
MongoDB Architecture

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available
here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1sJw8-ETxnHPhTrZXSM8Kcudx2c9Qm5e886lmYuk2pvs/edit?usp=sharing

Querying

Architecture: Key Components to Cover

Database
server

Replication Sharding

We’ll cover MongoDB’s architecture by firstly giving a broad overview of the various
components used in processing a typical query, secondly we’ll focus a little more into
the database server and consider aspects which are important for a high performance
database. In terms of the MongoDB database server, we’ll discover how many lines of
code it takes to create and test it.

Thirdly, we’ll move to the area of Replication in MongoDB. We’ll answer what it is for
and what it is not designed for. We’ll explore the various roles in a replica set before
moving to the oplog which is the mechanism that powers replication in MongoDB.

Fourthly and finally, we’ll introduce sharding in MongoDB and provide an overview of
the various components in a sharded cluster.

How is a Query Processed?

Application

Query Language

Data model

WiredTiger
storage engine

Data model

Query Language

Application

For the next few slides, we’ll examine how a query is processed from an application
by MongoDB to help illustrate a number of the major components in the database.

Firstly, the application makes the request to MongoDB, it parses this (which may
involve some authentication and authorization checking but we’ll leave those out for
simplicity in this walkthrough) to the query layer.

The query is passed to the query analyzer, it analyzes the shape of
the query, selects the best index (if any) to fit the query, and then
caches the query shape and which index best fits the query.

This information is added to the request and sent to the next layer
for further processing.

Query Layer

The request is passed to the query layer, the first processing occurs with the query
analyser. It determines the shape of the query and then determines what index, if any,
fit the query. If a index does fit, it’s cached.

Indexes are designed to track a small portion of a collection’s data in a format that is
quick and easy to traverse.
Their goal is to speed up queries and updates. We cover indexing and indexes in
more depth in a later lesson.

The shape and index information are then added to the request before passing it
down to the next layer for processing.

How is a Query Processed?

Application

Query Language

Data model

WiredTiger
storage engine

Data model

Query Language

Application

The query language request is passed down to the next layer, the data model. At this
point, the request consists of the query, the query shape, and any applicable indexes
but it does not yet have the details on which documents to retrieve. The data model
layer will add these details to the request.

The request from the query layer is translated in this layer into a set of
documents that need to be retrieved.

This layer has no knowledge of how the documents are physically stored
but it does understand indexes.

It combined the set of documents to be retrieved with the existing request
and then sends it to the next layer, the storage layer for processing.

Data Model Layer

How is a Query Processed?

Application

Query Language

Data model

WiredTiger
storage engine

Data model

Query Language

Application

The request now has information from the query layer (index shape, index if any) and
the data model layer (the specific documents to be retrieved). It still doesn’t know how
the documents are stored or how to retrieve them, these tasks are done in the storage
layer.

In MongoDB, the storage layer interacts with the WiredTiger storage engine.
WiredTiger is responsible for storing the information. It is a modern storage engine
designed to use multi-core computer architecture. It provides for document-level
concurrency control for write operations, meaning that locking occurs at a document
level so it is possible to write to several documents in the same collection at any point.
It also provides checkpointing where all the data is written to disk every 60 seconds. It
also supports compression for all collections and indexes, which means the database
requires less storage but requires more CPU to uncompress the data when it is
required.

The request from the data model layer translates the request to the
underlying format (WiredTiger) with the specific records to load from disk,
if they are not already in memory.

The results of this are then passed back up through each successive layer
until it is returned to the application which made the request.

Storage Layer

The request from the data layer is translated by WiredTiger to it’s underlying format to
request the specific records from the disk if they are not already present in memory.

The request is then passed back up through each successive layer until it is return to
the application which made the request of the database.

How is a Query Processed?

Application

Query Language

Data model

WiredTiger
storage engine

Data model

Query Language

Application

The complete documents are now passed back up from the storage layer to the data
model layer.

How is a Query Processed?

Application

Query Language

Data model

WiredTiger
storage engine

Data model

Query Language

Application

From the data model layer the data is passed back up the query layer.

How is a Query Processed?

Application

Query Language

Data model

WiredTiger
storage engine

Data model

Query Language

Application

Finally the data is wrapped and passed from the MongoDB database back to the
MongoDB Driver and from there to the Application.

Quiz

Quiz

Which of the following layers does a request from an application get
passed through and returned by to the application?

A. Data model

B. Query

C. Compression

D. Storage

Quiz

Which of the following layers does a request from an application get
passed through and returned by to the application?

