
The MongoDB Query
Language (MQL)

LESSON

Google slide deck available here

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

https://docs.google.com/presentation/d/1Clw2TMYSVAXLKJO35y_n4OTkHyZ34f91hXzhrLYHSpM/edit?usp=sharing
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

MongoDB Query
Language

Simple syntax

Designed to query
documents

Only queries a single
collection

The MongoDB Query Language or MQL, was designed to have a simple syntax as
well as being explicitly designed for querying documents.

It only queries a single collection; when you need to query multiple collections or
perform more complex data processing the MongoDB Aggregation Framework should
be used.

MongoDB Query Language
MQL is designed for single collection queries and it is typically used for creating,
reading, updating, or deletion (CRUD) operations.

MQL query operators:

● Comparison
● Logical
● Element
● Array
● Evaluation

● Bitwise
● Comment
● Geospatial
● Projection, Update and

Update Modifiers

MQL is designed for single collection queries and it is typically used for creating,
reading, updating, or deletion (CRUD) operations. In this lesson, we’ll focus on
introducing these CRUD operations.

MQL’s query operators help enhance the MQL CRUD operations.

MQL operators vary from comparison to logical to array, as well as specific purpose
operators like bitwise or geospatial. These allow for complex operations to be
performed on the documents. We’ll explore these operators later in the lesson as well.

MQL Find()

MQL Find()
db.<collection>.find()

Query filter document

db.collection.find({ <field1>: <value1>, ... })

Specifying query operators

db.<collection>.find({ <field1>: { <operator1>: <value1> }, ... })

To begin to learn MQL, we will start with going over the find() command.

The MQL find() specifies the collection as part of the syntax of the method.
As noted earlier, MQL and the functions like find() only work on a single collection.

MQL Find()

db.<collection>.find()

Query filter document

db.collection.find({ <field1>: <value1>, ... })

Specifying query operators

db.<collection>.find({ <field1>: { <operator1>: <value1> }, ... })

A query filter document is used to explicitly define the expressions that limit the query
to the subset of results you want to return within the collection.

The query filter document is a similar to standard JSON and consists of
field-value/key-value expressions.

If you use and empty query filter document {} then the find() will return all of the
documents in the collection.

MQL Find()

db.<collection>.find()

Query filter document

db.collection.find({ <field1>: <value1>, ... })

Specifying query operators

db.<collection>.find({ <field1>: { <operator1>: <value1> }, ... })

In the query filter document you can also use query operators to specify specific
conditions like defining a range or exact match for the value(s) you want to limit your
query to return.

MQL Find(): Important Note

The collection is implicit in MQL based on
the query’s criteria.

In terms of MQL’s find, it is important to recap that the specific collection is implicit in
the query criteria in the syntax of the find().

Quiz

Quiz

Which of the following is true for MongoDB MQL find()?

A. The collection to be queried is part of the query filter
document

B. Query operators can be used to specify conditions in the
query filter document

C. Multiple collections can be queried within a single MQL find()

Quiz

Which of the following is true for MongoDB MQL find()?

A. The collection to be queried is part of the query filter
document

B. Query operators can be used to specify conditions in the
query filter document

C. Multiple collections can be queried within a single MQL find()

INCORRECT: The collection to be queried is part of the query filter document - The
collection is explicitly specified as part of the find syntax, specifically
db.collection.find() rather than as part of the query filter document.
CORRECT: Query operators can be used to specify conditions in the query filter
document - This is correct.
INCORRECT: Multiple collections can be queried within a single MQL find() - The
syntax of MQL find() limits the query to a single specified collection

Quiz

Which of the following is true for MongoDB
MQL find()?

A. The collection to be queried is part of
the query filter document

B. Query operators can be used to specify
conditions in the query filter document

C. Multiple collections can be queried
within a single MQL find()

This is incorrect. The
collection is explicitly
specified as part of the find
syntax, specifically
db.collection.find() rather
than as part of the query
filter document.

INCORRECT: The collection to be queried is part of the query filter document - This is
incorrect. The collection is explicitly specified as part of the find syntax, specifically
db.collection.find() rather than as part of the query filter document.

Quiz

Which of the following is true for MongoDB
MQL find()?

A. The collection to be queried is part of
the query filter document

B. Query operators can be used to specify
conditions in the query filter document

C. Multiple collections can be queried
within a single MQL find()

This is correct. Query
operators can be used to
specify conditions within the
query filter document.

CORRECT: Query operators can be used to specify conditions in the query filter
document - This is correct. Query operators can be used to specify conditions within
the query filter document.

Quiz

Which of the following is true for MongoDB
MQL find()?

A. The collection to be queried is part of
the query filter document

B. Query operators can be used to specify
conditions in the query filter document

C. Multiple collections can be queried
within a single MQL find()

This incorrect. The syntax of
MQL find() limits the query to
a single specified collection.

INCORRECT: Multiple collections can be queried within a single MQL find() - This is
incorrect. The syntax of MQL find() limits the query to a single specified collection

MQL Query
Exercise

Using MQL Exercise
Let’s use MQL to find people whose age is below 30.

We’ll walk through:
● Syntax.
● Creating the data and then querying the database to get the results.

We’ll do these via the MongoDB Web Shell directly in our browser so you’ll only need a
browser to follow along with this exercise.

