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Abstract

Likely drug candidates which are identified in traditional pre-clinical drug screens often fail in 

patient trials, increasing the societal burden of drug discovery. A major contributing factor to this 

phenomenon is the failure of traditional in vitro models of drug response to accurately mimic 

many of the more complex properties of human biology. We have recently introduced a new 

microphysiological system for growing vascularized, perfused microtissues that more accurately 

models human physiology and is suitable for large drug screens. In this work, we develop a 

machine learning model that can quickly and accurately flag compounds which effectively disrupt 

vascular networks from images taken before and after drug application in vitro. The system is 

based on a convolutional neural network and achieves near perfect accuracy while committing 

potentially no expensive false negatives.
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1 INTRODUCTION

THE total cost of bringing a new drug from discovery to approval has exhibited a steady, 

exponential rise over the past five decades [1]. One contributing factor to this phenomenon, 

dubbed Eroom’s law (Moore’s law backwards), appears to be the failure of traditional, pre-

clinical models to accurately simulate many of the more complex features of their clinical 

successors. These pre-clinical, in vitro studies serve to quickly and cheaply identify 

compounds that exhibit promising effects for further study in vivo. However, traditional 2D 

monolayer culture systems (i.e., petri dishes) lack many features that are present in vivo, 

such as 3D cellular structure, heterogeneous cellularity, cell–cell interactions, the presence 

of a complex extracellular matrix (ECM), biomechanical forces (e.g., shear forces generated 

by fluid flow), and the presence of perfused vasculature [2]. Animal studies, on the other 

hand, are too complex to analyze and expensive to substitute for in vitro pre-screening, and 

often fail to identify potential human toxicity due to physiological differences between 

humans and the animal model [3]. In short, a compound that appears effective in traditional, 

pre-clinical studies may fail spectacularly in the human body, further contributing to the 

costly societal burden of failed clinical trials [4].

Microphysiological systems (MPSs), or “organ-on-a-chip” platforms, promise to help close 

the gap between in vitro and in vivo drug screens [5], [6], [7], and have seen rapid, recent 

development [8], [9], [10], [11], [12], supported in part through private-public partnerships 

fostered under the auspices of the National Center for Advancing Translation Science [13]. 

These MPSs make significant strides toward more accurately modeling the pertinent 

properties of in vivo biological environments for drug discovery, however many remain in a 

proof-of-concept stage and require complex peripheral equipment and accessories to operate 

and maintain.

We have demonstrated an MPS for growing vascularized, perfused microtissues [14], [15]. 

This platform produces highly robust and uniform vascular networks which are suitable for 

screening anti-tumor compounds [16] and in large-scale drug discovery studies [17], all 

while requiring little additional training for the user and no added equipment beyond a 

standard incubator. We have shown that the survival of these miniature tissues is dependent 

on nutrients delivered through living vasculature. Importantly, by accurately identifying 

drugs that target tumor cells, the vascular networks that supply them, or both, the system has 

proven much better at mimicking human drug responses than previous models. In our 

studies using FDA-approved or clinical trial compounds to target the vasculature, we have 

found that anti-angiogenic compounds such as sorafenib and axitinib induce regression on 

sprouting vessels, but do not have profound effect on mature, interconnected vascular 

networks. Therefore, they often show a milder effect on the vasculature. On the other hand, 

non-specific, anti-vascular compounds such as bortezomib and vincristine aggressively 

fragment the vascular network. In brief, this system exhibits exceptional potential for 
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developing more targeted, effective anti-vascular and anti-angiogenic compounds to target 

the tumor vasculature without adverse effects on normal tissue.

A remaining obstacle to deploying this system for truly large-scale anti-angiogenic and anti-

vascular drug screening is the need to have human experts determine whether each 

compound is effective in targeting the vasculature network. Effects are categorized as no-hits 
(i.e., the compound had no effect on the vasculature network), soft-hits (i.e., the compound 

moderately disrupted the vasculature network or induced vascular regression), or hard-hits 
(i.e., the compound had a devastating effect on the vasculature network) from a primary 

screening (see Fig. 1). Once identified from the initial screen, soft-hit and hard-hit 
compounds can be further analyzed in a dose-response screen to identify the half maximal 

inhibitory concentration (IC50), optimized for molecular structure, and subsequently 

characterized for their pharmacokinetics in vivo. Soft-hit compounds are treated as anti-

angiogenic while hard-hit compounds are treated as anti-vascular.

