itself be regarded as a hypothesis about the world. Our degree 

of belief in this hypothesis may vary depending on the data available to support it and our 

background knowledge. Thus, from a Bayesian standpoint, causality relationships ought to 

be treated like any other hypothesis or model. And therefore one must conclude that the 

fundamental object of Bayesian causality analysis ought to be the computation of the 

probability of the causality hypothesis given the available data and background knowledge.

Although this conclusion comes straight out of the foundations of the Bayesian statistical 

framework, it is perhaps surprising that, to the best of our knowledge, it has not been clearly 

articulated as such. In fact, the first reaction of several statisticians we consulted with is to 

say something like “I would not know where to start in order to compute such probability”.

Note that this general framework applies uniformly both to specific (e.g. Mr. Johnson) or 

general (e.g. drivers) situations. It applies also uniformly to causes of effects and effects of 

causes analyses, as these primarily correspond to a change in the data. In one case, the 

effects are observed, in the other case the causes are observed. This is an important point, as 

there has been a general tendency to fragment causality analysis into a growing number of 

“sub-areas” by categorizing different kinds of data (e.g. observational, experimental) and 

different kinds of analyses (e.g. effect of causes, causes of effects) and studying each 

combination separately, while in reality there is a continuum of situations (see also Rubin et 

al. (2008)).

One concern one may raise is that the framework described applies only to binary 

propositions and may not be able to handle continuous hypothesis or causal effect sizes. 

However this is not the case. First, any continuous hypothesis can be reduced to a sequence 

of binary propositions. For instance, if we are interested in a hypothesis about the size of an 

effect, we can always reduce it to a sequence of binary hypothesis of the form “the size is 

greater than ai” for some sequence of numbers ai. Second, it is natural in a Bayesian 
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framework to consider probabilities as parameters and to compute expectations by 

integrating over their posterior distributions, and thus producing continuous values. For 

instance, in the case of a drug treatment, we may have a parameter p that represents the 

probability of a drug curing an individual randomly drawn from a certain population. We 

may have a prior P(p) and derive a posterior distribution P(p | D) from some data D. By 

integrating over P(p | D), one can easily compute effect sizes in the form of the expected 

mean and standard deviation of the number of people to be cured by the drug in a similar 

population of size N. Specific examples are given below.

4 Related Work

This is of course not the first time that Bayesian ideas are applied to issues of causality. 

Following the work of Rosenbaum and Rubin (1983) on propensity score adjustment (based 

on a model for treatment assignment mechanism) to control for the effect of unknown and 

non-ignorable confounding variables, there have been many attempts to develop a 

comparable Bayesian method (Hoshino, 2008; McCandless et al., 2009; An, 2010; Kaplan 

and Chen, 2012; Matthew Zigler and Dominici, 2014; Chen and Kaplan, 2015; Graham et 

al., 2015). Saarela et al. (2016) propose an alternative approach based on posterior predictive 

inference, by using the inverse probability of treatment to decouple the outcome regression 

model from the treatment assignment model. This alternative approach has been previously 

discussed by several authors in the context of change of probability measures (Rysland, 

2011; Chakraborty and E.M. Moodie, 2013). Such methods use the concept of potential 

outcomes to define causal effects explicitly, so that Bayesian methods can be used for the 

joint distribution of the potential outcomes, and probability statements can be provided on 

the effect size using the resulting posterior distribution.

Rubin (1978) argues that, while Bayesian inference is complicated for nonignorable 

treatment assignment, principled Bayesian methods for causal inference could still be used 

when the treatment assignment is either unconfounded or confounded but ignorable. In fact, 

the Bayesian perspective could be quite useful for handling complex causal inference 

problems. For example, Imbens and Rubin (1997) propose a novel framework for Bayesian 

causal inference in randomized experiments with noncompliance. They argue that while 

Bayesian methods never account for design based standard errors, the compliance behavior 

of subjects should be taken into account. Schwartz et al. (2011) address the issue of 

intermediate variables in causal inference by using a Dirichlet process mixture model. 

