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B S T R A C T

occidioidomycosis is the most common systemic mycosis in dogs in the southwestern United States. With warming climates, affected areas and number of cases
re expected to increase in the coming years, escalating also the chances of transmission to humans. As a result, developing methods for automating the detection
f the disease is important, as this will help doctors and veterinarians more easily identify and diagnose positive cases. We apply machine learning models
o provide accurate and interpretable predictions of Coccidioidomycosis. We assemble a set of radiographic images and use it to train and test state-of-the-art
onvolutional neural networks to detect Coccidioidomycosis. These methods are relatively inexpensive to train and very fast at inference time. We demonstrate
he successful application of this approach to detect the disease with an Area Under the Curve (AUC) above 0.99 using 10-fold cross-validation. We also use the
lassification model to identify regions of interest and localize the disease in the radiographic images, as illustrated through visual heatmaps. This proof-of-concept
tudy establishes the feasibility of very accurate and rapid automated detection of Valley Fever in radiographic images.
. Introduction

Coccidioidomycosis, or ‘‘Valley Fever’’, is a disease found in dogs
ith the ability to infect humans. Currently found in the southwestern
nited States, the disease is expected to spread with warming climates

n the coming years. The disease can be detected through radiological
xamination of the lungs. In order to aid in the identification and
iagnosis of the disease we leverage deep learning classification mod-
ls. These models have been applied to medical imaging especially in
uman clinical settings. In this paper we apply deep learning models
o veterinary medicine and radiology images of healthy and infected
ogs.

.1. Background on valley fever

The disease results from infection by the dimorphic, saprophytic
ungal organism Coccidioides immitis or Coccidioides posadasii. In-
ection by Coccidioides spp. occurs in a wide range of host species,
ncluding humans, a myriad of domestic and exotic mammals, and,
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rarely, reptiles (Shubitz, 2007). Coccidioidomycosis is endemic in semi-
arid regions of California, Arizona, New Mexico, Texas, and Northern
Mexico and semiarid regions in South America. Across this region,
temperature and precipitation influence the extent of the endemic
region and number of Valley Fever cases. Climate projections for the
western US indicate temperatures will increase and precipitation pat-
terns will shift, which may alter disease dynamics. Using a climate
niche model derived from contemporary climate and disease incidence
data with projections of climate from Earth system models, researchers
have assessed how endemic areas will change during the 21st century.
By 2100 in a high warming scenario, the model predicts the area
of climate-limited endemicity will more than double, the number of
affected states will increase from 12 to 17, and the number of Valley
fever cases will increase by 50%. The Valley Fever endemic region
will expand north into dry western states, including Idaho, Wyoming,
Montana, Nebraska, South Dakota, and North Dakota. Precipitation will
limit the disease from spreading into states farther east and along the
central and northern Pacific coast (Gorris et al., 2019)
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1.2. Incidence of valley fever

Inhalation is the most common route of infection in both animals
and humans and typically occurs after fungal hyphae have desic-
cated and matured into arthroconidia that are easily aerosolized. The
arthrospores are inhaled and dispersed along the bronchial tree. Here,
they undergo structural transformation into spherules, which enlarge
and undergo endosporulation. Eventually, new endospores are released
into the surrounding tissue and the cycle continues until the host
is able to mount an appropriate immune response. Direct cutaneous
inoculation of arthrospores has been reported, but these instances are
rare and typically result in local granuloma formation (Tortorano et al.,
2015)

Infections caused by Coccidioides may be subclinical or result in
severe illness and death. Dissemination to extrapulmonary organs is
a potential sequela in some animals. One study indicated that 80%
of dogs develop primary pulmonary infection whereas 20% develop
disseminated disease (Davidson & Pappagianis, 1996). Pulmonary Coc-
cidioidomycosis is characterized by clinical signs that include chronic
cough, lethargy, and respiratory distress. Radiographic pulmonary le-
sions may be characterized by interstitial to nodular patterns, with hilar
lymphadenopathy (Mehrkens et al., 2016).