In the past, human raters have made this determination by manually analyzing each pair of 

before- and after-drug-application images and quantifying their total vessel length difference 

using AngioTool [18]. However, this workflow is imprecise—e.g., in its insensitivity to anti-

angiogenic compounds that do not significantly affect total vessel length of a fully mature 

vascular network and its reliance on subjective human judgment—and low throughput—for 

its need to carefully tune several dataset-specific parameters in the software and the time it 

takes a human to look at each image.

Automatic classification of these images via machine learning could provide an attractive 

replacement to the slow and error-prone process of requiring human ratings. In this 

paradigm, a set of carefully hand-labeled images would be fed to a classifier which could 

“learn” to distinguish between classes.

A convolutional neural network is a type of machine learning model that is particularly 

suited to applications in computer vision. Not only do they offer state-of-the-art performance 

in general image classification tasks (e.g., [19]), they have also proven effective for 

biological applications, with past work demonstrating convolutional networks capable of 

detecting cardiovascular disease [20], spinal metastasis [21], and skin cancer [22] from 

medical images.

In this paper, we develop a convolutional neural network to automatically classify images of 

vasculature networks formed in our MPS into no-hit, soft-hit, and hard-hit categories. The 

accuracy of our best model is significantly better than our minimally-trained human raters 

and requires no human intervention to operate. This model is a first step toward automation 

of data analysis for high-throughput drug screening.

Alternative examples of applications of machine learning in drug discovery can be found in, 

for instance, [23], [24] and [25]. Most of these applications use machine learning models to 

predict drug-related properties of small molecules such as binding affinity, toxicity, and 

solubility.
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2 METHODS

2.1 Data Collection

Drug studies were performed in the MPS as previously described [16], [17]. Briefly, the cell-

ECM suspension was loaded into the platform and cultured for 7 days to allow the vascular 

network to develop inside the tissue chambers. Each tissue unit was exposed to various 

compounds obtained from the National Cancer Institute (NCI) Approved Oncology 

Compound Plate or purchased from Selleck Chemicals. Time course images of vascular 

network before and after drug treatment were taken using a Nikon Ti-E Eclipse 

epifluorescent microscope with a 4x Plan Apochromat Lambda objective. For close-up 

imaging of the tissue chambers, a 1.5x intermediate magnification setting was used.

2.2 Preprocessing

Each image in our dataset was between 1000 and 1300 pixels wide. Images of this size 

contain far more information than is needed for deep image classification (e.g., [26] 

classifies natural images taken from 1000 classes with 256×256 pixels images), so we 

downsampled images to create 4 separate constant-size datasets: one each of 128×128 px, 

192×192 px, 256×256 px, and 320×320 px. Next, we z-normalized each image, subtracting 

the mean pixel intensity and dividing by the standard deviation of the pixel intensities within 

that image to obtain images with 0-centered pixel values and unitary standard deviation. 

This normalization helps our models to converge more quickly and uniformly across random 

initializations. After all this, we concatenated the pre-drug-application and post-drug-

application images to obtain a single, 2-channel image.

2.2.1 Image Alignment—We would like the pre-drug-application and post-drug-

application images to spatially align as closely as possible. If they do not, then our model 

swould be required to learn an extra invariance: that the channel images need not be aligned. 

Because the pre- and post-drug-application images were captured three days apart, it is not 

in general possible to ensure that the two images will be perfectly aligned (e.g., the later 

image might be shifted or rotated slightly compared to the original). To combat this effect, 

we implemented a rigid alignment preprocessing step to align the post-drug image to the 

pre-drug image using the warpAffine method in OpenCV3 [27]. For each image, we tried 

three sets of transformations:

1. A single Euclidean (translation + rotation) transformation on the full-resolution 

image.

2. A euclidean transformation on a smaller (32×32 px) copy of the image followed 

by a euclidean transformation on the full-resolution image.

3. A translation-only transformation on a smaller (32×32 px) copy of the image 

followed by a euclidean transformation on the full-resolution image.

