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a b s t r a c t

Quantitative determination of the geometry of an atomic force microscope (AFM) probe tip is critical for
robust measurements of the nanoscale properties of surfaces, including accurate measurement of sample
features and quantification of tribological characteristics. Blind tip reconstruction, which determines tip
shape from an AFM image scan without knowledge of tip or sample shape, was established most notably
by Villarrubia [J. Res. Natl. Inst. Stand. Tech. 102 (1997)] and has been further developed since that time.
Nevertheless, the implementation of blind tip reconstruction for the general user to produce reliable and
consistent estimates of tip shape has been hindered due to ambiguity about how to choose the key input
parameters, such as tip matrix size and threshold value, which strongly impact the results of the tip
reconstruction. These key parameters are investigated here via Villarrubia's blind tip reconstruction
algorithms in which we have added the capability for users to systematically vary the key tip
reconstruction parameters, evaluate the set of possible tip reconstructions, and determine the optimal
tip reconstruction for a given sample. We demonstrate the capabilities of these algorithms through
analysis of a set of simulated AFM images and provide practical guidelines for users of the blind tip
reconstruction method. We present a reliable method to choose the threshold parameter corresponding
to an optimal reconstructed tip shape for a given image. Specifically, we show that the trend in how the
reconstructed tip shape varies with threshold number is so regular that the optimal, or Goldilocks,
threshold value corresponds with the peak in the derivative of the RMS difference with respect to the
zero threshold curve vs. threshold number.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The atomic force microscope (AFM) is a versatile and powerful
tool for the analysis of topographical and interfacial properties of
surfaces with nanoscale resolution. Quantitative AFM is limited by
the geometry of the probe tip used to scan the surface, which
means that accurate knowledge of the AFM tip shape is critical for
accurate dimensional [1], nanomechanical [2], frictional force [3],
chemical force [4], electrical force [5], and magnetic force mea-
surements [6]. Typical scanning probe imaging modes allow a tip
of finite geometry to move over a sample surface while maintain-
ing a nominally constant tip-surface separation in order to render
a topological image of the surface. In the language of mathematical
morphology, the topographical image produced is the dilation of
the surface by the tip (more specifically the tip reflected through
its apex) [7]. Note that dilation is not the same as convolution,
ll rights reserved.
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since convolution is a linear mathematical process, and the
process of dilation, by which an image is created by the physical
interaction of tip and sample, is non-linear [8].

As is shown in Fig. 1, a tip that is sharper than the surface
features will more accurately reproduce those features in an image
(Fig. 1a) than a blunter tip (Fig. 1b). Images produced with a tip
whose geometrical features are of the same order as or larger than
the surface features (Fig. 1b) will produce image features that can
be significantly broadened relative to the true surface geometry.
Such measurements therefore cannot be relied upon for accurate
lateral dimensional measurements of nanoscale surface features.
While conventional AFM imaging exhibits some fundamental
limitations, including the inability of the tip to image undercut
features (as exemplified by a tip imaging a nearly spherical feature
in Fig. 1), some techniques have been developed to minimize these
limitations [9,10]. Nevertheless, the measured height of imaged
features in conventional AFM will usually be accurate even though
the image widths may not be, provided that the AFM is in
dimensional calibration and the sample is sufficiently stiff to
withstand imaging forces.
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Fig. 1. Representations of AFM image profiles (bold line) produced for a surface
with sharp and spherical features when imaging with (a) a sharp tip or (b) a blunt
two-peak tip.
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Ever since the AFM was invented, users have sought sharp,
robust, reproducible tips [11] of many different materials, includ-
ing carbon nanotubes [12] or hard materials such as ultranano-
crystaline diamond [13]. While quantification of tip size by the
manufacturer is useful, even the most robust tip can experience
wear or mechanical shearing due to continuous or intermittent
contact with a surface during an AFM experiment [14,15], espe-
cially if that experiment is performed in contact mode [16,17].
The tip can also pick up contamination, such as nanoparticulates
or surface moieties, which can alter the chemistry and shape of the
tip. Hence, for the most accurate tip shape determination, char-
acterization is required before, during, and after an experiment.

There are two main methods used to characterize an AFM
probe tip shape [1] (a) ex situ direct imaging of the tip (typically
using electron microscopy) and (b) in situ indirect analysis that
leverages the fact that an AFM image is the mathematical dilation
of the sample by the tip shape. Direct imaging is typically
accomplished using either a scanning electron microscope (SEM)
or a transmission electron microscope (TEM). An SEM operated in
backscattered mode can produce images of an entire tip (including
apex, shank, and cantilever). Even some of the details of the tip
apex on the order of tens of nanometers [18–20] can be deter-
mined, and resolutions on the order of nanometer may be
achieved with high resolution SEMs [21]. For nanometer and
subnanometer resolution of AFM tip features, a TEM is often used,
although a TEM is typically limited to two-dimensional (2-D)
shadow imaging unless multiaxis rotation stages within a TEM
sample holder are available. Other disadvantages of electron
microscopy include the potential for contamination by electron
beam-ionized residual gas [22–24], the time-intensive and
impractical necessity of removing the tip from the AFM, the
difficulty in determining the exact region of the tip that would
contact the surface, and the inability to image electrically insulat-
ing AFM cantilevers and tips since material charging may prevent
stable high resolution imaging. In addition, immediate access to
high quality electron microscopy instruments may be limited for
some users. Additional complications can occur when extracting
the exact tip shape from electron microscope images because of
intrinsic distortion and convolution effects in the images [25].