Human infection has steadily increased over the last 10 years, and
Coccidioidomycosis is considered a reemerging infectious disease. Dogs
come into close contact with soil, because of a closer proximity to the
ground and digging behavior, and may provide a clearer delineation
of broadly defined endemic regions. In this sense, rapid recognition of
Coccidioides infection in dogs in a clinical setting may benefit human
public health as well as minimize morbidity and owner expense.

1.3. Deep learning for biomedical imaging

This study can be categorized at three different levels. First, it
is an application of deep learning to biomedical imaging, a rapidly
expanding field. Second, the proposed method targets a pulmonary
disease, narrowing the application to a particular organ. And third
is the most distinctive feature of this work as an application of deep
learning to veterinary science, where the literature is still very sparse.
This categorization serves to connect the current work to the larger
field of biomedical imaging while calling attention to its novelty and
importance for veterinary medicine.

Biomedical imaging is a large domain of application of deep learn-
ing, a rebranding of neural networks, with hundreds of articles al-
ready published in the literature (Baldi, 2021). Recent examples from
our group alone include applications to colonoscopy screening (Urban
et al., 2018), cardiovascular disease detection (Wang et al., 2017a,
2017b), spinal metastasis detection (Wang et al., 2017a, 2017b), ge-
netic mutation classification (Chang et al., 2018), and counting hair fol-
licles (Urban et al., 2021). Many more applications can be found in the
literature, including segmentation of retinal blood vessels (Liskowski &
Krawiec, 2016), skin cancer detection and classification (Esteva et al.,
2017), as well as pediatric bone assessment (Iglovikov et al., 2018) just
to name a few. Primarily advances in computing power, in particular
Graphical Processing Units (GPUs), together with the growing avail-
ability of labeled datasets and robust software libraries (e.g. PyTorch,
TensorFlow, Keras), are fueling the expansion of deep learning methods
in biomedical imaging applications.

Within this expansion, there has been work specifically targeted at
pulmonary diseases. For example, convolutional neural networks have
been used to evaluate thoracic radiographs in man (Tang et al., 2018),
and in lung cancer detection and screening applications (Ardila et al.,
2019; Coudray et al., 2018; Hosny et al., 2018).

There has been considerably less work in applying deep learning
methods to veterinary medicine in general, and thoracic radiographs
in particular. These applications come with their own challenges, not
the least of which is the potential for greater variability in anatomy and
2

dimensions, for instance across dog species. There has been recent work
applying deep learning algorithms to classify red blood cell morphology
in canines (Pasupa et al., 2020). Likewise, there has been work classi-
fying mammary tumors in canines and humans (Kumar et al., 2020).
The current study introduces a novel application of deep learning to
thoracic images in order to identify Coccidioidomycosis.

In this study, we apply deep convolutional neural networks in
the evaluation of a single well-defined medical condition (pulmonary
Coccidioidomycosis) in dogs.

2. Materials and methods

2.1. Radiographs of normal and abnormal dogs

The challenge study was performed at Colorado State University
under an Institutional Animal Care and Use Committee (IACUC) ap-
proval. The normal dogs consisted of two groups. One were purpose
bred laboratory dogs used as the control group in the development of
a challenge model of canine coccidiomycosis. The dogs were equally
distributed between males and females and were all of the same age
(approximately twelve months) and weight. The second group consisted
of normal, healthy pet dogs of various ages and weights with thoracic
radiographs reviewed by a veterinary board-certified radiologist.

The diseased dogs consisted of two groups. One were purpose bred
laboratory dogs that were infected with varying doses of live spores of
Coccidiodies posadasii as part of the aforementioned challenge study.
The dogs were all of the same age (approximately twelve months) and
weight. Infection was confirmed by histopathology and fungal lung and
lymph node cultures. The second group consisted of pet dogs living in
the endemic area with a confirmed diagnosis of Coccidioidomycosis.
All cases were evaluated at a single veterinary specialty hospital in
Phoenix, Arizona.