From these three, we selected the transformed version which yielded the highest possible 

correlation coefficient between the pre- and transformed post-drug image. See Fig. 2 for two 

examples of this alignment process in action.
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2.3 Human Ratings

Two human experts rated each of the 277 images, comparing disparate ratings where 

necessary to come to a consistent set of gold-standard ratings. 164 images were labeled as 0 

or no-hit (59.2 percent), 52 were labeled as 1 or soft-hit (18.8 percent), while 61 were 

labeled as 2 or hard-hit (22.0 percent). These ratings are used throughout the remainder of 

this paper.

We also obtained ratings from 4 additional humans: undergraduate research assistants who 

were trained to recognize each image class and who had been assigned this task in the past. 

Raters were presented with the full set of 277 images in randomized order and were asked to 

provide an integer class assignment for each using the following instructions: “How much of 

an effect did the drug have? (0 for no effect, 1 for solid effect, 2 for devastating effect)”.

2.4 Loss Weighting

For the purposes of drug discovery, false negatives are potentially much costlier than false 

positives. A false positive (i.e., predicting that an image from an ineffective drug was 

actually effective) will result in secondary screening in which the ineffectiveness of the drug 

may be confirmed. A false negative (i.e., predicting that an image taken from an effective 

drug did not actually have any effect) may result in a potentially useful compound being 

overlooked in this and any future drug trials. To help control our model’s false-negative rate, 

we employed a weighted cross-entropy loss function of the form:

loss yi, yi ∣ W = − ∑
c = 0

c = 2
W citrue, cyiclog yic ,

where i indexes over datapoints, c over classes, yic is an indicator variable that takes the 

value of 1 if the true class of datapoint i is c and 0 otherwise, citrue represents the true label 

of datapoint i (i.e., 0, 1, or 2), and the weights W citrue, c are drawn from the hand-tuned 

confusion weighting matrix shown in Table 1. Note that if all elements of this weight matrix 

were set to 1.0, then our weighted cross-entropy loss would reduce to standard cross-

entropy.

This loss function penalizes false negatives at twice the default value. In addition, it 

penalizes the treatment of all true no-hit images at 0.8 times the default value and reduces 

the penalties for confusing soft- and hard-hits to the same amount. We arrived at these 

weights through trial and error and use them for all experiments presented in this paper.

2.5 Training Procedure

We partitioned the full dataset of 277 images into a test set consisting of 25 percent of the 

images (69 images) and a training+validation set consisting of 75 percent of the images (208 

images). We employed 4-fold cross validation on the training+validation set, training on 75 

percent of its datapoints (156 images) and tracking validation loss on the remaining 25 

percent (52 images). Unless otherwise noted, we trained on each fold for a total of 200 

epochs. All deep neural networks presented in this paper were built in Keras [28] and trained 
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on NVIDIA GPUs. We selected the model from each fold which attained the lowest 

validation-set loss value across all training epochs.

We combined the best models from each fold into a 4-model ensemble of models. We 

averaged the predictions across all 4 models in the ensemble to attain final predictions for 

each set of hyperparameters on the test dataset.

2.5.1 Data Augmentation—Since our training set is rather small, we employed random 

data augmentation during training. In each pass over the data, each training image was 

randomly rotated between −5 and 5 degrees clockwise, translated between −5 and 5 percent 

vertically and horizontally, zoomed in between 0 and 10 percent, and possibly flipped 

horizontally and vertically, with each transformation value selected uniformly at random 

from the legal range. Empty pixels that resulted from the random rotation and translation 

were filled with the values from their nearest existing neighbor pixel. Fig. 3 shows three 

randomly transformed versions of one training image. This random data augmentation 

scheme with continuous parameters yields an infinitude of variations for each 156-image 

training set and helps prevent our models from overfitting to the specific details of our 

training data.

At inference time, we randomly generated five versions of each validation or test image and 

averaged the model’s predictions for each image over all five of its randomly-generated 

copies.

2.6 Baseline Models

We trained a number of increasingly complex machine learning models on the data to use as 

comparison baseline: (1) logistic regression on the raw data; (2) logistic regression on a bag 

of words (BoW) representation of SIFT [29] or SURF features; and (3) RBF-kernel support 

vector machine classifiers (SVMs) trained on a BoW representation of SURF or SIFT 

features. We used the SVM-classifier and logistic regression implementations provided by 

scikit-learn.1

The logistic regression model was trained on images of sizes 128×128, 192×192, 256×256, 

and 320×320 with varying L2 regularization using the LBFGS optimizer, treating all 

concatenated pixels of both the pre- and post-drug application images as single input vector. 