Indirect tip shape determination methods use AFM images to
determine the tip shape from samples whose surface geometries
may be known or unknown [1]. Examples of tip characterization
samples of assumed or known shape include, but are not limited
to: gold spheres and polystyrene spheres [26,27], cone-like struc-
tures [28], holes and trenches [29], and carbon nanotubes [30].
In these cases, deviations in the sample features from their ideal
size and shape, especially for nanoscale structures, will introduce
errors in the tip shape estimation. One must be particularly careful
that reference samples do not change significantly with use (e.g.
wear or contamination) [1], or that a method to re-characterize
the sample geometry exists.

If the surface geometry is unknown, an upper bound to the tip
shape can be extracted from the image in a process known as blind
tip reconstruction [7,31,32]. Any sample can be used, but a sample
with sharp features (e.g., TipCheck or NioProbe [MicroMasch, San
Jose, CA]) provides blind tip reconstruction algorithms with more
complete tip shape information, leading to more accurate tip
reconstructions. Section 2 describes the mechanisms of the blind
tip reconstruction method in detail. Blind tip reconstruction is
advantageous because it can be performed in situ. On the other
hand, commercial blind tip reconstruction algorithms can appear
intractable to a user who seeks to quickly and easily determine
their tip shape, specifically since the blind tip reconstruction
process depends on a number of input parameters whose values
are not obvious or intuitive and yet have a large impact on the
resulting tip reconstruction. There are currently few guidelines on
how these parameter values should be chosen.

Here, we introduce a methodology that enables simple and
reliable tip shape determination when using a blind tip recon-
struction method for a given surface. Our main objective here is to
present clear protocols for the use of blind tip reconstruction
algorithms as a straightforward and reliable method to determine
tip shape, which could form the basis of an international standard
under the auspices of ISO/TC 201/SC 9 in scanning probe micro-
scopy. The algorithms used for this work are developed from those
first published by Villarrubia [7], and they are implemented in
MATLAB (MathWorks, Natick, MA). The MATLAB code used for the
results in this paper will be available as open source code on the
online Nanoprobe Network Software Library. In this paper, these
algorithms are applied to simulated AFM images (generated from
known simulated surfaces and tips) from which the tip shape is
then reconstructed through the variation of relevant parameters.
We thus demonstrate how a general user can reliably determine
the optimum reconstruction parameter values for their images.
2. Summary of the mathematics of blind reconstruction

There have been many contributions to the theory and practical
implementation of blind reconstruction [7,8,31–39], and many of
these and related methods have been reviewed here [1]. In this
paper we focus on the blind tip reconstruction algorithms devel-
oped by Villarrubia [7]. Although improvements of these algo-
rithms have been made since Villarrubia's initial publication of his
code [1], the fundamental core of these methods has remained the
same. The mathematics of blind tip reconstruction depends on a
number of input parameters that must be optimized to generate a
best estimate for the tip shape. For these reasons, a physical
description of the pertinent mathematical algorithms and related
parameters is presented here for completeness and in order to
make the mathematics involved more intuitive.

Within blind tip reconstruction, the tip shape is determined
from an AFM image using an iterative process [7], which is
represented schematically in Fig. 2 and will be described in the
paragraphs that follow. While the original theoretical develop-
ment of blind tip reconstruction uses the language and symbolism
of mathematical morphology, the implementation of these ideas
within Villarrubia's work (i.e., as implemented in the code) [7]
can also be described in terms of the geometry of the tip and
sample and their modification in the tip reconstruction process.
We present a description of this “geometric representation” of the
blind tip reconstruction to illustrate, from a slightly different



Fig. 2. A flowchart representing the key features of the blind tip reconstruction process. After initializing the tip shape estimate and reconstruction parameters, an image
coordinate x′ is selected, and then a tip coordinate x is selected. For each permissible value of d (as dictated by Eq. (1)), the value of temp is calculated. The minimum absolute
value for temp is determined and set equal to dil. If the variation of the image geometry near the tip contact point is sufficiently large compared with thresh (Eq. (3)), then the
tip is modified at point x. This process is iterated for all possible x and x′ values until convergence occurs.

Fig. 3. Inverted tip and representative image profiles, indicating the application of the criterion of Eq (1). (a) A representative snapshot of one possible position where the tip
contacts the surface at tip coordinate d to produce the image point at x′. In this location, tip estimate modification does occur because the apex of the tip profile, located at
x¼xc, is below the image profile (as dictated by Eq. (1)). (b) A representative snapshot of a position where it is not possible for the tip to contact the sample to produce the
image profile, as the apex (x¼xc) of the inverted tip profile lies above the image profile. This case represents the situation where the upright tip apex would penetrate the
sample, which is physically impossible. Therefore this tip coordinate d cannot be used to modify the tip shape at x.
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perspective, the main features of these algorithms. In this paper,
we use the same mathematical nomenclature as in Ref. [7].