The radiographic images were captured using three different com-
mercially available veterinary digital imaging systems (Sound technol-
ogy DR System 1417E; Philips Diagnost Digital RF Tri-mode 12’’/9’’/7’’;
Philips Diagnost Digital RF Tri-mode 15’’/12’’/9’’). A brief description
of each system can be found in the Supplementary Materials section.
Recorded images were de-identified and given a unique id number
indicating normal or diseased, prior to being evaluated in the study.
Right lateral (RL), left lateral (LL), and ventrodorsal (VD) views were
obtained and the images annotated with the dogs unique ID number,
date and view. The dataset consists of 106 infected dogs and 240
healthy dogs. The digital captures of these subjects produced 1,186
total images, 12 of which were marked as irrelevant and as a result
discarded. The discarded images captured other body regions such as
the front or hind legs, and critically, did not include the lungs or chest
region, making the identification of the disease impossible in these
images. After filtering irrelevant images, the remaining images were
of 769 healthy subjects and 405 infected subjects, for a total of 1,174
images. All images were resized to 500 by 400 pixels for computational
efficiency and to produce uniform image sizes across the dataset. A
constant image size is required for the classification models employed
in this study, which are described in the following section.

All images underwent a manual preprocessing phase, where each
image was subject to cropping by a human expert. This process en-
sured the removal of many spurious features such as textual and label
markings. Examples of selected crops are shown in Fig. 1.

2.2. Neural networks

Fully-connected, feedforward neural networks (NNs) receive a sin-
gle vector representing the raw data at the input layer. This input is
then transformed through a series of weighted connections to hidden
layers that perform non-linear operations, before being routed to an
output layer for the purposes of classification, regression, and other
tasks. In these architectures, each node in a layer is connected to
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Fig. 1. Images of canine subjects. Red bounding boxes represent cropped regions during preprocessing. (a) Healthy subject; (b) Subject with Coccidioidomycosis.
very node in the following layer. Though powerful, fully-connected
eedforward networks can require a large number of parameters and
re not ideally suited for processing images and recognize features in
ays that are invariant under translations and other deformations. For

omputer vision applications, most of the time Convolutional Neural
etworks (CNNs) (Baldi & Chauvin, 1993; Fukushima & Miyake, 1982;
eCun et al., 1998) are a better choice. CNNs use weight sharing to
educe the number of parameters and convolve the image with arrays
f local filters that are learnt from the data, providing a basis for
uilding equivariance/invariance to translation and other geometric
ransformations in the overall response.

In this work five different CNN architectures are implemented,
rained, and compared to classify the disease status of canine subjects:
nception (Szegedy et al., 2016), MobileNet (Sandler et al., 2018),
esNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), as
ell as a relatively shallow four-layer network. The first four of these
rchitectures have been applied to a variety of image based problems
n the literature.

. Experiments

.1. Data augmentation

CNNs require large amounts of training data, specifically when the
nput space is large and the model has a high number of parameters.
nsufficient amounts of data can lead the network to overfit, where it
erforms very well on the training set but fails to generalize properly
o outside examples.

In order to combat overfitting, one basic approach is data augmen-
ation where the original data is used to create additional training
xamples through various transformations. Data augmentation in this
tudy was performed using rotations, translations, reflections, noise ad-
ition, and zooming. Each batch presented to the neural network during
raining was first normalized by color channel, by subtracting the mean
alue and dividing by the standard deviation. Then each normalized
mage was rotated by a random amount chosen uniformly in the 0–15
egrees range, translated left or right, and up or down, by a random
mount chosen uniformly in the 0%–10% range of the original width

nd height, horizontally flipped, perturbed by adding Gaussian noise

3

with mean 0 and standard deviation 0.1 to each pixel, and cropped by
zooming in on the center of the image by a random uniform amount
in the 0%–10% range. Starting from the small dataset of 1,174 images,
we randomly augmented each batch of training examples, effectively
increasing the number of available examples by roughly two orders of
magnitude.