We used OpenCV2 to extract SIFT and SURF features from the images at a resolution of 

320×320, which yields a varying number of key-points/features per image. To build a bag of 

words representation we first clustered all SIFT/SURF descriptors of the training set with k-

means. Then we mapped all descriptors to their nearest centroid (as found by k-means) and 

compute the histogram of these centroid mappings for each image separately. We 

experimented with two histogram normalization approaches: globally rescaling the bins to 

the 0–1 range or a binary representation that encodes whether at least one SIFT/SURF 

descriptor from the image was assigned to a given centroid. We treated pre- and post-drug 

application images separately and concatenated their BoW representations (the histograms) 

1.www.scikit-learn.org
2.www.opencv.org
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into one feature vector, as computing the BoW representation across SIFT/SURF features of 

both images together discards crucial discriminatory information and resulted in a reduced 

performance in preliminary experiments. We optimize the L2 regularization coefficient as 

well as the size of the BoW representation (number of clusters) for all models.

2.7 Convolutional Neural Network Models

Convolutional neural networks are based on a weight-sharing scheme in ‘convolutional’ 

layers [30]. These layers learn translation-invariant filters that are applied to e.g., all pixels 

of an image in the case of computer vision, and have lead to models achieving state-of-the-

art classification performance on a variety of tasks [19], [31], [32].

Standard convolutional architectures for image classification include a series of 

convolutional layers followed by one or more fully connected layers [19], [26], [30]. Each 

convolutional and fully connected layer is followed by a rectified linear unit (ReLU) non-

linearity [33] and max pooling layers are interspersed through some subset of the 

convolutional layers to repress non-maximal responses and reduce the number of parameters 

in subsequent layers. Dropout may also be used on some of the convolutional and fully 

connected layers to help prevent overfitting [34].

Overall, convolutional neural networks offer a well-established process for performing high-

quality image classification.

2.8 Hyperparameter Search for Convolutional Architectures

Building a convolutional neural network requires specifying a large number of 

hyperparameters, such as the number of convolutional and fully-connected layers in the 

network, the size of each layer, dropout probabilities etc. The number of possible 

hyperparameter combinations grows exponentially with the number of hyperparameters, so a 

thorough grid search of hyperparameter combinations quickly becomes unwieldy.

Algorithm 1.

Outer-Loop Hyperparameter Optimization

1: HPO ← Hyperparameter Optimizer

2: for Iteration i ← 1…K do

3:  Hyperparams αi ← HPO.NextHyperparams()

4:  Train model on training data with hyperparams αi

5:  Make predictions for validation data with model

6:  HPO.RecordValidationError()

7: end for

8: Best model is model with lowest validation error

Instead, we employ a Gaussian-process-based meta-model which maps from a set of chosen 

hyperparameters to an estimate of the out-of-sample accuracy attained by a model trained 

with the given hyperparameters [35]. This meta-model of hyperparameter fitness is used in 

an outer-loop hyperparameter optimization process (see Algorithm 1). First, the meta-model 
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proposes a hyperparameter set to try. For each hyperparameter set, we follow the same 

training procedure as detailed in Section 2.5, using 4-fold cross-validation on the training

+validation set, building a 4-model ensemble from the best version of the model for each 

fold (across epochs and as judged by validation-set accuracy), and averaging each model’s 

validation- and test-set predictions over 5 randomly generated versions of each input image. 

At the end of training, we report the validation-set accuracy (averaged across all 4 folds) as 

the objective value attained for the given hyperparameter set. This objective value is used to 

update the meta-model of hyperparameter quality and the process repeats.

2.9 Pre-Trained Convolutional Architecture

Given the small size of our training dataset, we next tried a large convolutional architecture 

that had been pre-trained on a large, general purpose image recognition problem. For this 

purpose we picked the InceptionV3 architecture [36] as implemented in Keras [28] with 

weights that had been pre-trained on the ImageNet classification challenge [37]. The full 

convolutional portion of the InceptionV3 model contains 21,611,968 parameters and some 

216 layers. We instantiated the model without including the final fully-connected layers, 

opting not to fine-tune its convolutional weights, but to train two fully connected and one 3-

class softmax layer anew for our classification problem while using the convolutional 

portion of the InceptionV3 model as an elaborate, fixed computer vision preprocessing 

routine.