A. Data model

B. Query

C. Compression

D. Storage

CORRECT: Data model - This is where the request gets the set of documents added
which it will request from the storage layer
CORRECT: Query - This is the first layer a request gets processed by and it adds the
query shape and an index if applicable.
INCORRECT: Compression - There is no compression layer, compression is handled
in the storage layer or in the communication between the application or between
nodes/instances of MongoDB.
CORRECT: Storage - This is the final layer that a request gets processed by and
deals with getting the specific documents from memory or from the disk and passing
the response back to the layer above it.

Quiz

Which of the following layers does a request from an application get
passed through and returned by to the application?

A. Data model

B. Query

C. Compression

D. Storage

This is correct. The data
model layer is where the
request receives the set
of documents that it will
request from the storage
layer.

CORRECT: Data model - This is correct. The data model layer is where the request
receives the set of documents that it will request from the storage layer.

Quiz

Which of the following layers does a request from an application get
passed through and returned by to the application?

A. Data model

B. Query

C. Compression

D. Storage

This is correct. This is the
first layer a request gets
processed by and it adds
the query shape and an
index if applicable.

CORRECT: Query - This is correct. This is the first layer a request gets processed by
and it adds the query shape and an index if applicable.

Quiz

Which of the following layers does a request from an application get
passed through and returned by to the application?

A. Data model

B. Query

C. Compression

D. Storage

This incorrect. There is no
compression layer,
compression is handled in
the storage layer or in the
communication between
the application or
between nodes/instances
of MongoDB.

INCORRECT: Compression - This is incorrect. There is no compression layer,
compression is handled in the storage layer or in the communication between the
application or between nodes/instances of MongoDB.

Quiz

Which of the following layers does a request from an application get
passed through and returned by to the application?

A. Data model

B. Query

C. Compression

D. Storage

This is correct. This is the
final layer that a request
gets processed by and
deals with getting the
specific documents from
memory or from the disk
and passing the response
back to the layer above it.

CORRECT: Storage - This is correct. This is the final layer that a request gets
processed by and deals with getting the specific documents from memory or from the
disk and passing the response back to the layer above it.

Implementation

Important Aspects for a Database
● Correctness

● Latency

● Throughput

● Scalability

● Usability

In terms of the implementation aspects of the database, we’ll cover a number of
implementation details and information related to the implementation in terms of
platforms the application is built for as well as examples of some external libraries
used by MongoDB.

Before moving to the specific implementation aspects, it is worth discussing five
aspects that a high performance database implementation should satisfy.

Important Aspects of a Database
● Correctness (major)

● Latency

● Throughput

● Scalability

● Usability

Correctness means that for a given database operation that the data is changed only
in allowable ways.

This means that any programming errors cannot change the database in
unforeseeable ways.

Important Aspects of a Database
● Correctness (major)

● Latency

● Throughput

● Scalability

● Usability

Latency is how long it takes to service the request from the application by the
database. This is important as many applications and services have indicators and
measures that they are designed to meet in terms of how long the query can take at a
maximum.

Important Aspects of a Database
● Correctness (major)

● Latency

● Throughput

● Scalability

● Usability

Throughput is concerned with the number of operations that a database can do at any
given moment in time. MongoDB is a high performance database so ensuring that a
high number of operations can occur concurrently is a key factor in the performance
of the database.

Important Aspects of a Database
● Correctness (major)

● Latency

● Throughput

● Scalability

● Usability

Scalability in terms of a database is concerned with how the database manages when
more and more data is added to it. At a certain point the limits of hardware come into
play and other machines are required. In the case of MongoDB, sharding helps
overcome this aspect of scalability.

Important Aspects of a Database
● Correctness (major)

● Latency

● Throughput

● Scalability

● Usability

Usability in terms of a database is related to the difficulty in interacting and
programming your applications. In MongoDB, MQL helps provide a simple syntax for
queries and greatly adds in the usability of the database by making it easier to query
and retrieve data.

MongoDB Server Code Base
● Open source and hosted on GitHub.

● ~900,000 lines of C++17 code.

● ~1.4M lines if all unit-tests are counted.

● ~400,000 lines of JavaScript code for administrative utilities

and tests.

● Runs under continuous integration after (almost) every

commit.

● Predictable latency and throughput with C++.

The MongoDB server code base is open source and hosted on GitHub. It is
approximately 900k of actual production C++17 code and with unit test it’s in the
region of 1.4 million lines of code.

In addition we have a lot of integration tests written in JavaScript, which are about
~400,000 lines of additional code, which gets executed by a continuous integration
process after almost every commit.