The reconstruction procedure is shown schematically in Fig. 2
and progresses as follows. First an initial estimate for an upper
bound for the tip shape is chosen. We refer to the estimated tip
shape hereafter as the tip estimate. Typically, a “square pillar” with
a flat top is used, where the surface of the tip consists of a matrix
of zeros with dimensions that match the number of pixels chosen
for the size of the tip estimate. For example, a 20�20 pixel tip
estimate is a 20�20 matrix of zeros. Since by definition the height
of the tip apex is fixed at zero height, the entire surface of the tip
lies at the same height as the apex. As the tip estimate evolves
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during the tip reconstruction process, tip heights may change, but
all will remain less than or equal to zero. A 2-D profile of a
representative matrix of zeros, i.e., a square pillar tip, is shown as a
rectangle in Figs. 3 and 4. Other initial tip estimates may be used,
but this is the most general starting point.

Note that in Fig. 1b the tip geometry appears in the image as if
the tip were reflected through its apex, i.e., as an inverted tip; this
is necessarily the case because the image is the dilation of the
surface by an inverted tip [7]. Therefore, for the purposes of tip
reconstruction, the tip estimate is inverted (shown in Fig. 3 and in
the center of Fig. S1a in the Supplementary Material). After the
initial tip estimate is defined, the tip estimate is refined through
comparison of the current tip estimate to the image geometry at
every point in the image.

Two-dimensional profiles of a representative image and an
initial tip estimate are shown in Fig. 3 and also in more detail in
Fig. S1. (An extension to three dimensions is straightforward.)
Coordinates on the image are given as x′ and image heights are
represented by the function I(x′). There are three coordinates of
interest for the tip: a general tip coordinate x, the (fixed-height)
center point of the tip xc, and the tip-image contact point d. This
point d on the tip corresponds with a chosen point x′ on the image
as a possible tip-sample contact point. P(x) is the height of the tip
at any coordinate x, and is always less than or equal to zero, since P
(x) represents the inverted tip.

After the tip estimate and reconstruction parameters are
initialized, the algorithm iterates through all possible values for x′
(contact point) and x (tip refinement position). To determine if
refinement can occur, the tip estimate is compared to the image
geometry for all possible contact points (all possible d values).
Modification of the tip estimate at x occurs only when

PðdÞ4 Iðx0Þ�Iðx0 þ xc�dÞ ð1Þ
Geometrically speaking, the criterion described by Eq. (1)

allows for modification only if the tip apex coordinate xc is below
the image profile for the particular d being considered. This is
illustrated in Fig. 3, where two representations of potential d
Fig. 4. The process of modifying or refining the initial tip estimate. (a) The tip-surface
records the difference in height between the contact point and the height of the image
found by varying d, or dil¼�min|temp|. (c) The tip height at x is then modified to a new
example x is located at the rightmost edge of the tip, and hence the modified portion o
contact points are shown. For the profile in Fig. 3a, refinement
occurs because the tip apex is below the image profile; whereas
refinement does not occur for the profile shown in Fig. 3b because
the tip apex lies above the image profile. If Eq. (1) is satisfied, the
tip apex never deviates from a zero height value, i.e., P(xc)¼0.

Next, the extent of tip estimate modification at tip coordinate x
is determined. For every allowable tip refinement position, with
contact point at d on the tip and x′ on the surface (represented in
Fig. 4a), the value of

temp¼ Iðx′þ x�dÞ�Iðx′Þ þ PðdÞ ð2Þ
is calculated. The variable temp represents the difference between
the height of the image at x, i.e. I(x′+ x�d), and the height of the
image at x′, i.e., I(x′). The value of temp is computed for all
allowable d values and the minimum absolute value of temp is
saved as the variable dil (Fig. 4b). Once dil is found, the threshold
criterion is applied to determine if tip estimate modification
actually occurs. The height of the tip at x is modified if dil is large
enough compared to the threshold value, thresh. This criterion for
tip estimate modification at x is represented mathematically as

diloPðxÞ�thresh ð3Þ
If Eq. (3) is true, then the modification occurs (as is shown

in Fig. 4c, where thresh¼0 for simplicity) and the tip height at
x is modified to

PðxÞ ¼ dilþ thresh ð4Þ
In the case of Fig. 4, initially thresh¼0 and P(x)¼0; therefore

since it is always true that dilo0, then Eq. (1) is true. Eq. (4) gives
the extent of the modification at x, which in this case is P(x)¼dil.
If thresh was non-zero and dil is not large enough compared with
thresh (i.e., Eq. (3) is false), then the point P(x) would have
remained unmodified.