While fixing our convolutional architecture fixed many of the hyperparameters of our model, 

several still remained. These were: the input image size, the number of neurons in the fully 

connected layers, dropout probabilities for the dropout layers before and after the fully 

connected layers, the optimization batch size, the learning rate, and L1 and L2 regularization 

coefficients. Hyperparameters that control the amount of dropout, or the strength of the L1-, 

and L2- penalty terms have a regularizing effect and reduce the chances of overfitting the 

data, whereas the exact effect for other hyperparameters is in general more difficult to 

estimate. The exact ranges of hyperparameters that we optimized can be found in the 

supplementary material, which can be found on the Computer Society Digital Library at 

http://doi.ieeecomputersociety.org/10.1109/TCBB.2018.2841396.

2.10 Custom Convolutional Architecture

Though the Inception architecture employed in Section 2.9 has proven very useful for 

general-purpose image classification, the images of microscopic blood vessel networks used 

in this task have their own structure that does not necessarily match the constraints of 

general object recognition.3

For this purpose, we also trained a series of custom convolutional architectures specifically 

for this blood-vessel classification task. We constrained our architecture to contain several 

convolutional layers followed by two fully connected layers.

3.For example, detecting eyes is very important for detecting the myriad animal types in ImageNet, but irrelevant for our task.
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The hyperparameters that we optimized were: the input image size, the number of 

convolutional layers, number of convolutional filters, and number of neurons in fully 

connected layers in the model, the size of the max pooling receptive fields, the optimization 

batch size, and parameters related to model regularization: dropout probabilities and L1- and 

L2 penalty terms (see Supplement, available online, for detailed hyperparameter-ranges).

3 RESULTS

3.1 Human Rating Results

The four human raters found the vessel rating task difficult compared to the expert raters, 

matching the gold-standard ratings 72.9, 76.5, 69.3 and 83.0 percent of the time. The 

rounded average of all four raters’ ratings (i.e., 0, 1, or 2) matched the gold standard ratings 

85.9 percent of the time. (See Table 2 and Section 4 for further details).

3.2 Baseline Models Results

The best logistic regression model trained on raw pixels obtained an average validation set 

accuracy of 79.6 percent across five repeated five-fold cross-validation experiments, using 

an input image size of 320 px ×320 px and an L2 regularization strength of 0.05. This model 

obtained an average three-class test accuracy of 73.3 percent, which is a notable 

improvement over guessing the majority class (62.3 percent). An even higher accuracy was 

reached by models using a bag of words (BoW) representation of SIFT or SURF features. 

The best such model was a support vector machine (SVM) using SURF features that were 

clustered into a binary feature vector of size 200, obtaining a validation accuracy of 84.4 

percent and test-set accuracy of 78.0 percent. This is almost 5 percent better than the logistic 

regression model that was trained on raw pixels. A summary of best models for each 

category is given in Table 3; all BoW model results are averages over three repeated full 

cross-validations runs.

3.3 Pre-Trained Convolutional Neural Network Results

We explored a total of 100 hyperparameter sets for the pretrained convolutional architecture4 

using the procedure explained in Section 2.8. The best model, as judged by three-way 

validation-set accuracy (87.0 percent), used 320 px×320 px input images, its first fully 

connected layer after the InceptionV3 convolutional stack contained 256 neurons, its second 

fully connected layer contained 1024 neurons, and the final dropout probability before the 3-

way softmax layer was 0.27.

The optimization was completed with a batch size of 16, log10 of the learning rate of −1.24, 

a per-epoch learning rate decay factor of 0.98, log10 of L1 shrinkage of −9.0, and log10 of 

L2 shrinkage of −1.0.

A 4-model ensemble based on this architecture achieved a three-class accuracy value of 87.0 

percent on the hitherto-unseen test (see the confusion matrix in Table 4 for details).

4.This model contained 21,611,968 fixed parameters that had been pre-trained on ImageNet data and 33,820,931 fully connected 
parameters that were trained on the vessel data.
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3.4 Custom Convolutional Neural Network Results

We explored a total of 1000 hyperparameter sets for our custom convolutional architecture, 

the best of which, as judged by three-class validation-set accuracy (96.6 percent), is a 21-

layer convolutional neural network, the architecture for which is illustrated in Fig. 4.