As a database server, excluding correctness, the most important requirement is that
MongoDB has predictable latency and throughput. This is very difficult to achieve with
garbage-collected or interpreted languages and C++ gives direct access to memory
allocations and deallocations.

MongoDB Build, Platforms, and Libraries
● Uses SCons as a build system.

● Multi-platform compilation for RHEL7.2, Ubuntu, Windows,

OSX, ARM, PPC64LE, IBM s360x and others.

● Uses external libraries, such as Boost 1.70.0, ASIO, MozJS

and Abseil.

The server and its C++ unit-tests are built using SCons, which is a Python-based
build system.

The server is built and tested on more than 12 different platforms, which include the
most popular such as Linux and Windows, but also some pretty exotic ones, such as
ARM, PowerPC and the IBM s360 mainframes.

It can be built both with little-endian or big-endian order in mind and also we take
advantage of the different memory consistency models that these platforms offer.

In addition, the server uses some of the most popular C++ open source libraries, such
as Boost, ASIO, MozJS (which is the JavaScript engine of Firefox) and the Google
Abseil library, which offers a fully standard-compatible hash map, which is more
performant than the one which comes with STL.

Quiz

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

CORRECT: Correctness - The correctness of data is a key criteria of any data in a
database
CORRECT: Latency - Latency and specifically how long between the request for the
data and when it is returned is another key criteria for any database.
CORRECT: Throughput - Throughput and specifically how many operations are
processed by the database at any moment in time are another critical criteria for a
database
CORRECT: Scalability - The scalability of a database whilst an important criteria, it is
not critical.
CORRECT: Usability - The ease of use of the database is important but again not a
critical criteria.

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

This is correct. The
correctness of data is a
key criteria of any data in
a database.

CORRECT: Correctness - The correctness of data is a key criteria of any data in a
database

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

This is correct. Latency
and specifically how long
between the request for
the data and when it is
returned is another key
criteria for any database.

CORRECT: Latency - Latency and specifically how long between the request for the
data and when it is returned is another key criteria for any database.

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

This is correct.
Throughput and
specifically how many
operations are processed
by the database at any
moment in time are
another critical criteria
for a database.

CORRECT: Throughput - This is correct. Throughput and specifically how many
operations are processed by the database at any moment in time are another critical
criteria for a database

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

This is correct. The
scalability of a database
is an important criteria,
though good to mention
it is not critical.

CORRECT: Scalability - This is correct. The scalability of a database is an important
criteria, though good to mention it is not critical.

Quiz

Which of the following criteria are required for a database?

A. Correctness

B. Latency

C. Throughput

D. Scalability

E. Usability

This correct. The ease of
use of the database is
important but again not a
critical criteria.

CORRECT: Usability - This is correct. The ease of use of the database is important
but again not a critical criteria.

Replication

MongoDB uses
replica sets for
redundancy and high
availability.

Replication is the mechanism of how data is distributed in MongoDB, in the next
slides we’ll dive deeper into this topic. MongoDB uses the concept of replicas and
replica sets. These are used for redundancy and for high availability. They are not
designed to help scale your data, this is a common misconception. Sharding is the
mechanism for scaling data in MongoDB and we’ll look at it shortly.

We’ll look next at the technical aspects of a replica set and it’s features to get a better
understanding of what it provides in terms of functionality.

Replica Set — 2 to 50 copies, 7 voting

Self-healing
● Typical failover in 5 seconds or less
● Retryable reads and writes to catch

temporary exceptions

Data center aware, tunable durability
and consistency

Addresses availability considerations:
● High Availability
● Disaster Recovery
● Maintenance

Workload isolation: operational &
analytics

Replica Sets
Application

Driver

Primary

Secondary

Secondary

Replication

In this lesson, we will start by looking at the main features and configuration aspects
of MongoDB’s replica sets.

The highlighted diagram shows the typical configuration of how an application uses a
driver to connect to a MongoDB replica set. The replication occurs in a replica set with
the primary replicating the operations to the secondary members.

We’ll look at members and roles, a little later in this lesson.

Replica Set — 2 to 50 copies, 7 voting

Self-healing
● Typical failover in 5 seconds or less
● Retryable reads and writes to catch

temporary exceptions

Data center aware, tunable durability
and consistency

Addresses availability considerations:
● High Availability
● Disaster Recovery
● Maintenance

Workload isolation: operational &
analytics

Replica Sets
Application

Driver

Primary

Secondary

Secondary

Replication

MongoDB replica sets can have between 2 and 50 instances or copies of the data,
however only a maximum of 7 of these can participate in election to determine which
is the primary node (there is only one at any given point in time).