Let’s take a few minutes to explore MQL find with a hands-on session, we’ll walk
through the syntax, create the data and then query the database to get the results.
We’ll do all these via the MongoDB Web Shell directly in our browser so you’ll only
need a browser to follow along with this exercise.

db.people.find(

{

“age”: { $lt: 30 }

}

)

Let’s find the fields
in our documents

The first two aspect of the MQL find syntax are to identify the collection we’ll

use, in this case ‘people’ and the find function itself.

db.people.find(

 { age: { $lt: 30 } }

)

db.people.find(

{

“age”: { $lt: 30 }

}

)

With the age field
value being $lt (less
than) 30

We will use a query filter document with the find function to limit the query to

documents where the age field has a value less than 30.

db.people.find(

 { age: { $lt: 30 } }

)

MongoDB provides a MongoDB Shell that
accesses a MongoDB instance that can be
used to follow these examples using just a
web browser and no additional software.

How to use the MongoDB Web Shell

If you want to follow along with the example for your class or if you want your students
to follow along, MongoDB provides a MongoDB shell that accesses a MongoDB
instance that can be used to follow these examples using just a web browser and no
additional software. https://mws.mongodb.com/

https://mws.mongodb.com/
https://mws.mongodb.com/

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

>>> db.people.insertMany([{ "user_id": "Eoin", "age": 29,

"Status": "A"}, { "user_id": "Daniel", "age": 25, "Status":

"A", "Country": "USA" }])

…

{

acknowledged : true,

insertedIds : [

ObjectId(5f11c32ae89fad25d8875c1c),

ObjectId(5f11c32ae89fad25d8875c1d)

]

}

Let’s insert some real data on people!

MQL: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen. The result should be similar with the exception that
the ObjectIds will differ.

db.people.insertMany([{ "user_id": "Eoin", "age": 29,
"Status": "A"}, { "user_id": "Daniel", "age": 25,
"Status": "A", "Country": "USA" }])

See:
https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Let’s find people whose age is below 30

>>> db.people.find({"age":{"$lt":30}})

{ "_id":

ObjectId(5f11c32ae89fad25d8875c1c),

"user_id" : "Eoin", "age" : 29, "Status"

: "A"}

{ "_id":

ObjectId(5f11c32ae89fad25d8875c1d),

"user_id" : "Daniel", "age" : 25,

"Status" : "A", "Country" : "USA" }

MQL: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here

db.people.find({"age":{"$lt":30}})

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Find the people whose age is great than ($gt) 25.

>>>

db.people.find({"age":{"<a>":}})

{ "_id":

ObjectId(5f11c32ae89fad25d8875c1c),

"user_id" : "Eoin", "age" : 29, "Status"

: "A"}

Using the same window, change <a> to the operator for greater than.

Change to the value necessary to find all people whose age is greater than 25.

MQL: Exercise

It’s your turn to find people whose age is greater than ($gt) 25, you will need to
change <a> to the operator for greater than and you will need to change to the
value necessary to get all the people whose age is greater than 25.

The result in the code block is what you should see if you are successful.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Create Read Update
Delete (CRUD)

MQL Create

insertOne(): Insert one document into a
collection.

insertMany(): Insert an array of
documents into a collection.

writeConcern: Sets the level of
acknowledgment requested from
MongoDB for write operations.

ordered: For insertMany()
there is an additional option
for controlling whether the documents
are inserted in ordered or unordered
fashion.

In this section, we’ll explore a little more around the CRUD functions in MQL.

We’ll start with the Create functions of insertOne() and insertMany(). In our previous
hands-on example, we’ve already use insertMany() to populate the data into our
collection.

The main difference is insertMany() takes an array of documents whilst insertOne()
only takes a single document.

Both functions can take an optional writeConcern parameter, whilst insertMany() can
also optionally take an ordered parameter which determines if the documents must be
inserted in the order they are present in the array, the default is to insert documents
ordered in the way they are present in the array.

>> db.cows.insertOne({name: "daisy", milk: 8}, {writeConcern: {w: "majority"}})

{

"acknowledged" : true,

"insertedId" : ObjectId("5f4e0c5b2d4b45b7f11b6d50")

}

>>> db.cows.insertMany([{name: "buttercup", milk: 9}, {name: "rose", milk: 7}],

{writeConcern: {w: "majority"}, ordered: false})

{

"acknowledged" : true,

"insertedIds" : [

ObjectId("5f4e0ce52d4b45b7f11b6d51"),

ObjectId("5f4e0ce52d4b45b7f11b6d52")

]

}

Example: MQL Create

Here’s an example of firstly using insertOne and then using insertMany.

MQL Read

find(): Selects documents and returns
cursor.

findOne(): Returns first document that
satisfies criteria.

findAndModify(): Modifies and returns
a single document.

findOneAndDelete(): Deletes & returns
the deleted document.

findOneAndUpdate(): Updates a
single document.

findOneAndReplace(): Replaces a
single document.

We have already covered the R/Read with the find() function, however there are
several other find functions that are also worth flagging here.

find(): returns a cursor to the results for the query document. The query document
holds the criteria you want to filter the documents on and the projection document
further refines the criteria by selecting specific fields to be returned.
findAndModify(): finds and then updates atomically a single document.
findOne() finds and returns a single document.
findOneAndXXX(): includes findOneAndDelete(), findOneAndUpdate(),
findOneAndReplace(). These perform the related action again on a single document
returning the original document (whether deleted, updated, or replaced). In the case
of findOneAndUpdate() and findOneAndReplace() you can specify
returnNewDocument: true to return the updated document or the replaced
document (the new document).

findOneAndUpdate() and findOneAndReplace() perform a read and an atomic write.