The process described above is applied at every tip coordinate x
for the single image position x′. If the threshold value thresh is not
zero, the modification will be less pronounced. For example, let
the value of thresh be 1 nm. Then P(x) will be modified as long as
image contact point x¼d is varied among all permissible points. The variable temp
above tip location x. (b) dil is determined as the minimum absolute value of temp
height so that it is lower than the previous height by the magnitude of dil. In this
f the tip is one pixel wide.
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dilo�1 nm. This criterion makes it less likely that P(x) will be
modified because the variation of the image profile over the
distance of x�d will need to be larger than 1 nm to produce a
large enough dil for the criterion dil¼max(I(x′+ x�d)� I(x′) ). Then
when the modification does occur (Eq. (1) is satisfied), the new
value of P(x), which is equal to dil+thresh, will not be as large
(in absolute value), since dilo0 and thresh40 (1 nm in this
example case, so P(x) is 1 nm smaller in absolute value). The
process is repeated at every image location x′ within the image,
and then the process iterates through the image again until the tip
estimate P(x) converges.

As demonstrated in the above discussion, the input parameter
thresh (the threshold value) is critical for the resulting tip recon-
struction. If an image has no noise, then that image and the
resulting tip reconstruction only contain information related to the
tip and sample geometries. However, if the image contains noise,
that noise could be mistaken in the tip reconstruction algorithms
as pertaining to the tip geometry. The threshold parameter
accounts for noise through the algorithms discussed above and
discussed in reference [7].

The tip reconstruction user controls the threshold parameter,
as well as the size of the initial tip shape estimate, namely its
width (the size of the tip matrix). From a practical standpoint,
some clear guidelines are necessary for selecting appropriate
values of thresh and tip matrix size in order to produce an
optimum tip reconstruction. Some useful suggestions for choosing
these values have been given [7,20,35,37], but we wish to provide
a more concrete methodology for determining these parameters.
Regarding tip matrix size, there is a fairly large permissible range
for this parameter over which the tip reconstruction will be
essentially independent [7]. Specific suggestions on how to choose
the tip matrix size are described in detail in Section 4.2.

The second major implication from the Villarrubia work is that
there is a reproducible trend in the shape of the tip reconstruction
as a function of threshold value. If the threshold value is too low in
magnitude, the tip reconstruction is dominated by high frequency
noise from the image. If, on the other hand, the threshold value is
too high, no features on the image are sharp enough to allow for a
Fig. 5. The process of creating simulated images for evaluating the MATLAB-based
mathematically dilated by the simulated tip shape (top right) to produce the S image
Goldilocks tip reconstruction is identified (bottom).
modification of the initial “square pillar” tip geometry. Conse-
quently, the reconstructed tip becomes unrealistically blunt. The
optimum thresh value falls between these two extremes and is
referred to here as the “Goldilocks” threshold (neither too big nor
too small!).
3. Generation of simulated samples, tip, and images

3.1. Initial development of simulated sample surfaces, tip, and
images

To test the capabilities of these blind tip reconstruction algo-
rithms and determine criteria for selecting tip reconstruction
parameters, a set of simulated images were produced by mathe-
matically dilating a simulated sample with a simulated tip. This
process assumed non-deformable contacts. The simulated tip is
≈38 nm wide at the base with a maximum height of 254 nm. This
tip also features two protrusions at right angles to each other, with
their respective apexes positioned at 19 nm and 29 nm below the
primary tip apex (Fig. 5). This simulated tip has no reflectional or
rotational symmetry to provide the most general tip shape. Blind
tip reconstruction using simulated images, where the tip shape is
known, helps us determine optimal tip reconstruction parameters
when knowledge of the tip shape is not available.

A number of distinct simulated surfaces were used; a representa-
tive set of these simulated surfaces and their corresponding images
are shown in Fig. 6. These surfaces were designed to be analogous in
shape to typical AFM samples which could be used to characterize
the AFM tip shape, including: spikes (S); ridges (R), such as those
formed by carbon nanotubes; and pitted, anodized alumina (P). The
surfaces are not optimized to give tip reconstructions that most
accurately reproduce the actual tip shape, but are simply meant to
represent relevant tip reconstruction surface geometries. All images
consist of 512�512 pixels, where each pixel is 1 nm in length along
the x- and y-directions. In the z-direction, the maximum peak-to-
valley height for all images was ≈290 nm.
blind tip reconstruction algorithms. The features of the S surface (top left) are
(top center). From this image, various tip reconstructions are produced and the
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The process of dilating the simulated sample and the simulated
tip is represented schematically in Fig. 5. From these simulated
images, tip reconstructions were produced by varying the threshold
parameter over a sizeable range. For each image and set of tip
reconstructions, the Goldilocks tip reconstruction was first identified
by comparing the resulting tip reconstructions with the original
simulated tip. The procedure for determining the Goldilocks tip
reconstruction in cases where the tip shape is not known is
explained in Section 5.