The optimization was completed with a batch size of 1, a learning rate of 0.012, a per-epoch 

learning rate decay factor of 0.98, and both L1 and L2 coefficients at a value of 10−9.

A 4-model ensemble based on this architecture achieved a three-class accuracy value of 95.7 

percent on the hitherto-unseen test set with no false negatives (see the confusion matrix in 

Table 5 for details).

The data set (with 277 datapoints) is small in comparison to typical machine learning data 

sets, which raises concerns over potential overfitting of deep learning models. To shed light 

on whether overfitting occurs we plot the evolution of the validation accuracy for three, 

independently—randomly—initialized and trained, instantiations of our custom CNN model 

in Fig. 5. The curves are not smoothed and thus, as expected, relatively jagged due to the 

small size of the dataset and the various noise-injecting regularization techniques. 

Interestingly, we observe no evidence of overfitting within 200 epochs of training. 

Overfitting would have manifested as a decline in the average validation accuracy towards 

the end of training, but instead we only observe a reduction in the variance of validation 

accuracies. In short, we conclude that the employed model regularization techniques are 

very effective and that early stopping is, while still beneficial, not as crucial as initially 

expected.

It is desirable to further estimate the sensitivity of the model to the number of samples in the 

training set. To this end we artificially and progressively reduce the amount of training data, 

while keeping all other factors identical (e.g., model architecture, hyperparamters, validation 

set). Fig. 6 presents results from training the custom CNN with ten different training set 

sizes in 10 percent increments, repeating the four-fold cross-validation training process four 

times for each training set size and averaging over these. As expected, decreasing the 

amount of training data directly reduces the validation accuracy. Interestingly, we also find 

that the CNN is able to match or outperform the best baseline model (an SVM trained on 

SURF features with a validation accuracy of 84.4 percent) when trained on only 40 percent 

of the original training data. Further, from extrapolating the graph beyond the 100 percent 

point, it seems virtually guaranteed that having access to more training data would enable us 

to train better models with accuracies beyond our current best result of 96.6 percent.

4 DISCUSSION

In this paper, we present a new classification problem: to distinguish effective from 

ineffective drug compounds through automatic analysis of vascularization images.

This problem may appear to be simple in some cases, such as in Fig. 1, and solvable by 

merely counting the number of bright pixels in the pre- and post-treatment images. However, 

we find that a linear model obtains an overall test accuracy of 73.3 percent only, providing 
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only a relatively small improvement over guessing the majority class (62.3 percent). The 

difficulty appears to be driven by the nuances of the classification problem, which cannot be 

captured in a simple linear decision boundary in pixel space. For example, the death of a 

bridge-to-nowhere vessel should be treated as less important than the death of a vessel on a 

major thoroughfare in the vasculature network. To further highlight its difficulty, even an 

ensemble of four trained human raters had some difficulty with this task (three-way 

accuracy: 85.9 percent).

Convolutional neural networks significantly outperform the baseline models as well as 

human raters on this dataset. Where a cadre of four undergraduate raters achieved a three-

way accuracy of 85.9 percent on this dataset, a convolutional ensemble based on the 

InceptionV3 architecture [36] and pre-trained on ImageNet data [37] achieved three-way 

accuracy of 87.0 percent (though it committed more false negatives than the human raters). 

A custom convolutional architecture, however, achieves a 95.7 percent three-way accuracy 

for drug-hit classification, while committing no false negatives. This pattern repeats itself if 

we reduce our 3-way classification problem to a binary problem by aliasing together the 

soft-hit and hard-hit categories (see Fig. 7).

The success of this convolutional model is driven in part by carefully tuning our loss 

function to discourage false negatives (see Section 2.4), but also by the steps taken to control 

overfitting in the model. One regularization strategy was to augment our limited training 

dataset to virtually infinite size via randomly transforming images during each training pass 

(see Section 2.5.1). Heavy use of dropout also contributed to the result. In fact, the 

hyperparameter optimization scheme that we used automatically picked a model with a large 

final layer (512 neurons) and a high dropout probability (0.90). Dropout can be interpreted 

as implicitly performing a geometric average over an ensemble of regularized subnetworks 

[38], so this model can be interpreted as implicitly averaging over a large ensemble of 

diverse sub-networks.