Daniels et al. (2012) also propose a Bayesian approach for the causal effect of mediation. 

Dawid et al. (2016) use a personalist Bayesian perspective to discuss the distinction between 

the “ effect of causes” (EoC) and the “causes of effects” (CoE), especially when 

investigating a case in a Court of Law. They argue that while statisticians are mainly 

concerned with EoC, it is unclear how statistical methods could be used for CoE, which is 

typically what a Court of Law needs in order to assign responsibility for a given undesirable 

outcome. Although they admit that this problem might not have a well-determined answer, 

they show that it is possible to find bounds for the “probability of causation” using a 

Bayesian approach.
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Here, we advocate using the foundations of Bayesian statistics as a general and unifying 

framework for causality. This framework, as described in Section 3, focuses on computing 

posterior probabilities, but it does not prescribe how to use these probabilities, for instance 

in hypothesis testing. In Bayesian statistics, hypothesis testing is commonly discussed within 

the framework of decision theory, where the goal becomes the minimization of the posterior 

risk with respect to a loss function. When using a convenient, but not necessarily optimal, 0–

1 loss function, the minimization of the posterior risk reduces to choosing the hypothesis 

with the higher posterior odds. This is of course sensitive to the choice of the prior 

distribution, which is often assumed to be uniform leading to the notion of Bayes factor, 

originally developed by Jeffreys (1935, 1961). Thus the Bayes factor is simply the posterior 

odds for one hypothesis (e.g., the null hypothesis) when we decide not to express preference 

for either hypothesis a priori. In other words: Posterior Odds = Bayes Factor × Prior Odds:

P H1 D
P H2 D = P D H1

P D H2
P H1
P H2

As we can see, the Bayes factor B12 = P D |H1 /P D |H2  has the form of a likelihood ratio 

(Kass and Raftery, 1995). Gûnel and Dickey (1974) discuss different Bayes factors, under 

different sampling models, for two-way contingency tables.

5 Bayesian Causality Calculations

To see how causality may be assessed in a Bayesian fashion more precisely, let us first 

proceed with the example above.

5.1 Example of Bayesian Causality Calculation (Car Collision)

We let D be the observation that Mr. Johnson is dead. We let A denote the fact that Mr. 

Johnson was involved in a high speed collision and B = D the fact that Mr. Johnson is dead. 

We denote by B ← A the hypothesis that the high speed collision was the cause of Mr. 

Johnson’s death. Thus, within the Bayesian foundational framework, the fundamental task is 

to compute P B A |D, ℬ .

As a side note, this is very different from computing P(B | A) which is used in the area of 

probabilistic causation (Anderson and Vastag, 2004; Cardenas et al., 2017).

From Bayes theorem we immediately have:

P B A D, ℬ
= P D B A, ℬ P B A ℬ

P D B A, ℬ P B A ℬ + P D ¬ B A , ℬ P ¬ B A ℬ . (5)

There are rational ways for assigning a numerical value to each term in this equation. The 

numerical value may vary as a function of, for instance, the background knowledge but this 

is a good thing, rather than a bad thing. It forces one to examine exactly which assumptions 

go into the calculation. Furthermore, one can proceed with a robustness analysis to show, for 
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instance, that the posterior does not vary too much under different assumptions, as shown 

below.

In this particular case, we first obviously have P D |B A, ℬ = 1. For the prior, 

P B A |ℬ  we could look at general statistics on how often collisions at 80 miles an hour 

result in the death of the driver. Let us say that this occurs 95% of the time, then we could 

use the prior: P B A |ℬ = 0.95. Then obviously P ¬ B A |ℬ = 0.05. Thus the only 

term left to estimate, and the most interesting one, is: P D | ¬ B A , ℬ .