3.2. Neural network training

Of the architectures used in this study, Inception, MobileNet,
ResNet, and VGG were selected based on their popularity and perfor-
mance on benchmark datasets. The fifth model, the four layer shallow
network, was selected to serve as a baseline architecture for comparison
purposes. Inception, MobileNet, ResNet, and VGG have the option to
use a set of weights that were previously trained on the ImageNet
dataset (Deng et al., 2009). This process is known as transfer learning
or pre-training, where weights trained on one task are then reused
for a different task. When using the ImageNet weights, the primary
convolutional layers can be frozen, and only new output layers are
trained. The option of using pre-trained weights was treated as a
hyperparameter to be optimized, and thus we trained both networks
that were initialized randomly and networks that were initialized with
pre-trained weights.

All networks were trained for 100 epochs using an early stopping
condition if the validation accuracy did not improve in the most recent
15 epochs. All models were trained using 10-fold cross-validation. This
process partitions the data evenly into 10 distinct subsets and each fold
trains a model using 9 subsets and holds one subset out for testing
purposes. The partitioning was stratified to ensure a constant ratio
of representation amongst healthy and infected examples — roughly
66% healthy and 34% diseased, in keeping with the overall image
ratio. As the classes are unbalanced the network may learn to favor
the majority class thus increasing its accuracy simply by chance. Class
weighted penalties in the loss function can alleviate this issue. The use
of such losses are explored in the hyperparameter options in the next
section. Ten-fold cross-validation requires each model to be trained
ten distinct times (re-initializing network parameters each time) and
ensures different subsets of the data are used for training and testing.
The dataset was randomly shuffled and partitioned into 10 distinct folds
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for cross-validation. During a given fold, images in the training set
never appear in the validation set and images in the validation set are
not present in the training set. All models were implemented in Keras
with a Tensorflow backend.

3.3. Hyperparameter optimization

When implementing neural networks there are a number of choices
– hyperparameters – that must be set prior to training. Choosing
hyperparameters arbitrarily can lead to suboptimal results. To address
this, we conducted neural network optimization via a random hy-
perparameter search using SHERPA (Hertel et al., 2020), a Python
library for hyperparameter tuning. The random search algorithm has
the advantage of making no assumptions about the structure of the
hyperparameter search problem and is ideal for exploring a variety of
settings.

We detail the hyperparameters of interest in Table 1, as well as
the range of available options during the search. The hyperparameters
of interest consisted of the amount of dropout, learning rate, learning
rate decay, nodes per layer, the number of dense layers added at the
end, a class weighted loss penalty, and the optimizer. As mentioned
in the previous section, additional hyperparameters related to the use
of pre-trained weights were also considered. The Inception, MobileNet,
ResNet, and VGG networks had the option to use weights pre-trained
on the ImageNet dataset or a standard random initialization. Finally,
the option of training the base convolutional layers was tested as
well. The use of ImageNet weights and training the base layers are
not mutually exclusive. For example, one model may start with the
pre-trained ImageNet weights, as an initialization, and training may
proceed for both the top layers and the base layers.

Twenty-five different hyperparameter settings were tried for each
network architecture, for a total of 125 models. Each trial was trained
on a single split of the data, then following the hyperparameter search
the best trials from each model were retrained in full using the 10 fold
cross-validation method. The hyperparameters from the best perform-
ing models are displayed in the corresponding columns of Table 1.

4. Results

The five architectures examined in this study were each run with
twenty-five different combinations of hyperparameters. The best hyper-
parameter configuration from each architecture is shown in Table 1.
Following the hyperparameter search, the best performing variant (de-
termined according to validation accuracy) of each architecture was
selected for further analysis. The validation accuracies during training
are shown in Fig. 2. All architectures demonstrated success reach-
ing classification performance well above chance, represented by the
dashed line. From the accuracy curves over time only MobileNet shows
degradation at the later stages of training. The solid lines in Fig. 2 show
the mean validation accuracies while the shaded region represents one
standard deviation of the 10 separate cross-validation folds.