3.2. Addition of noise to the simulated images

Tip reconstructions were generated from simulated images
with added noise so as to use the tip reconstruction algorithms
Fig. 6. Representative simulated surfaces and resulting images used for evaluation of MA
in this figure and all following figures have units of nanometers. (a) Spikes (S): Flat-top
(analogous in shape to NioProbe from Aurora Nanodevices or TGT1 from NT-MDT). (b) R
from Aurora Nanodevices). (c) Pits (P): A series of paraboloidal pits (similar to anodized
to their full extent. Varying amounts of noise were incorporated
into the simulated images, examples of which are shown in Fig. S2
in the Supplementary material. A 512�512 pixel white noise
image was generated with a root mean square (RMS) value of
1 nm, and this noise image was scaled by a factor proportional to
each simulated image's z-range and then added to that image.
For example, to create an image with a signal-to-noise (S/N) ratio
of 160 where that image has a z-range of 200 nm, an image
containing only white noise with an RMS height value of (200/160)
nm was added to the original image. In this paper, each image is
referred to by its identifying letter (corresponding to the samples
and images shown in Fig. 6) and the signal to noise ratio of the
added noise. For example, an image produced using the R sample
with an S/N ratio of 160 is referred to as R-160. For the analysis
TLAB-based blind tip reconstruction. The numbers indicated on the vertical scale bar
spikes with an in-plane apex radius of 3.5 nm and side walls of slope 95 nm/nm
idges (R): Ridges with a roughly parabolic profile (analogous in shape to TipCheck
alumina).
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that follows, tip reconstructions were performed on both noisy
and noiseless images.
4. Details of the MATLAB-based blind tip reconstruction
algorithms

The blind tip reconstruction algorithms discussed in this paper
were coded in MATLAB and its algorithmic structure is diagramed
in Fig. 7. The core of these algorithms is the original code
published by Villarrubia [7]. This code, written in the C program-
ming language, is directly accessed by the MATLAB algorithms.
The original implementation in MATLAB was accomplished by
Todd and Eppell [35] and allowed the user to produce one tip
reconstruction at a time based on one set of tip reconstruction
Fig. 7. The procedural steps of the MATLAB-based blind tip reconstruction from the user
multiple tip reconstructions for multiple threshold values (bottom loop). These steps ar
parameters. We augmented these algorithms to produce a set of
tip reconstructions for a range of threshold values, and to enable
real-time or off-line visualization analysis and facilitate the pro-
cess of determining the Goldilocks tip reconstruction. The general
process of the algorithms’ implementation by users is as follows.
4.1. Import image into MATLAB

First the user imports an AFM image into MATLAB. The images
imported into MATLAB for analysis can either be NanoScope data
files (Bruker AFM, Santa Barbara, CA) or a text file. Multiple images
can be loaded at the same time for rapid, serial image analysis. It is
best if the user apply a low pass or median filter on the image
before importing the image into MATLAB.
's perspective. The primary functionality added in this work is the ability to generate
e described in detail in the sections indicated on the diagram.
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4.2. Choose matrix size for reconstructed tip

The user then selects the matrix size for the reconstructed tip. As
discussed in Section 2, the fidelity of the Goldilocks tip reconstruction
to the known tip estimate is invariant to the tip matrix size within a
certain range [7]. When optimizing for both accuracy and time
efficiency, the user must choose a tip matrix size encompasses a
sufficiently wide range of image features, but one that is not so large as
to become overly time intensive. The general guideline is to choose a
tip matrix size that has approximately the same lateral dimensions as
the largest recognizable tip artefact in the image. For example, in
Fig. 8 one can see in image S-80 the repeated feature resembling the
Fig. 8. Examples of how to choose the tip matrix size using (a) image type S, (b) image ty
one can determine the appropriate choice of approximate tip matrix size to input into th
tip reconstruction is insensitive to the tip matrix size within a reasonable range [7].
tip. The user chooses a tip matrix size equal to the dimension of one
of these features; this corresponds to a square region of about
40�40 nm for the examples in Fig. 8. This choice of the tip matrix
size sets the initial tip estimate. For the P sample, the tip matrix size
is approximately the width of the ridges between holes, as seen in
Fig. 8c.

4.3. Choose the threshold values

The user then chooses the threshold values to be used to
produce tip reconstructions. Each threshold value will correspond
to one tip reconstruction. Since the threshold values are typically
pe R, and (c) image type P. By identifying the size of a representative image feature,
e blind tip reconstruction algorithm. This size need not be exact, since the resulting
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proportional to the image z-range, the user's choice is scaled
relative to the image z-range. It is suggested that a first rough
set of threshold numbers should be integer multiples of 5% of the
image z-range. Each threshold value is then tracked with a
designated threshold number to represent each threshold value.
For example, if five threshold numbers were desired and the
intervals were multiples of 5% of the image z-range, the threshold
values would be 0%, 5%, 10%, 15%, and 20% of the image z-range,
and would be designated with threshold numbers of 0, 1, 2, 3, and
4, respectively. Image S-80 has a z-range of 214.7 nm; hence, these
threshold numbers would correspond to threshold values of 0 nm,
10.7 nm, 21.5 nm, 32.2 nm, and 42.9 nm, respectively.