To estimate P D | ¬ B A , ℬ  requires some analysis and modeling, but the same would be 

true in the other existing approaches to causality. Only for the purpose of simplifying the 

discussion, let us assume that the only other possible cause of death for Mr. Johnson is a 

heart attack, leaving out strokes, stray bullets, etc. Then basically we need to estimate the 

probability that Mr. Johnson suffered a heart attack in the few seconds, again to simplify let 

us say two seconds, before the collision. Again this probability could be estimated rationally 

from background statistical data on the population. Here, only for the sake of simplicity, we 

assume the model that at every second of human life there is an independent probability ~ 

10−9 of suffering a heart attack. As a result, under these assumptions, we have: 

P D | ¬ B A , ℬ ≈ 2 × 10−9. In short, putting all these elements together, leads us to the 

following degree of belief in the causal relationship:

P B A D, ℬ = 0.95
0.95 + 0.05 × 2 × 10−9 = 0.95

0.9500000001 ≈ 0.999999999895 (6)

As expected, one has a strong belief in the collision being the cause of Mr. Johnson’s death 

both because high speed collisions have a high probability of resulting in death and because 

alternative causes of death have low probability. The Bayesian framework allows one to 

quantify and combine these two elements in a precise way. While in this case, the long 

decimal expansion may seem like an overkill, it must be noted that there are legal settings 

where very small probabilities matter, for instance in the case of establishing identity using 

genetic profiling (Kaye, 1993; Waits et al., 2001; Buckleton et al., 2016).

It is easy to see in this case that the belief in a causal relationship is robust in that most of the 

decimals would remain unchanged if the probability of dying in a high speed collision was x 
= 0.9 instead of 0.95 or the instantaneous probability of heart attack y = 10−8 rather than 

10−9. In fact, for sensitivity analysis purposes, the derivative of the posterior with respect to 

these quantities can easily be computed and analyzed as we have:

P B A D, ℬ = x
x + 1 − x 2y (7)

Likewise, one can modify the prior and analyze the effects of such a change. For instance 

under an uninformative, maximum entropy, prior P B A |ℬ = P ¬ B A |ℬ = 0.5. In 

this case,
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P B A D, ℬ = 0.5
0.5 + 0.5 × 2 × 10−9 = 0.5

0.5000000001 ≈ 0.9999999998 (8)

again resulting only in a minor change over the value obtained in Equation 6.

The analysis above was done for a specific individual (Mr. Johnson) and in a causes of 

effects setting. It should be clear however that with the proper adjustments similar 

calculations can be done for generic cases, or for the effects of causes setting. Once A and B 
have been defined with sufficient precision, all these variations formally require:

1. Defining a prior distribution P B A |ℬ  on the causal hypothesis, regardless of 

its form or definition; and

2. Computing likelihoods expressions of the form: P D | B A , ℬ  and 

P D | ¬ B A , ℬ .

The important work lies in these two steps. In particular, these steps may require building a 

complex Bayesian hierarchical model. But this is no different from Bayesian modeling in 
any other situation.

5.2 Example of Experimental Study (Aspirin)

As another example, consider the 2 × 2 contingency table (Table 1) (Dawid et al., 2014) 

reporting the results of a fictitious double-blind randomized experiment involving 200 

individuals, with 100 given aspirin tablets, and 100 chalk tablets (the control). Let us denote 

by D1 the data corresponding to the first row of the Table (control), and by D2 the data 

corresponding to the second row (experiment). Here one is interested in possible causal 

relationships between taking aspirin and recovery from headaches, possibly in the forms:

• Effects of Causes: I have a headache. I am wondering whether to take aspirin. 

Will taking aspirin cause my headache to disappear?

• Causes of Effects: I had a headache and took aspirin. My headache went away. 

Was that caused by the aspirin only?