Next, we analyzed the relationship between the model’s false pos-
itive and true positive rate in Fig. 3. All models perform well above
chance, with the worst performing model, MobileNet, achieving a mean
AUC of 0.92. Examining the 10 fold cross-validation results shows the
ResNet architecture as the dominant model. It achieves the highest
mean AUC and lowest standard deviation over the 10 folds at 0.991
and 0.006 respectively.

These results indicate the CNN models employed in this study
can successfully solve this classification task. Having identified ResNet
as the best performing model, we next analyzed its ability to locate
important features related to Coccidioidomycosis through the use of
class activation maps. This exploration will ensure the model learns
features relating to Coccidioidomycosis and not spurious artifacts of the
radiographic images (see Table 2).
4

4.1. Visualizations

Neural networks are generally considered ‘‘black-box methods’’,
which makes model interpretability an issue. However, certain methods
like Class Activation Maps (CAM) project information back to the
input space, allowing a visual understanding of the models decision
(Zhou et al., 2016). CAM gives convolutional networks tremendous
interpretability despite being trained on image-level labels. CAM re-
quires the use of a global average pooling layer (Lin et al., 2013),
which is added to the last convolutional layer of the models used
in this study. The Keras Visualization Toolkit (Kotikalapudi, 2017) is
used to produce CAM results. Using CAM, we are able to visualize
what regions of input images the network attends to when making
its classification prediction. This allows one to ensure the network is
learning features directly related to coccidioidomycosis and not other
circumstantial features contained in the images (e.g. borders or image
annotations).

Shown in Fig. 4a and b are correctly classified diseased and healthy
subjects, respectively. The right panel shows the original images and
the left panel displays the CAM results from the ResNet models classifi-
cation. The CAM images are interpreted like heat maps, where the more
red the region, the higher weight the network associates with those
features when making its prediction. From the CAM images shown
in Fig. 4, one can verify the network weights features in the chest
and lungs region more heavily than abdominal regions or the X-ray
background. These heatmaps confirm that not only can CNNs correctly
classify coccidioidomycosis at a high skill level but they also recognize
correct features when making their predictions.

5. Discussion

A dataset of 1,174 images is small for deep learning applications.
In such a regime, multiple techniques are available to avoid overfitting
including (1) using pre-trained weights; (2) performing various forms
of data augmentation; (3) adding various forms of regularization; (4)
early stopping as well as using additional randomness in the training
procedure, such as dropout (Baldi & Sadowski, 2014; Srivastava et al.,
2014).

The results from all CNN models demonstrate a high level of skill
classifying Coccidioidomycosis in canine subjects. The high skill level
achieved by the models on the unseen test sets demonstrates the models
did not overfit and in fact generalized well to new data. Despite the
dataset containing canine subjects at different orientations and projec-
tions (right lateral, left lateral, and ventral–dorsal) the models learned
to correctly classify Coccidioidomycosis in these differing scenarios.

For CNN models to be really useful in a medical capacity they
must demonstrate not only high accuracy but also a good degree of
interpretability. The ResNet model probed here demonstrates a high
skill level while providing essential interpretability through the use of
heatmaps. Coccidioidomycosis is primarily found in the lung fields, the
hilar lymph nodes, or both. Examining Fig. 4, the lung field, located
dorsal and caudal of the heart, receives high importance both when
predicting the presence of cocci as well as its absence. The lung field
cranial of the heart is indicated as important as well.

A critical aspect of the models implemented in this study is the
speed at which they compute predictions. The training took place on
NVIDA Titan V GPUs with 12 GB of memory. Each epoch took roughly
two minutes to complete. Training for a typical number of fifty epochs
took about sixteen hours for the full 10-fold cross-validation. However,
at production time, an image can be classified in less than 50 ms, and
a heatmap produced in less than 1 s. The low latency offered by these
models is further evidence of their potential for being deployed and
used alongside medical professionals.