>>> db.cows.findAndModify({query: {name: "daisy", milk: 8}, update: { $set: {milk:

12} }})

{

"_id" : ObjectId("5f4e0c5b2d4b45b7f11b6d50"),

"name" : "daisy",

"milk" : 8

}

Example: MQL Read
>> db.cows.find({name: "daisy", milk: 8})

{ "_id" : ObjectId("5f4e0c5b2d4b45b7f11b6d50"), "name" : "daisy", "milk" : 8 }

>>> db.cows.find({name: "daisy", milk: 12})

{ "_id" : ObjectId("5f4e0c5b2d4b45b7f11b6d50"), "name" : "daisy", "milk" : 12 }

On the previous example for “MQL Create” we added some documents into the
‘cows’ collection. Let’s find one of these documents where the cow’s name is ‘daisy’
and the milk value is ‘8’.

Now let’s modify that specific document to increase the value for the ‘milk’ field to ‘12’.
In the findAndModify() return we see the old document was returned.

To verify the changes, let’s query for the updated document for the cow ‘daisy’ and
see the changes applied to it.

MQL Update

updateOne(): Update one
document into a collection

updateMany(): Update an
array of documents into a
collection.

Update in similar fashion to Create has two functions, updateOne and updateMany,
which operate on a single document and on an array of documents respectively.

Both functions take a filter document which specifies which documents to be updated.
If the filter document is empty the first document in the collection is updated. These
functions also take a second document as an argument which contains the various
options that can be configured.

The default behaviour is not to insert a new document if the update cannot find a
suitable document or documents that match the filter document. It is possible using
the upsert: True parameter in the second document supplied to the function (the
options document) to set that if a document isn’t found that a new one will be inserted
(hence the term upsert - update and insert).

>>> db.cows.find({})

{ "_id" : ObjectId("5f4e0c5b2d4b45b7f11b6d50"), "name" : "daisy", "milk" : 9 }

{ "_id" : ObjectId("5f4e0ce52d4b45b7f11b6d51"), "name" : "buttercup", "milk" : 10

}

{ "_id" : ObjectId("5f4e0ce52d4b45b7f11b6d52"), "name" : "rose", "milk" : 8 }

Example: MQL Update
>>> db.cows.updateOne({name: "daisy", milk: 12},{ $set: {milk: 8} })

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

>>> db.cows.updateMany({}, {$inc: {milk: 1}})

{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 3 }

Let’s revert the change we made in the MQL Read slide where we set the milk to 12
from 8 for the cow called daisy. We can see in the output of the updateOne, that it
both found and updated 1 document.

Let’s update all of the documents in the cows collection and increment/add their milk
fields by 1.

Let’s then use a find to look at the result for a subset of the documents, we can see
that for cow named daisy, we’d set the milk field to 8 and then this was incremented
by 1 so it’s now showing 9.

MQL Delete

deleteOne(): Deletes one
document from a collection.

deleteMany(): Deletes many
documents from a collection.

writeConcern: Sets the level
of acknowledgment
requested from MongoDB for
write operations.

In terms of the D/Delete in Crud, both functions take a filter document which specifies
which documents to be delete, if the filter document is empty the first document in the
collection is updated. These functions also take a second document as an argument
which contains the various options that can be configured.

>>> db.cows.deleteOne({milk: 9})

{ "acknowledged" : true, "deletedCount" : 1 }

>>> db.cows.deleteMany({}, {writeConcern: {w:

"majority"}})

{ "acknowledged" : true, "deletedCount" : 2 }

Example: MQL Delete

Let’s again use the data on cows that we have entered and test the deleteOne and
deleteMany() functions. We can see in the deletedCount field for both functions how
many documents they deleted for the respective operation.

MQL: xxxMany ()

Create: insertMany()

Update: updateMany()

Delete: deleteMany()

The Many variants apply to
multiple records, however,
insertMany() takes an Array of
documents.

We have covered insertMany in Create, updateMany in Update, and deleteMany in
Delete.

The main point to flag here is that the manyXXX() variants of the functions apply that
function to many documents. The only difference with the insertMany to these is that it
takes an array of documents rather than applies the functions to the documents
identified by the filter document.

There are many options and behaviors to these functions that are covered in more
depth in their corresponding page in the MongoDB documentation. For instance, if
you encounter an error whilst inserting with insertMany() it will stop on this error (the
first error encountered) rather than continuing.

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For this next part, we will be going through an exercise using the Web Shell again. Go
to the url mws.mongodb.com/?version=latest. Once the page loads, click on the page
to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

CRUD: MQL Exercise

>>> cowCol = db.getCollection("cow")

Test.cow

>>> cowCol.drop()

>>> for(c=0;c<10;c++) {

cowCol.insertOne({ name: "daisy", milk: c})

}

{

acknowledged : true,

insertedIds : ObjectId(5f2aefa8fde88235b959f0b1e),

}

Let’s create the cow collection, dropping it if it’s already there (cowCol.drop()) and
starting fresh.

The for loop inserts 10 documents each with the name field equal to “daisy” and a
varying value for the milk field.

We can use the following code to input some data into our database.

cowCol = db.getCollection("cow")
cowCol.drop()
for(c=0;c<10;c++) {
cowCol.insertOne({ name: "daisy", milk: c})
}

>>> cowCol.findAndModify(({ query: { milk: { $gt: <A> } }, sort: { milk: 1 },

update: { $set: { : true } } }))

{ "_id" : ObjectId("5f4e50da2d4b45b7f11b6d76"), "name" : "daisy", "milk" : 6,

"expected_milk" : 5 }

>> cowCol.find({"sell" : true})

{ "_id" : ObjectId("5f4e50da2d4b45b7f11b6d76"), "name" : "daisy", "milk" : 6,

"expected_milk" : 5, "sell": true }

Using the Web shell window, change <A> to update the first document with the milk field value of
6 as the document we want to update.