The Effects of Cause problem can be written as estimating P B A |D, ℬ  where A is “I 

take aspirin”, B is “my headache will disappear within 30 minutes ” and ℬ is “I have a 

headache”. The Cause of Effects problem can be written as estimating 

P B A ∧ ¬ B Other |D, ℬ  where A is “I took aspirin”, B is “my headache disappeared 

within 30 minutes”, ℬ is “I had a headache”, and ¬[ B ← Other] is meant to capture the 

“only” portion of the statement, i.e. to rule out other causes, as described below.

It should first be obvious from the data that none of these questions has a simple yes/no 

answer and that these questions can only be addressed in probabilistic terms. There are two 

factors that complicate the analysis somewhat (Figure 1). The first factor is that D1 shows 

that 12 out of 100 people recovered from headache when given chalk. The observed 

recovery could be due to “natural causes” or to placebo effects. No data about recovery from 

headache in controls who have not taken a pill is available to try to disentangle these two 

effects. Thus to slightly simplify the analysis, we will lump natural causes and placebo 
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effects into a single cause called “Other”. The second factor is that regardless of whether 

there is a placebo effect or not, there is potentially some overlap between recovery due to 

aspirin and recovery due to other causes (e.g. through different biochemical pathways) and 

no direct observation of this overlap is available to us.

To build a Bayesian probabilistic model of the data in Table 1, we assume an overall model 

characterized by two probabilities p and q, which are the parameters of this model: p is the 

conditional probability of recovery from a headache due to Other causes, and q is the 

conditional probability of recovery from a headache due to Aspirin.

It is natural to put Beta priors on the probabilities p and q, so that:

P p = Γ a + b
Γ a Γ b pa − 1 1 − p b − 1 and P q = Γ c + d

Γ c Γ d qc − 1 1 − q d − 1
(9)

with a > 0, b > 0, c > 0 and d > 0. The data D1 does not contain information about q but it 

immediately leads to a marginal Beta posterior distribution for p:

P p D1 = Γ a + b + 100
Γ a + 12 Γ b + 88 pa + 11 1 − p b + 87

(10)

which we can take as the new prior on p before seeing D2. Assuming independence of the 

priors, prior to seeing D2 the complete prior is given by:

P p, q = P p D1 P q
= Γ a + b + 100

Γ a + 12 Γ b + 88 pa + 11 1 − p b + 87 Γ c + d
Γ c Γ d qc − 1 1 − q d − 1 (11)

To complete the description of the model, we need to define the likelihood P(D2 | p, q), 

which requires dealing with the overlap issue. We assume that the action of Aspirin and the 

Other causes are independent. Thus for fixed p and q, we have a four-dimensional 

multinomial distribution with probabilities: p (1−q), q (1−p), pq and (1−p )(1−q) (Figure 2). 

Thus, in general, in this model the probability of observing a corresponding set of counts N 
= n1+ n2+ n3+ n4 is given by:

P n1, n2, n3, n4 p, q
= N !

n1!n2!n3!n4! p 1 − q n1 q 1 − p n2 pq n3 1 − p 1 − q n4 (12)

In Table 1, N = 100 and n1, n2, and n3 are lumped together such that: n1+ n2+ n3 = 30. Thus 

the likelihood P(D2 | p, q) is given by:

∑
n1 = 0

30
∑

n2 = 0

30 − n1
100!

n1!n2!n3!70! p 1 − q n1 q 1 − p n2 pq 30 − n1 − n2n3 1 − p 1 − q 70
(13)

or:
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∑
n1 = 0

30
∑

n2 = 0

30 − n1 100
n1

p 1 − q n1 100 − n1
n2

q 1 − p n2 pq k2 100 − n1 − n2
30 − n1 − n2

pq 30 − n1 − n2 1 − p 1 − q 70
(14)

where n1 is the number of people recovering from Other only, and n2 is the number of 

people recovering from Aspirin only. Note that this could be regarded as a form of missing 

data imputation.