The evidence provided supports the robustness of our approach
along four different dimensions. First, the model learns to identify
Coccidioidomycosis across many different dogs, with variations in the
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Table 1
Hyperparameter space. The hyperparameters from the best performing architecture variants are shown in their respective columns.

Name Range Parameter type Inception MobileNet ResNet Shallow VGG

Dropout 0., 0.25 Continuous 0.28 0.29 0.31 0.44 0.21
Learning rate 0.00001, 0.01 Continuous 0.0006 0.0096 0.0071 0.0025 0.0056
Learning rate decay 0.5, 1. Continuous 0.93 0.82 0.98 0.93 0.86
Loss penalty Yes, No Choice No No No No Yes
Number of layers 0, 2 Discrete 0 0 1 1 0
Number of nodes 128, 512 Discrete – – 152 180 –
Optimizer Adam, SGD, RMSProp Choice Adam SGD SGD RMSProp RMSProp
Weights ImageNet, Random Choice Random ImageNet ImageNet Random ImageNet
Train base Yes, No Choice Yes Yes Yes No No
Fig. 2. Validation accuracy during training. The legend indicates the corresponding model and the dashed line represents the accuracy from chance (around 66%).
Fig. 3. Receiver Operating Characteristic (ROC) curves displaying the relationship between the model’s false positive rate and true positive rate. The legend indicates the
corresponding model as well as the mean and standard deviation of the AUC (Area Under the Curve) obtained by 10-fold cross validation.
Table 2
Result metrics showing sensitivity, specificity, positive predictive value, and negative predictive value.

Sensitivity Specificity Positive predictive value Negative predictive value

Inception 0.906 0.975 0.949 0.960
VGG 0.925 0.885 0.784 0.965
ResNet 0.846 0.996 0.991 0.936
Shallow 0.802 0.970 0.922 0.918
MobileNet 0.769 0.871 0.800 0.901
height, width, and size of the dogs. Second, the model learns to identify
Coccidioidomycosis across different radiography imaging systems and
quality of scans. Third, the model learns to identify Coccidioidomycosis
across different projections. Right, left, and Ventral–dorsal projec-
tions all occur in the dataset. Fourth, ten-fold cross-validation re-
sults demonstrate robust generalization properties of the approach.
In addition, a high level of performance is achieved by multiple
models, further confirming the viability and robustness of the overall
approach.
5

Finally, there is some room to further improve the results, for
instance by acquiring more data. As the dataset and diversity of samples
increases, one can expect the performance of CNN models to likewise
increase. With more training examples the models will make more accu-
rate predictions and provide more informative localization heatmaps.
It may also be useful to leverage transfer learning and, for instance,
develop CNNs that can diagnose and classify multiple lung diseases
simultaneously.
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Fig. 4. Original image fed to convolutional network and the class activation map produced by the ResNet’s classification prediction. (a) A canine subject with Coccidioidomycosis
orrectly classified by the network. (b) A healthy canine subject correctly classified by the network.
. Conclusion

In this paper we presented a novel application of convolutional
etworks to identify the presence of pulmonary Coccidioidomycosis in
anine subjects. After assembling a data set of annotated radiographic
mages, we have trained and compared several deep learning models
nd demonstrated that successful classification and localization of the
isease in radiographic images is feasible. The best model achieves
high skill level and is interpretable via the use of heat maps that

an be understood by human experts. While training can be time-
onsuming, at production time the model is fast and can produce useful
esults in less than a second. As more data is gathered, an automated
ystem driven by machine learning could further improve itself. The
ame approach could be extended to other organs, diseases, and animal
pecies in veterinary medicine. As is the case for human medicine, the
ajor remaining challenges are in overcoming the numerous barriers

o data collection and aggregation, and the actual deployment of deep
earning systems in clinical settings where the concerns of multiple
takeholders must be addressed.
6
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