Change to the highlighted field name shown in the find() query below.

CRUD: MQL Exercise

In this exercise we will use findAndModify () to update a document.

In the same window, you should replace <A> to update the first document with the
milk field value of 6 as the document we want to update

You should change to the field which represents milk in the document.

The result should be similar (the ObjectIds will differ) will firstly be the original
document as findAndModify needs the option new: true to return the updated
document rather than the original document.

The second find output is the updated document and it has the additional field “sell”
that we used the $set operator in the findAndModify query to update the document to
add the field with a value of true.

cowCol.findAndModify({ query: { milk: { $gt: 5 } }, sort: {
milk: 1 }, update: { $set: { sell: true } } })
cowCol.find({"sell" : true})

See:
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/

https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/

>>> cowCol.updateMany({ milk: { <A>: 5 } }, { : { sell: true } })

{ "acknowledged" : true, "matchedCount" : 4, "modifiedCount" : 3 }

Using the Web shell window again, change <A> to the greater than operator

Change to the operator we will use to set the value of the field in the documents we will
update.

As we already updated one of the eligible documents, only 3 are modified.

CRUD: MQL Exercise

Now we will use updateMany () to update 3 documents

In the same window, you should replace <A> to the greater than operator.

You should change to the operator we will use to set the value of the field in the
documents we will update.

The reason only 3 of the 4 matched documents are modified is because we modified
one in our last slide with the findAndModify() operation.

cowCol.updateMany({ milk: { <A>: 5 } }, { : { sell: true }
})

See:
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/

https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/

Quiz

Quiz

Which of the following are true for MongoDB MQL?

A. All the CRUD functions in MQL take a filter document

B. findAndModify() is an atomic operation

C. findOneAndUpdate() and findOneAndReplace() perform a
read and an atomic write

D. find() is the only CRUD function which returns a cursor

Quiz

Which of the following are true for MongoDB MQL?

A. All the CRUD functions in MQL take a filter document

B. findAndModify() is an atomic operation

C. findOneAndUpdate() and findOneAndReplace() perform a
read and an atomic write

D. find() is the only CRUD function which returns a cursor

INCORRECT: All the CRUD functions in MQL take a filter document - insertOne and
insertMany do not take a filter document
CORRECT: findAndModify() is an atomic operation
CORRECT: findOneAndUpdate() and findOneAndReplace() perform a read and an
atomic write
CORRECT: find() is the only CRUD function which returns a cursor - true, all the
others return a document rather than a cursor

Quiz
Which of the following are true for MongoDB
MQL?

A. All the CRUD functions in MQL take a filter
document

B. findAndModify() is an atomic operation

C. findOneAndUpdate() and
findOneAndReplace() perform a read and an
atomic write

D. find() is the only CRUD function which
returns a cursor

This incorrect. The insertOne
and insertMany functions do
not take a filter document.

INCORRECT: All the CRUD functions in MQL take a filter document - This is incorrect.
The insertOne and insertMany functions do not take a filter document

Quiz
Which of the following are true for MongoDB
MQL?

A. All the CRUD functions in MQL take a filter
document

B. findAndModify() is an atomic operation

C. findOneAndUpdate() and
findOneAndReplace() perform a read and an
atomic write

D. find() is the only CRUD function which
returns a cursor

This is correct. The
findAndModify function is atomic
in terms of the modifications to
the single document it operates
upon.

CORRECT: findAndModify() is an atomic operation. This is correct. The
findAndModify function is atomic in terms of the modifications to the single document
it operates upon.

Quiz
Which of the following are true for MongoDB
MQL?

A. All the CRUD functions in MQL take a filter
document

B. findAndModify() is an atomic operation

C. findOneAndUpdate() and
findOneAndReplace() perform a read and
an atomic write

D. find() is the only CRUD function which
returns a cursor

This is correct. This is how
these functions operate,
firstly the read and then
the atomic write.

CORRECT: findOneAndUpdate() and findOneAndReplace() perform a read and an
atomic write. This is correct. This is how these functions operate, firstly the read and
then the atomic write.

Quiz
Which of the following are true for MongoDB
MQL?

A. All the CRUD functions in MQL take a filter
document

B. findAndModify() is an atomic operation

C. findOneAndUpdate() and
findOneAndReplace() perform a read and
an atomic write

D. find() is the only CRUD function which
returns a cursor

This is correct. All the other
functions return a document
rather than a cursor.

CORRECT: findOneAndUpdate() and findOneAndReplace() perform a read and an
atomic write. This is correct. This is how these functions operate, firstly the read and
then the atomic write.

MQL Delete

MQL Delete

Specifically the db.collection.deleteOne() and
db.collection.deleteMany() methods but also db.collection.drop().

To delete all documents from a collection, pass an empty filter
document {} to the db.collection.deleteMany() method

Additional methods include db.collection.findOneAndDelete() and
db.collection.findAndModify(), both offer a sort option. Deletes are
also possible via the db.collection.bulkWrite() method.

We covered the deleteOne and deleteMany methods, these will be used and sufficient
for the majority of use. However, if you need to delete all of the documents in a
collection then you should look at db.collection.drop(). It has a further advantage that
it removes all of the associated indexes related to that collection as well as the
documents.

MQL Delete

Specifically the db.collection.deleteOne() and
db.collection.deleteMany() methods but also db.collection.drop().

To delete all documents from a collection, pass an empty filter
document {} to the db.collection.deleteMany() method

Additional methods include db.collection.findOneAndDelete() and
db.collection.findAndModify(), both offer a sort option. Deletes are
also possible via the db.collection.bulkWrite() method.