The model is now complete and, as in any other Bayesian modeling situation, one can 

compute the posterior distribution on p and q, their modal or mean a posteriori point 

estimates, as well as any other expectations or integrals with respect to this posterior 

distribution as a function of the parameters (a,b,c,d) of the prior distribution. For instance, 

for fixed p and q, the probability associated with the Effects of Causes is: q if we interpret it 

as including the possibility of a coexisting Other effect (or q – pq if we interpret it as a pure 

aspirin effect). Likewise, the probability associated with the Causes of Effects question is 

obtained by noting that the total probability of recovery from headache is p + q − pq. Thus it 

is given by: q / (p + q − pq) in same broad sense as above(or (q − pq) / (p + q − pq) if we 

disallow any coexisting Other effect). It is worth noting how the probabilistic framework can 

precisely disambiguate the semantic ambiguity hidden behind common, but vague, 

language. Finally, inferences for these probabilities are obtained based on the joint posterior 

for (p, q); this is easily accomplished using standard MCMC methods.

More precisely, assuming a uniform prior on p and q (a = b = c = d = 1), Figure 3 shows the 

joint (left) and marginal (right) posterior distributions on the parameters p and q. The 

marginal density curves (in the right panel of Figure 3) are based on approximate Beta 

distributions fitted to posterior samples. The posterior mean, standard deviation, and 95% 

credible interval (CI) for each parameter are provided in Table 2. We have also included the 

estimates for the Causes of Effects, q / (q + p − pq). As we can see, we expect that on 

average 20% of people with headache feel better after taking aspirin. Also, if a person’s 

headache disappears after taking aspirin, the estimated probability that this is in fact due to 

taking aspirin is 0.65. For comparison, the p-value using Pearson’s χ2 test of independence 

is 0.003. That is, we can reject the null hypothesis at 0.01 significance level and conclude 

that aspirin helps cure headache. (Within the frequentist framework, we assume that the 

study is designed as a randomized experiment.) We can also compute the Bayes factor 

against the null hypothesis (independence). The Bayes factor is 19.34 which is generally 

considered as “strong evidence”.

Figure 4 shows how our estimates of p and q change if we use other priors instead of 

Uniform(0, 1) for p and q. In this case, we allow the prior means for p and q, i.e., a / (a + b) 

and c / c + d respectively, to change from 0.1 to 0.9. To this end, we set a and c to 0.1, 0.2, 

…, 0.9, and assume b = 1 − a and d = 1 − c. As we can see, our estimates are not very 

sensitive to the choice of priors in this case.
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5.3 Example of Observational Study (Birthweight)

We now analyze a real study based on examining the relationship between low birthweight 

(defined as birthweight less than 2.5 kg) and maternal smoking during pregnancy. The data 

include a sample of 189 cases collected at Baystate Medical Center, Springfield, MA during 

1986 (Hosmer and Lemeshow, 1989). Table 3 provides the summary data, and Figure 5 (left 

panel) shows the marginal posterior distributions of p and q. Here, p is the conditional 

probability of low birthweight due to other causes, and q is the conditional probability of 

low birthweight caused by smoking. The corresponding 95% CI, posterior means, and 

posterior standard deviations are presented in Table 4. As we can see, the estimated 

probability that smoking would cause low birthweight is 0.21. For a smoking mother with a 

low birthweight baby, there is a 0.48 probability that this has been caused by smoking. For 

this example, the Bayes factor against the null hypothesis is 1.94, which is considered as 

“weak evidence” (not worth more than a bare mention according to Jeffreys, 1961), and the 

p-value based on Pearson’s χ2 test is 0.04, which is generally considered as marginally 

significant. Note that since this is not a randomized experiment, within the frequentist 

framework we cannot conclude that the relationship is causal even though we can reject the 

null hypothesis (no association) at 0.05 significance level. However, we can use the 

propensity score adjustment method. To this end, we estimated the propensity score using a 

logistic regression model with maternal age and race as covariates and maternal smoking 

status as the outcome variable. We then stratified the subjects into five groups based on their 

estimated propensity scores and used a Cochran–Mantel–Haenszel χ2 test of the null 

hypothesis that smoking and low birthweight are conditionally independent in each stratum. 