For maximum time efficiency of the tip reconstruction algo-
rithms, threshold numbers are applied in reverse numerical order,
starting with the largest threshold number. The first refinement
begins with the initial zeros matrix (square pillar) and applies the
largest threshold value. The tip shape estimate corresponding to
the largest threshold value is then used as the initial tip shape
estimate for the next highest threshold number reconstruction.
This process is repeated until all threshold numbers have been
applied and their tip reconstructions completed.
4.4. Choose additional thresholds if necessary

After the tip reconstructions are complete, the program dis-
plays profiles of the tip reconstructions, and the user may analyze
individual, three-dimensional tip reconstructions of interest. This
first pass is made intentionally coarse to quickly assess the range
of approximate values for the Goldilocks threshold parameter.
The user is then given the option to produce additional tip recon-
structions with a finer step (perhaps 0.1 threshold number steps,
or steps of 0.5% of the image z-range, for the example given above)
to isolate a particular set of tip reconstructions to refine further.
We show in Section 5 that the blind tip reconstructions are similar
within a range of threshold values, so the exact size of the
threshold step is not critical.
Fig. 9. Representative example of the result of a blind tip reconstruction, here from the
threshold values ranging from 0 nm to 107 nm. (b) Selected blind tip reconstruction profiles
5. Determining the Goldilocks threshold value and tip
reconstruction

Determining the optimum value for the threshold parameter
for a given sample is the most important part of the blind tip
reconstruction process whereby the most accurate tip reconstruc-
tions are obtained for that sample. By applying a priori knowledge
of the tip shape used to produce our simulated images, we have
developed a method to guide the user in determining the Goldi-
locks threshold value when a priori knowledge of the tip shape is
not available. We first discuss this methodology in the rare case
where the actual tip shape is known (Section 5.1), and then discuss
the more common case when the actual tip shape is not known
(Section 5.2). We have applied these procedures to all the surfaces
in Fig. 6, with images produced using a range of noise values (from
no noise to an S/N ratio of 20). We have also analyzed several other
sets of simulated images, as well as real AFM images. The trends
discussed below are similar to the trends seen for all the images
analyzed.

5.1. Determining the Goldilocks tip reconstruction when the actual
tip shape is known

Since the simulated images were used in this study, the
resulting tip reconstructions were compared to the known actual
tip shape and also the tip reconstruction generated from a noise-
less version of each images set. We use the actual tip shape for
comparison since the main goal of a tip reconstruction user is to
obtain the tip reconstruction that most accurately represents the
actual tip shape. Since the simulated samples have finite geometry,
even the most ideal tip reconstructions (those generated from
images without noise) are not expected to exactly match the
actual tip shape. For this reason, we present a comparison to the
ideal noiseless image tip reconstruction, as others have previously
done [7,39].

Fig. 9a shows an example set of x- and y-direction profiles of
reconstructed tips produced from one of the images, in this case
P-80. Each tip profile along a given axis was constructed using a
P-80 profiles. (a) Twenty separate blind tip reconstruction profiles are shown, with
with threshold numbers close to the Goldilocks threshold number are shown for clarity.
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different threshold value. Note that, as expected, for very large
threshold numbers, the tip shape estimate is identical to the
original square pillar, and for small threshold numbers, the tip
reconstructions are dominated by image noise and therefore tend
to be unrealistically sharp. For clarity, some of the profiles have
been removed in Fig. 9b to show only the profiles that most closely
match the known tip profile (which is shown in black in Fig. 9).
By visual inspection, the largest tip with reasonable geometry that
matches the known tip profile can be chosen as the best tip shape
estimate. For this particular set of tip reconstructions generated
from P-80, the best visual match occurs at threshold number 1.4
(corresponding to a threshold value of 15.03 nm).

Although visual matching is sufficient when the actual tip shape is
known, a more quantitative and systematic method to determine the
Goldilocks tip reconstruction is necessary, since in most cases the
actual tip shape is not known. A comparison of the profiles using the
RMS difference between the known and reconstructed profiles is used
to accomplish this task, which was previously used in [7]. Various
other quantitative measures exist and could be used, such as the tip
profile area [20], tip shape volume [10,39], or a tip radius approxima-
tion [38]. Each technique comes with its own advantages and
disadvantages. For the case of tip profile area or tip shape volume,
one must be careful when comparing areas or volumes, since the
same cross-section area or volume could result from drastically
different profile shapes. For example, a jagged double peaked tip
shape could have the volume as a smooth parabolic shape. Therefore
the area or volume does not constitute a unique measure of the
relative accuracy of profiles or 3D tip shapes. The use of the radius of
curvature to quantify the accuracy of a tip shape is not general enough
for our purposes, because a parabolic fit that clearly identifies a tip
radius may not always be possible or appropriate, as the tip may not
resemble a parabolic shape. The RMS difference, on the other hand,
gives a quantitative measure of comparison, which indicates how
much a particular profile deviates from a reference profile, without
making any assumptions about the tip shape. The RMS difference
comparison can be made evenwhen the tip reconstruction shape vary
drastically or when no well-defined tip radius can be determined. The
RMS difference, as will be shown in this section, is a reliable measure
Fig. 10. Plots of RMS difference between the actual tip shape and each tip reconstruction
the Goldilocks threshold for the case when the true tip shape is known. On these graphs
the upper horizontal axis gives the threshold value in nm, which is proportional to the th
threshold. (b) RMS difference relative to the known tip profile with restricted profiles.
of deviation of a reconstructed tip profile from another tip profile
(such as the known tip profile). Based on the definition of the RMS
difference, it is expected the threshold value for the Goldilocks tip
reconstruction corresponds to a minimum RMS difference between
either the known actual tip shape profiles and reconstructed tip
profiles or the noiseless tip reconstruction profiles and the noisy tip
reconstruction profiles.