It is possible to delete all the documents by simply passing an empty filter document
{}, however as mentioned it may be more performant to use drop the collection rather
than delete all the documents.

MQL Delete

Specifically the db.collection.deleteOne() and
db.collection.deleteMany() methods but also db.collection.drop().

To delete all documents from a collection, pass an empty filter
document {} to the db.collection.deleteMany() method

Additional methods include db.collection.findOneAndDelete() and
db.collection.findAndModify(), both offer a sort option. Deletes are
also possible via the db.collection.bulkWrite() method.

In cases where you want to delete the documents in a sorted order you can use
findOneAndDelete() or findAndModify().

It is also possible to delete documents using the bulkWrite() method, the function
takes an array of bulkWrite operations where you can control the order of execution if
necessary.

The bulk API allows for mixing operations which returns a single result. An example
might be a daily processing job where a set of insert, update, and deletions should
occur and in that sequence.

Quiz

Quiz

Which of the following are true for MongoDB MQL?

A. A non-empty filter document must be given for the
deleteXXX() methods

B. Deletes cannot be sorted

C. Deletes are atomic operations

Quiz

Which of the following are true for MongoDB MQL?

A. A non-empty filter document must be given for the
deleteXXX() methods

B. Deletes cannot be sorted

C. Deletes are atomic operations

INCORRECT: A non-empty filter document must be given for the deleteXXX()
methods - {} or an empty document will delete all documents in the collection
INCORRECT: Deletes cannot be sorted - It is possible with
db.collection.findOneAndDelete() or with db.collection.findAndModify(), both offer the
ability to sort order of the documents for deletion.
CORRECT: Deletes are atomic operations - All write operations in MongoDB are
atomic, a delete is a write operation.

Quiz

Which of the following are true for MongoDB MQL?

A. A non-empty filter document must be given for the
deleteXXX() methods

B. Deletes cannot be sorted

C. Deletes are atomic operations

This incorrect. Using {} or an
empty document will delete
all documents in the
collection.

INCORRECT: A non-empty filter document must be given for the deleteXXX()
methods - {} or an empty document will delete all documents in the collection

Quiz

Which of the following are true for MongoDB MQL?

A. A non-empty filter document must be given for the
deleteXXX() methods

B. Deletes cannot be sorted

C. Deletes are atomic operations

This incorrect. It is possible with
db.collection.findOneAndDelete()
or with
db.collection.findAndModify(), both
offer the ability to sort order of the
documents for deletion.

INCORRECT: Deletes cannot be sorted - This is incorrect. It is possible with
db.collection.findOneAndDelete() or with db.collection.findAndModify(), both offer the
ability to sort order of the documents for deletion.

Quiz

Which of the following are true for MongoDB MQL?

A. A non-empty filter document must be given for the
deleteXXX() methods

B. Deletes cannot be sorted

C. Deletes are atomic operations

This is correct. All write
operations in MongoDB
are atomic, a delete is a
write operation.

CORRECT: Deletes are atomic operations - This is correct. All write operations in
MongoDB are atomic, a delete is a write operation.

MQL Query
Operators:
Comparison

MongoDB’s Query Language has a wide set of query operators that help locate and
modify data.

MQL Query Operators

Comparison

Logical

Element, Array, Evaluation, Bitwise, Comment, Geospatial, and
Projection

Update and Update Modifiers

In the next section of this lesson, we’ll cover MongoDB’s MQL query operators in
more depth starting firstly with the comparison operators.

MQL’s comparison operators provide functionality to compare different BSON types
and values.

MQL Query
Operators:
Comparison

$lt Exists and less than

$lte: Exists and less than or equal to

$gt: Exists and greater than

$gte: Exists and greater than or equal to

$ne: Does not exist or does but not equal to

$eq: Exists and equal to

$in: Exists and in a set

$nin: Does not exist or not in a set

Looking at MQL’s comparison operators in more detail there is a less than, less than
equal, greater than, greater than equal, not exist, exists and equals, in, and not in as
a subset of the available query operators.

An important aspect of query operators is that you specify an Object with a key that’s
a comparison and a value.

>>> cowCol = db.getCollection("cow")

test.cow

>>> for(c=0;c<10;c++) {

cowCol.insertOne({ name: "daisy", milk: c})

}

{

"acknowledged" : true,

"insertedId" : ObjectId("5f2aefa8fde88235b959f0b1e")

}

>>> cowCol.find({milk:{$gt:6}})

{"_id": ObjectId("5f2aefa8fde88235b959f0b1c"), "name": "daisy", milk: 7}

{"_id": ObjectId("5f2aefa8fde88235b959f0b1d"), "name": "daisy", milk: 8}

{"_id": ObjectId("5f2aefa8fde88235b959f0b1e"), "name": "daisy", milk: 9}

MQL Operators Comparison: Example

In the example, we see the $gt (greater than) operator being used with the key ‘milk’
to return documents whose milk field has a value greater than 6.

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For this next part, we will be going through an exercise using the Web Shell again. Go
to the url mws.mongodb.com/?version=latest. Once the page loads, click on the page
to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

MQL Operator Comparison: Exercise

>>> cowCol = db.getCollection("cow")

test.cow

>>> for(c=0;c<10;c++) {

cowCol.insertOne({ name: "daisy", milk: c})

}

{

acknowledged : true,

insertedIds : ObjectId(5f2aefa8fde88235b959f0b1e),

}

Let’s insert some real data on cows!

Let’s create the cow collection, dropping it if it’s already there (cowCol.drop()) and
starting fresh.