These regularization strategies were important, as our final network contained 2,485,827 

learned parameters and 15 optimized hyperparameters, more than enough capacity to 

memorize the identity of 208 training+validation datapoints. However, our network still 

exhibits excellent generalization power, with test accuracy of 95.7 percent only barely 

lagging behind the hyperparameter optimized 96.6 percent validation accuracy which in turn 

closely follows the training accuracy of 98.1 percent. This tendency toward strong 

generalization performance is often seen in deep networks, and cannot yet be fully explained 

by any known regularization mechanism or learning theory[39].

5 CONCLUSION

In this paper, we have developed a convolutional neural network to improve the data analysis 

processes for high-throughput drug screening using our MPS. This network can classify new 

images near instantaneously and surpasses human accuracy on this task. A larger scale drug 

screening can be achieved by coupling this classifier and an automated microscope camera 

system to capture images before and after drug treatment.
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Fig. 1. 
Example vessel images.
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Fig. 2. 
A set of blood vessel images before (left) and after (right) alignment. The pre-drug-

application images are placed in the image’s green channel and the post-drug-application 

images are placed in the red channel. The separate green and red vessels in the left image 

shows that the pre- and post-drug-application images are misaligned, the more pervasive 

yellow in the right image comes from the green and red channels being aligned on top of 

each other.
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Fig. 3. 
Three examples of the data augmentation process used for training and inference. The top 

image is an actual training image, and the bottom three are randomly transformed copies of 

that image. Each time an image is visited during the training process, it is first randomly 

transformed in a way that simulates creating new images with respect to the true invariances 

of the training images (e.g., an image should have the same class as a copy of that image 

which is slightly shifted, rotated, or flipped). This random augmentation helps simulating a 

larger training set and prevent our model from overfitting.
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Fig. 4. 
The architecture for the best convolutional neural network we trained on these data. The blue 

prisms represent the 3-dimensional input images (two channels, width, and height) and the 

three dimensional output of each convolutional layer (filters, width, and height). The green 

prisms represent a sample receptive field for the subsequent convolutional layer.
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Fig. 5. 
Validation accuracy as a function of training progress for three different random 

initializations of the custom CNN model and different data cross-validation splits.
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Fig. 6. 
Average validation accuracy of the custom CNN as a function of training set size. (Blue line: 

average cross validation accuracy; green dashed lines: Delineate the empirical one-sigma 

confidence region)
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Fig. 7. 
Receiver operating characteristic curves for a binarized version of this classification problem 

(no-hit versus soft-hit or hard-hit). ROC-AUC scores range between 0.5 and 1.0, with 0.5 

indicating performance at chance and 1.0 indicating perfect classification (a standard which 

the best custom convolutional neural network we tried achieves on this binarized problem).
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TABLE 1

Loss Function Weight Values

Yipred = 0 Yipred = 1 Yipred = 2

Yitrue = 0 0.8 0.8 0.8

Yitrue = 1 2.0 1.0 0.8

Yitrue = 2 2.0 0.8 1.0
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TABLE 2

Test Set Confusion Matrix for Average of Four Human Raters

Yipred = 0 Yipred = 1 Yipred = 2

Yitrue = 0 86% 14% 0

Yitrue = 1 27% 65% 9%

Yitrue = 2 0 0 100%

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 February 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Urban et al. Page 24

TABLE 3

Average Test- and Validation Set Accuracies of Baseline Models

Model Features Validation Acc. Test Acc.

Logistic raw pixels 79.6% 73.3%

BoW Logistic SIFT 82.7% 77.7%

BoW Logistic SURF 81.3% 77.6%

BoW SVM SIFT 82.0% 76.0%

BoW SVM SURF 84.4% 78.0%
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TABLE 4

Test Set Confusion Matrix for Pre-Trained Convolutional Ensemble

Yipred = 0 Yipred = 1 Yipred = 2

Yitrue = 0 98% 2% 0

Yitrue = 1 45% 36% 18%

Yitrue = 2 0 7% 93%
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TABLE 5

Test Set Confusion Matrix for Custom Convolutional Ensemble

Yipred = 0 Yipred = 1 Yipred = 2

Yitrue = 0 100% 0 0

Yitrue = 1 0 82% 18%

Yitrue = 2 0 7% 93%
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