Fig. 10a shows the RMS difference between the reconstructed
x- and y-profiles and the respective known tip profile as a function of
threshold (threshold number on the bottom horizontal axis, threshold
value on the top horizontal axis) for the P-80 image as an example.
A definitive minimum in the RMS difference data is not apparent for
both x- and y-profiles even though the best visual match for this set of
tip reconstructions occurs at threshold number 1.4. The lack of a well-
defined minimum in the RMS difference curve of Fig. 10a occurs
because the reconstructed tip geometry does not closely match the
known tip geometry far from the tip apex. This deviation arises from
the fact that an AFM-type image will only include a relatively small
percentage of image points that contain information about the lower
points along the tip shaft, as has also been seen in other work [20].
Deviation in the reconstruction between the two peaks of the actual
tip is also expected for the same reason [20]. Therefore, estimated tip
shape information far from the tip apex can be misleading, especially
in context of the RMS difference curve of Fig. 10a. This motivates a
restriction on the range of profile comparison to points near the tip
apex. This restricted range lies between the vertical dashed lines in
Fig. 9. Thus, the restricted range coincides with the point at which the
actual tip profile and the reconstructed tip profiles cross over one
another. When this restriction is applied, the resulting RMS difference
curve (Fig. 10b) shows a distinct minimum occurring at the threshold
value corresponding to the Goldilocks tip reconstruction. A minimum
also occurs at the same Goldilocks threshold value when plotting the
RMS difference relative to the noiseless image tip reconstruction vs.
threshold. (See Supplementary material for more detail.)

However, in reality the actual tip shape and the noiseless image
are unavailable to the user, so these examples are only for proof of
concept. Therefore a methodology is needed for cases where
neither the actual tip shape nor the noiseless image is available.
as a function of threshold value for image P-80. These plots are used to determine
and the ones that follow, the lower horizontal axis gives the threshold number, and
reshold number. (a) RMS difference relative to the known tip profile as a function of
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5.2. Determining the Goldilocks tip reconstruction when the tip
shape is unknown

Since the reconstructed tip profiles change as a function of
threshold value in a systematic way, the trend in the RMS
difference relative to a reference profile as a function of threshold
number can be used to determine of the Goldilocks tip reconstruc-
tion when the actual tip shape is unknown. Any of the various tip
reconstruction profiles could be used as a reference, but the profile
corresponding to a threshold value of zero is used. In other words,
the RMS difference curve in Fig. 11a is tracking the deviation of the
tip reconstruction profile shape relative to the tip reconstruction
profile produced when all of the image information is used
(including image noise). Specifically, the RMS difference between
Fig. 11. Plots of RMS difference and its derivative between the zero threshold profile an
(b) and P-20 for (c) & (d) as examples. These plots are used to determine the Goldilocks t
to the zero threshold profile as a function of threshold for P-80. (b) Derivative of RMS diff
corresponds to the global maximum of the derivative for P-80. (c) RMS difference relative
gradient than that of (a). (d) Derivative of the RMS (derivative of plot in (c)) as a function
difference plot, the derivative plot (d) clearly shows a peak that corresponds to the Gol
a given profile and the zero threshold profile is calculated for each
threshold number.

The methodology to find the Goldilocks threshold value is
described here using the representative examples in Fig. 11, and
this methodology was found to work for all the images analyzed.
Starting at zero threshold number, the RMS difference relative to
that at zero threshold increases fairly slowly with threshold value
(with a relatively modest slope from threshold number 0–1.2).
As the threshold increases, the slope of the curve drastically
increases as the threshold nears the Goldilocks threshold (with a
high slope from threshold number 1.2–1.4). The Goldilocks thresh-
old occurs reliably after an abrupt (high slope) transition region,
e.g., just after this high slope region (threshold number 1.4) in
Fig. 11a. As the threshold increases past the Goldilocks threshold,
d each tip reconstruction as a function of threshold value for image P-80 for (a) &
hreshold without directly referring to the true tip shape. (a) RMS difference relative
erence (derivative of plot in (a)) as a function of threshold. The Goldilocks threshold
to the zero threshold profile as a function of threshold for P-20 showing a less step
of threshold for P-20. Even when the changes in slope are less dramatic in the RMS
dilocks threshold for this image.
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the slope of the RMS difference curve reduces again (with a low
slope again from threshold number 1.4 onward). In general, the
Goldilocks threshold is consistently identified as the threshold for
which the greatest change in slope occurs for the RMS difference
relative to the zero threshold. This trend in the RMS curve is
consistent regardless of surface type or level of noise (including,
but not limited to, the simulated images shown in Fig. 6 & S2 and
real AFM images), and is also consistent with the trends seen by
others [20,35]. The physical explanation for this phenomenon is
that the abrupt transition between unphysically sharp tips to the
Goldilocks tip shape occurs when the threshold is just large
enough to exclude image noise in order to produce the largest
tip shape consistent with the true dilation of tip and sample [35].