The for loop inserts 10 documents each with the name field equal to “daisy” and a
varying value for the milk field.

We can use the following code to input some data into our database.

cowCol = db.getCollection("cow")
cowCol.drop()
for(c=0;c<10;c++) {
cowCol.insertOne({ name: "daisy", milk: c})
}

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

MQL Operator Comparison: Exercise

Find the docs with the field “milk” greater than 6.

>>> cowCol.find({milk:{$gt:6}})

{ "_id": ObjectId(5f2aefa8fde88235b959f0b1c), "name" : "daisy",

"milk" : 7 }

{ "_id": ObjectId(5f2aefa8fde88235b959f0b1d), "name" : "daisy",

"milk" : 8 }

{ "_id": ObjectId(5f2aefa8fde88235b959f0b1e), "name" : "daisy",

"milk" : 9 }

We can use the db.collection.find() method to explore the data we’ve just added to the
database.

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

MQL Operator Comparison: Exercise

Using updateMany () to update 3 documents. Using the same window, change <a> to the
operator for less than or equal. Change to the value necessary to find all the documents
whose milk is less than or equal to 3.

>>> cowCol.find({milk:{<a>:}})

{ "_id" : ObjectId("5f4e41d12d4b45b7f11b6d67"), "name" : "daisy", "milk" : 0 }

{ "_id" : ObjectId("5f4e41d12d4b45b7f11b6d67"), "name" : "daisy", "milk" : 1 }

{ "_id" : ObjectId("5f4e41d12d4b45b7f11b6d67"), "name" : "daisy", "milk" : 2 }

{ "_id" : ObjectId("5f4e41d12d4b45b7f11b6d67"), "name" : "daisy", "milk" : 3 }

You should replace <A> with the operator for less than or equal.

You should change to the value necessary to find all the documents whose ‘milk’
field is less than or equal to 3.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/
See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/
https://docs.mongodb.com/manual/reference/method/db.collection.find/

MQL Query
Operators Cont.

MQL Query Operators
Comparison

Logical

Element, Array, Evaluation, Bitwise, Comment, Geospatial, and Projection

Update and Update Modifiers

Diverse Search Parameters

We’ll move on to look at the second type of MQL Query Operators, the logical
operators.
The MQL logical operators allow for combinations of other query operators to create
more complex conditions.

MQL Query
Operators: Logical

$or Match either of two or
more values

$not Used with other
operators to negate

$nor Match neither of two or
more values

$and Match both of two or
more values

MQL offers various logical query operators including $or, $not, $nor, as well as $and.
$or matches two or more values, $not can be used with other operators for negation,
$nor can match neither of two or more values, lastly $and can match both of two or
more values.

>>> cowCol.find({$and: [{milk: { $gt: 6 } },

{milk: { $lt: 9 } }] })

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d6e"),

"name": "daisy", "milk": 7 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d6f"),

"name": "daisy", "milk": 8 }

Logical Operator: Example One

>>> cowCol.find({milk:{$not:{$gt:6}}})

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d67"), "name": "daisy", "milk": 0 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d68"), "name": "daisy", "milk": 1 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d69"), "name": "daisy", "milk": 2 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d6a"), "name": "daisy", "milk": 3 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d6b"), "name": "daisy", "milk": 4 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d6c"), "name": "daisy", "milk": 5 }

{"_id": ObjectId("5f4e41d12d4b45b7f11b6d6d"), "name": "daisy", "milk": 6 }

Logical Operator: Example Two

MQL Query Operators
Comparison

Logical

Element, Array, Evaluation, Bitwise, Comment, Geospatial, and Projection

Update and Update Modifiers

Diverse Search Parameters

Thirdly, let’s look at a wide range of operators from element to array operators but
there are also geospatial and projection operators amongst the wide range of
functionality available in MQL.

MQL Query Operators: Various categories

$exists: Match documents that have the
specific field

$type: Selects documents if a field is of the
specified type

$elemMatch: Selects documents if element
in the array field matches all the specified
$elemMatch conditions. Limits the contents
of an <array> field from the query results
to contain only the first element matching
the conditions.

$comment: Adds a comment to a query
predicate

$expr: Allows use of aggregation
expressions within the query language

$geoWithin: Selects geometries within a
bounding GeoJSON geometry, requires
either a 2dsphere or a 2d index

$: Selects and returns first match in array
that meets condition

$slice: Limits the number of elements
projected from an array

Here’s a subset of the specific operators available from the Element, Array,
Evaluation, Bitwise, Comment, Geospatial, and Projection categories. The
documentation site for MongoDB contains the full list along with any caveats for their
usage.

$exists is a useful operator that ensures a specific field exists, $type selects
documents based on whether or not the field is of a specific type, $elemMatch selects
documents if an element in the array field matches it’s specified conditions, $comment
is another useful operator as you can add a comment to your query which is logged in
the profile log.

Looking at the set of expressions start at the top with $expr which provides the ability
to use aggregation expressions within MQL queries. There are several geospatial
operators but we’ll just look at $geoWithin which allows for queries bound by a
GeoJSON geometry. The $ operator returns the first match in an array that satisfies
the condition. Lastly, $slice limits the number of elements that are projected from an
array for the results.

These operators span a wide set of functionality. A useful operator is the $comment
which sends the comment to the profile log when the MQL statement is executed.
This can be helpful when debugging or tracing the performance of your queries.

$expr can built help build more complex aggregation expressions within MQL.

MQL Query
Operators: $expr

$expr Example comparing two fields
in the same collection

In this example, we again use cows
and milk, however we add the
‘expected_milk’ field. This field is
set one above or below the ‘milk’
field, above if ‘milk’ is an odd
number or below if ‘milk’ is even.