Using this approach, the p-value reduces to 0.005. However, whether we can use this result 

to conclude that smoking during pregnancy can cause low birthweight remains a 

controversial topic (Chapter 11, Pearl (2009)).

In a more recent study conducted during 1998–2000, (Wang et al., 2002) examined 741 

mothers, who delivered singleton live births at Boston Medical Center. Among these 

women, 174 were smokers and 567 were non-smokers. Table 5 shows the frequencies of 

babies with normal birthweights and low birthweights for each group. The marginal 

posterior probability distributions of p and q are shown in Figure 5 (right), and the 

corresponding summaries (95% CI, mean, and standard deviation) are presented in Table 6. 

Here, we used the approximate Beta distributions fitted to the marginal posterior 

distributions using the data from Baystate Medical Center as the priors for p and q. More 

specifically, we assumed p ~ Beta(30, 90) and q ~ Beta(4, 17). Note that compared to the 

previous example, the estimated probabilities are relatively smaller and have narrower 

credible intervals. The Bayes factor in this case is 8.84 indicating “substantial evidence” 

against the null hypothesis (independence). Using Pearson’s χ2 test, the p-value is 0.003. 

While there is stronger evidence to reject the null hypothesis compared to the previous 

example, within the frequentist framework we cannot still conclude that smoking causes low 

birthweight since the study is not designed as a randomized experiment.
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6 Discussion

We have presented what we think ought to be the Bayesian framework for causality analysis. 

In this framework, causality statements are viewed as hypotheses or models about the world, 

and thus the fundamental problem of Bayesian causality analysis is to compute the posterior 

of causal hypotheses, given the corresponding data and background information. This 

framework comes straight out of the axiomatic foundation of Bayesian statistics. In addition 

to its foundational consistency, one of its advantages is the uniformity with which it treats 

different causal inference situations, including causal inference in specific or more general 

cases, as well as forward (effects of causes) and reverse (causes of effects) causal inference.

Treating causality relationships in terms of probabilities that can evolve in time as new data 

are gathered seems natural to us, and consonant with scientific methodology. Consider for 

instance the question of whether humans are the main cause of global warming or not. The 

corresponding probability may have evolved from close to 0 in 1940, to 0.5 in the 1980s, to 

close to 1 in the 2020s.

It is not our goal to claim that the proposed Bayesian approach is better than any other one, 

or to try to revisit the Bayesian versus frequentist dispute, although we note that to the best 

of our knowledge there is no uniform, universally accepted, treatment of causality problems 

within a frequentist framework. Rather, we view the proposed Bayesian approach as a 

flexible framework that provides a complementary alternative to other statistical approaches 

for the analysis of causality relationships in a unified manner.

Within the Bayesian framework, we believe that causality is only one example of many other 

areas of statistical inference and data science where historical developmental accidents have 

led to unnecessary fragmentation, providing opportunities for creating more unified views. 

An example of an area where unification has occurred to some extent is the area of 

regularization, where it is well recognized that the addition of a regularizing term to an 

objective function is often equivalent to the choice of a corresponding prior. An example of 

area where the unification has not occurred in a systematic way is the area of variational 

methods (Murphy, 2012).