An alternative way to find the Goldilocks threshold value is
to calculate the derivative of the RMS difference relative to the
x-direction and y-direction zero threshold profile. Such derivative
plots are shown in Figs. 11b, d, and 12b. The derivative is calculated
by taking the slope of the interval directly preceding a particular
data point on these graphs. For example, in Fig. 11b the derivative
indicated for threshold number 1 is the slope of the RMS
difference vs. threshold value curve over the interval of threshold
number 0 to threshold number 1. The peak in the derivative curve
indicates the threshold number for which the tip reconstruction is
optimized. For example, in Fig. 11b, the derivative plot exhibits a
global maximum at threshold number 1.4, indicating that 1.4 is the
Goldilocks threshold number, in agreement with the Goldilocks
value determined using the best visual match and using the
minimum of the RMS difference with respect to the actual tip
shape in Section 5.1. For some graphs of the RMS difference
relative to the zero threshold, the transition in slope is not as
dramatic (for example, see Fig. 11c). In that case, the Goldilocks
threshold is not obvious from the plot of the RMS difference, but
instead can be easily identified from its derivative (Fig. 11d).

How can one be sure that one has found the Goldilocks tip
reconstruction? It is possible that the transition to Goldilocks
occurred for a threshold number between 1.3 and 1.4? One way to
address the ambiguity for the choice of Goldilocks threshold from
Fig. 11a and b would be to investigate other possible threshold
numbers between the threshold numbers 1.3 and 1.4. As shown in
Fig. 12. Plots of RMS difference and its derivative between the zero threshold profile an
threshold numbers are separated by increments of 0.01, instead of increments of 0.1 as sh
of threshold. (b) Derivative of RMS graph (derivative of plot in (a)) as a function of thresh
there is a peak in the derivative plot for both x- and y-profiles.
Fig. 12, threshold number steps of 0.01 instead of 0.1 yield more
precise values for the Goldilocks threshold. With this smaller
interval between thresholds, the transition region from low
threshold number (1.2) to higher threshold number (1.4) contains
two distinct abrupt changes in RMS difference: one transition
around threshold number 1.23, and another transition around
threshold number 1.35. These transition points are much more
clearly identified as spikes in the derivative (Fig. 12b). The reason
for the double transition in this case is that the left hand side of
the tip reconstruction profile makes the transition up to the
Goldilocks shape first (around a threshold of 1.23) and then finally
at 1.35 the right side of the tip reconstruction profile then
transitions to the Goldilocks shape. For this reason, when a double
transition occurs, the last abrupt transition in the RMS graph
should always correspond with the Goldilocks tip reconstruction.
Hence, in this case the Goldilocks threshold corresponds with the
threshold number of 1.35. The minor peaks in Fig. 12b are caused
by small variations in the tip reconstructions as the threshold
changes. These variations are a natural consequence of the minute
variations in the tip reconstructions, which occur due to noise of
various frequencies in the image.

So which is the Goldilocks tip reconstruction? Fig. 9b shows
profiles from P-80 with Goldilocks threshold numbers of 1.3, 1.4,
and 1.5. It can be seen that little quantitative difference exists
between the tip reconstructions 1.4 and 1.5. The same is true for
the tip reconstruction profiles from threshold numbers of 1.35 and
1.4 (not shown). In other words, any threshold value between 1.35
and 1.5 would produce a reasonably accurate tip reconstruction.
Calculating the difference between each of these profiles, we find
that the RMS difference from the actual tip profile deviates by at
most 6 nm between the profiles for threshold numbers 1.4 and 1.5
(see Fig. 10). This insensitivity to threshold over a range of the
Goldilocks threshold provides leeway as the user attempts to find
a reasonable estimate for their tip shape. Hence, once there is an
unambiguous sharp peak in the derivative plot that is consistent
for both the x- and y-profiles, no further refinement of the
threshold step is needed.

Using the methodologies described in this section, we demon-
strate a reliable approach for determining the Goldilocks tip
d each tip reconstruction as a function of threshold for image P-80. In this case, the
own in Fig. 11. (a) RMS difference relative to the zero threshold profile as a function
old. The Goldilocks threshold is identified as the highest threshold value for which
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reconstruction, even for noisy images and for cases where the
Goldilocks threshold may be initially ambiguous.
6. Conclusions

The blind tip reconstruction method is a very powerful tool to
determine the shape of an AFM tip using a sample of unknown
surface geometry, which could simply be the primary sample to be
studied in the AFM experiment. Here, an overview of the blind tip
reconstruction process was presented to make the process more
intuitive. We developed an augmented MATLAB-based implemen-
tation of blind reconstruction that allows for easy variation of the
key input parameters: threshold value and tip matrix size. This
algorithm was used to investigate the role of these parameters, as
implemented using a set of simulated images. It was found that, if
there are recognizably dilated features in the image, then the tip
matrix size is straightforward to determine. Specific guidelines for
determining the optimum threshold number (the Goldilocks
threshold number) were developed. If the tip shape is known,
then the Goldilocks threshold number identifies the tip recon-
struction that occurs when the RMS difference with respect to the
known tip shape or the noiseless reconstruction is minimized.
If, as is typically the case, the actual tip shape is not known, then it
was found that the Goldilocks tip reconstruction occurred at the
maximum of the derivative of the RMS difference between profiles
at a given threshold and those at zero threshold.
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