>>>cowCol = db.getCollection("cow")

Test.cow

>>> cowCol.drop()

>>> for(c=1;c<10;c++) {

a = 0

if(c%2==0) {

 a = c-1

} else {

 a = c+1

}

cowCol.insertOne({ name: "daisy",

milk: c, expected_milk: a})

}

>>> cowCol.find({ $expr: { $gt: ["$milk"

, "$expected_milk"] } }).count()

Let’s take a deeper look at the $expr operator as it allows for a huge number of
Aggregation Framework operators to be utilized by MQL. Specifically, it allows for two
fields to be compared with the $gt operator.

In the example on the slide, we again use cows and milk, however we add the
‘expected_milk’ field. This field is set one above or below the ‘milk’ field, above if ‘milk’
is an odd number or below if ‘milk’ is even.

cowCol = db.getCollection("cow")
cowCol.drop()
for(c=1;c<10;c++) {

a = 0
if(c%2==0) {

a = c-1
} else {

a = c+1
}
cowCol.insertOne({ name: "daisy", milk: c, expected_milk:

a})
}
cowCol.find({ $expr: { $gt: ["$milk" , "$expected_milk"] } }
).count()

Here’s the full result for our previous example…

>>> cowCol.find({ $expr: { $gt: ["$milk" , "$expected_milk"] } })

{ "_id": ObjectId(5f351f10dcb672556f30f5fa), "name" : "daisy", "milk" : 2,

"expected_milk" : 1 }

{ "_id": ObjectId(5f351f10dcb672556f30f5fc), "name" : "daisy", "milk" : 4,

"expected_milk" : 3 }

{ "_id": ObjectId(5f351f10dcb672556f30f5fe), "name" : "daisy", "milk" : 6,

"expected_milk" : 5 }

{ "_id": ObjectId(5f351f10dcb672556f30f600), "name" : "daisy", "milk" : 8,

"expected_milk" : 7 }

Here’s the full result of our previous example using $expr with another operator ($gt)
to compare two fields within the same document. Specifically, it returns all the
documents where the field milk is greater than the field expected_milk.
You can try this yourself in the Web Shell.

MQL Query Operators
Comparison

Logical

Element, Array, Evaluation, Bitwise, Comment, Geospatial, and Projection

Update and Update Modifiers

The final set of query operators will explore in this lesson are the update and update
modifiers. These are available for any of the update operations in MQL.

MQL Query Operators: Various Categories

$inc: Increments the specific field by the
specified amount

$currentDate: Sets the field to the current
date, either as a Date or as a Timestamp

$set: Sets the value of the field to the
specified value

$setOnInsert: Similar to $set but only
performs this when there is an insert of a
new document, it won’t update existing
documents if present

$rename: Changes a field’s name to the
specified name

$max: Only updates the field if the value
specified is greater than the existing value

$addToSet: Selects and returns first match
in array that meets condition

$push: Adds an item to an array

$each: Modifies the $push and $addToSet
operators to append multiple items for
array updates

In this section we’ll look at a selection of the available MQL query operators for
update and update modifiers. These operators are available for use in update
operations, e.g. in db.collection.update() and db.collection.findAndModify().

Firstly, $inc which provides a useful ability to increment fields by a specified amount.
$currentData can be used to set a field to the current data. $set is a very useful
operator which sets the field to the particular value. $setOnInsert is similar to $set but
only performs the ‘set’ part when there is an insert of a new document, if there is an
existing document it will not update it.

https://docs.mongodb.com/manual/reference/method/db.collection.update/#db.collection.update
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/#db.collection.findAndModify

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For this next part, we will be going through an exercise using the Web Shell again. Go
to the url mws.mongodb.com/?version=latest. Once the page loads, click on the page
to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Query Operators: Exercise

>>> for(c=0;c<10;c++) {cowCol.insertOne({ name: "daisy", milk: c})

}

{

acknowledged : true,

insertedIds : ObjectId(5f2aefa8fde88235b959f0b1e),

}

>>> cowCol = db.getCollection("cow")

Test.cow

>>> cowCol.drop()

Let’s use the MongoDB Web Shell to try out this example.

Let’s create the cow collection, dropping it if it’s already there (cowCol.drop()) and
starting fresh.

The for loop inserts 10 documents each with the name field equal to “daisy” and a
varying value for the milk field.

We can use the following code to input some data into our database.

cowCol = db.getCollection("cow")
cowCol.drop()
for(c=0;c<10;c++) {cowCol.insertOne({ name: "daisy", milk: c})
}
See: https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

Find the docs
where milk is
greater than 8

>>> cowCol.find({milk:{$gt:8}})

{ "_id":

ObjectId(5f2aefa8fde88235b959f0b1e),

"name" : "daisy", "milk" : 9 }

>>> cowCol.find({milk:{$gt:8}})

{ "_id":

ObjectId(5f2aefa8fde88235b959f0b1e),

"name" : "rose", "milk" : 9 }

>>> cowCol.update({ milk: 9 }, {

$set: { "name" : "rose" },

$setOnInsert: { milk: 10 }}, {

upsert: true });

Let’s query the data we just inputted to find the cow with the highest milk value
cowCol.find({milk:{$gt:8}})

Let’s update this cow’s record to change the cow’s name to ‘rose’.
cowCol.update({ milk: 9 }, { $set: { "name" : "rose" },
$setOnInsert: { milk: 10 }}, { upsert: true });

Let’s do the same search again to see the update to the document.
cowCol.find({milk:{$gt:8}})

See: https://docs.mongodb.com/manual/reference/method/db.collection.update

https://docs.mongodb.com/manual/reference/method/db.collection.update

Using updateMany() to
update 3 documents

>>> cowCol.find({milk:{<a>:}})

{ "_id" :

ObjectId("5f4e41d12d4b45b7f11b6d67"),

"name" : "daisy", "milk" : 0 }

{ "_id" :

ObjectId("5f4e41d12d4b45b7f11b6d68"),

"name" : "daisy", "milk" : 1 }

{ "_id" :

ObjectId("5f4e41d12d4b45b7f11b6d69"),

"name" : "daisy", "milk" : 2 }

{ "_id" :

ObjectId("5f4e41d12d4b45b7f11b6d6a"),

"name" : "daisy", "milk" : 3 }

Using the same window, change <a> to the
operator for less than or equal to.