The typical description of variational methods begins with a target probability distribution P 
(possibly a Bayesian posterior distribution) of interest. The distribution P is considered 

intractable and thus one wishes to approximate P with some distribution Q taken from a 

simpler (e.g. parameterized or factored) family of distributions Q. The variational approach 

prescription consists in choosing the distribution Q* that minimizes the relative entropy 

between Q and P. Using a discrete formalism (P = (Pi) and Q = (Qi)):

Q∗ = min
Q ⊂ Q

∑
i

QilogQi
Pi

= min −H Q − ∑
i

Qilog Pi (15)

where H(Q) is the entropy of Q. The typical description then proceeds with proving some of 

the nice properties of this approach, how it can be applied to an unnormalized distribution P, 

and so forth.
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However, from a Bayesian standpoint, this description may seem slightly ad hoc and 

unprincipled since it involves an approximation to a degree of belief, which should itself be 

Bayesian (incidentally approximation problems in general can often be cast in Bayesian 

terms). In most variational cases, it is easy to correct this situation by noting that Equation 

15 is equivalent to:

Q∗ = max
Q ⊂ Q

∏
i

Pi
Qi × e−H Q

Z (16)

where Z is the normalizing constant of the entropic prior. In other words, variational 

methods can viewed in a Bayesian perspective as maximum a posteriori maximization 

(MAP) methods under a likelihood proportional to ∏i Pi
Qi, with an entropic prior over the 

approximating family of distributions Q. As a side note, this immediately suggests new ideas 

such as contrasting the MAP approach with a mean posterior (MP) approach. In short, we 

believe that a more systematic approach of Bayesian ideas may be one viable approach, both 

for the purposes of theoretical developments and pedagogy, towards a more unified 

treatment of currently fragmented areas of statistical inference and data science.
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Fig. 1. 
Venn diagrams and modeling assumptions associated with the data set D2.
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Fig. 2. 
Venn diagrams and modeling assumptions associated with the data set D2. We assume that, 

for fixed p and q, Other and Aspirin act independently.
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Fig. 3. 
Joint (left) and marginal (right) distributions of p and q for the aspirin example.
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Fig. 4. 
Sensitivity analysis: Posterior mean of p (left) and posterior mean of q (right) for various 

prior means.
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Fig. 5. 
Marginal posterior distributions of p and q for infant birthweight datasets (left: Baystate 

Medical Center during 1986, right: Boston Medical Center during 1998–2000)
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Table 1

Contigency Table. The table reporting the data D = D1 ∪ D2 resulting from a fictitious double-blind 

randomized experiment involving 200 individuals, with 100 given chalk tablets (the control) (D1), and 100 

aspirin tablets (D2). The patients take their assigned tablets the next time they get a headache, and record how 

long it is until the headache has gone. Recovery is interpreted as (for instance) “headache disappears within 30 

minutes.”

No Recovery Recovery Total

Chalk (D1) 88 12 100

Aspirin (D2) 70 30 100
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Table 2

Posterior summaries for the aspirin example.

95% CI Posterior Mean Posterior Standard Deviation

p (0.07, 0.20) 0.13 0.03

q (0.08, 0.32) 0.20 0.06

q
q + p − pq (0.34, 0.85) 0.65 0.12
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Table 3

Maternal smoking status and infant birthweight based on data collected from Baystate Medical Center.

Normal birthweight Low birthweight

Non-smoking 86 29

Smoking during pregnancy 44 30
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Table 4

Posterior summaries for the birthweight example based on data collected from Baystate Medical Center.

95% CI Posterior Mean Posterior Standard Deviation

p (0.18, 0.34) 0.26 0.04

q (0.04, 0.37) 0.21 0.08

q
q + p − pq (0.12, 0.73) 0.48 0.16
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Table 5

Maternal smoking status and infant birthweight based on data collected from Boston Medical Center.

Normal birthweight Low birthweight

Non-smoking 460 107

Smoking during pregnancy 122 52
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Table 6

Posterior summaries for the birthweight example based on data collected from Boston Medical Center.

95% CI Posterior Mean Posterior Standard Deviation

p (0.17, 0.23) 0.20 0.02

q (0.06, 0.22) 0.14 0.04

q
q + p − pq (0.24, 0.60) 0.43 0.09
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