Change to the value necessary to find all
the documents whose milk is less than or
equal to 3.

In this exercise and in the same window, you should replace <A> with the operator for
less than or equal.

You should change to the value necessary to find all the documents whose ‘milk’
field is less than or equal to 3.

See: https://docs.mongodb.com/manual/reference/method/db.collection.update

https://docs.mongodb.com/manual/reference/method/db.collection.update

Quiz

Quiz

Which of the following are true for MongoDB MQL?

A. $in and $nin both use sets to determine membership or
not

B. $gt and $gte will both check of documents with fields
exceeding or greater than the specified criteria

C. $eq and $ne check the value is equal or not equal to the
specified criteria

Quiz

Which of the following are true for MongoDB MQL?

A. $in and $nin both use sets to determine membership or
not

B. $gt and $gte will both check of documents with fields
exceeding or greater than the specified criteria

C. $eq and $ne check the value is equal or not equal to the
specified criteria

CORRECT: $in and $nin both use sets to determine membership or not
CORRECT: $gt and $gte will both check of documents with fields exceeding or
greater than the specified criteria
INCORRECT: $eq and $ne check the value is equal or not equal to the specified
criteria - Both $eq and $ne further check for the exists or not of the specified criteria

Quiz

Which of the following are true for MongoDB
MQL?

A. $in and $nin both use sets to determine
membership or not

B. $gt and $gte will both check of
documents with fields exceeding or
greater than the specified criteria

C. $eq and $ne check the value is equal or
not equal to the specified criteria

This is correct. Both the
$in and the $nin functions
in MQL use a set to
determine the
membership or not for a
particular piece of data.

CORRECT: $in and $nin both use sets to determine membership or not

Quiz

Which of the following are true for MongoDB
MQL?

A. $in and $nin both use sets to determine
membership or not

B. $gt and $gte will both check of
documents with fields exceeding or
greater than the specified criteria

C. $eq and $ne check the value is equal or
not equal to the specified criteria

This is correct. The logic
checks in both the $gt
and the $gte will verify
whether fields exceed
(are greater than) the
specified criteria.

CORRECT: $gt and $gte will both check of documents with fields exceeding or
greater than the specified criteria - This is correct. The logic checks in both the $gt
and the $gte will verify whether fields exceed (are greater than) the specified criteria.

Quiz

Which of the following are true for MongoDB
MQL?

A. $in and $nin both use sets to determine
membership or not

B. $gt and $gte will both check of
documents with fields exceeding or
greater than the specified criteria

C. $eq and $ne check the value is equal or
not equal to the specified criteria

This incorrect. Both $eq
and $ne further check for
the exists or not of the
specified criteria.

INCORRECT: $eq and $ne check the value is equal or not equal to the specified
criteria - This is incorrect. Both $eq and $ne further check for the exists or not of the
specified criteria

Quiz

Which of the following are true for MongoDB MQL?

A. $and works with multiple (more than two) operators.

B. $and works with multiple (more than two) fields.

C. $or can be nested.

D. $set will not create new fields when you specify multiple
field-value pairs.

Quiz

Which of the following are true for MongoDB MQL?

A. $and works with multiple (more than two)
operators.

B. $and works with multiple (more than two)
fields.

C. $or can be nested.

D. $set will not create new fields when you
specify multiple field-value.

This is correct. The $and
operator allows you to
use two or more
operators together.

CORRECT: $and works with multiple (more than two) operators - This is correct. The
$and operator allows you to use two or more operators together.

Quiz

Which of the following are true for MongoDB MQL?

A. $and works with multiple (more than two)
operators.

B. $and works with multiple (more than two)
fields.

C. $or can be nested.

D. $set will not create new fields when you
specify multiple field-value pairs.

This is correct. The $and
operator allows you to
work with multiple fields
in a MQL query.

CORRECT: $and works with multiple (more than two) fields - This is correct. The $and
operator allows you to work with multiple fields in a MQL query.

Quiz

Which of the following are true for MongoDB MQL?

A. $and works with multiple (more than two)
operators.

B. $and works with multiple (more than two)
fields.

C. $or can be nested.

D. $set will not create new fields when you
specify multiple field-value pairs.

This is correct. It can be
nested to provide more
complex logical
conditions.

CORRECT: $or can be nested - This is correct. It can be nested to provide more
complex logical conditions

Quiz

Which of the following are true for MongoDB MQL?

A. $and works with multiple (more than two)
operators.

B. $and works with multiple (more than two)
fields.

C. $or can be nested.

D. $set will not create new fields when you
specify multiple field-value pairs.

This incorrect. $set will
create new fields in single
or multiple field-value
pairs if they do not
already exist.

INCORRECT: $set will not create new fields when you specify multiple field-value
pairs - This is incorrect. $set will create new fields in single or multiple field-value pairs
if they do not already exist

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