Replica Set — 2 to 50 copies, 7 voting

Self-healing
● Typical failover in 5 seconds or less
● Retryable reads and writes to catch

temporary exceptions

Data center aware, tunable durability
and consistency

Addresses availability considerations:
● High Availability
● Disaster Recovery
● Maintenance

Workload isolation: operational &
analytics

Replica Sets
Application

Driver

Primary

Secondary

Secondary

Replication

The design of replica sets facilitates rapid failure and recovery, they can be ‘tagged’ to
indicate which data center or geographical location they are situated in. These can be
used to read or write to only a specific set / sub set of these members.

Failover normally occurs in 5 seconds or less, writes and reads are automatically
retried once to catch this kind of temporary exception. This means for the vast
majority of scenarios when a failover occurs that they aren’t noticed and don’t impact
the application.

Replica Set — 2 to 50 copies, 7 voting

Self-healing
● Typical failover in 5 seconds or less
● Retryable reads and writes to catch

temporary exceptions

Data center aware, tunable durability
and consistency

Addresses availability considerations:
● High Availability
● Disaster Recovery
● Maintenance

Workload isolation: operational &
analytics

Replica Sets
Application

Driver

Primary

Secondary

Secondary

Replication

Replica sets can be ‘tagged’ to allow the individual members to become data center
aware. They can be used to support tunable durability and consistency of read or of
writes by using these tags along with read concerns and/or write concerns within an
application.

Replica Set — 2 to 50 copies, 7 voting

Self-healing
● Typical failover in 5 seconds or less
● Retryable reads and writes to catch

temporary exceptions

Data center aware, tunable durability
and consistency

Addresses availability considerations:
● High Availability
● Disaster Recovery
● Maintenance

Workload isolation: operational &
analytics

Replica Sets
Application

Driver

Primary

Secondary

Secondary

Replication

A replica set’s purpose is to address three main factors:
High Availability – Ensure application availability during many types of failures
Disaster Recovery – Address the Recovery Time Objective (RTO) and Recovery Point
Objective (RPO) goals for business continuity
Maintenance – Perform upgrades and other maintenance operations with no
application downtime

Replica Set — 2 to 50 copies, 7 voting

Self-healing
● Typical failover in 5 seconds or less
● Retryable reads and writes to catch

temporary exceptions

Data center aware, tunable durability
and consistency

Addresses availability considerations:
● High Availability
● Disaster Recovery
● Maintenance

Workload isolation: operational &
analytics

Replica Sets
Application

Driver

Primary

Secondary

Secondary

Replication

Secondaries can be used for a variety of applications – failover, rolling upgrades, data
locality and privacy, and workload isolation

Tags can be used to facilitate the isolation of workloads such as analytics.

Replica Set Roles

Primary Node

Secondary Node Arbiter

Let’s look at the various roles in a replica set to help understand the architecture of
replication a little better.

There are three roles or membership types in a replica set, Primary, Secondary, and
Arbiter. We’ll cover these in following slides.

Replica Set Roles

Primary Node

Secondary Node Arbiter

Replica sets have one
primary node. It receives
the write operations
from applications, applies
them and logs them.

Replica Set: Primary

Let’s look at the first role in a replica set, that of the primary member.

The primary node received all the write operations from applications, it applies them
to its data and logs them to an operations log.

If something occurs to this node, an election is triggered. MongoDB uses a Raft like
election protocol with additional logic to deal with various additional aspects like roles
(primary/secondary) that don’t exist in the current Raft implementation. Several of
these have been committed back to the Raft OSS project.

Replica Set Roles

Primary Node

Arbiter

A secondary node receives
the operation log from the
primary and applies the
operations to its own data.

Replica Set: Secondary

Secondary Node

Let’s look at the next role in a replica set, that of a secondary member.

All other data bearing nodes in a replica set are secondaries. Each of these receives
the operation log from the primary (or sometimes from another secondary in a
chained fashion) and it then applies these operations against its own data.

In the case of writing data, you can select various levels of consistency. If you select a
write concern of majority, this will mean that your write operation won’t be successfully
acknowledged back to your driver/application until the write has been confirmed as
been written to the majority of the nodes in the replica set.

Read and write concerns as well as read preferences allow you as a developer to
tune your application to the data durability you require, you can trade speed off
against consistency and vice versa. This is a complex area and if you want to dive
deeper you can checkout the deeper material available on the MongoDB University or
the official documentation.

Replica Set Roles

Primary Node

An arbiter node only
participates in voting,
it doesn’t maintain or
hold data. It’s purpose
is simply to vote.

Replica Set: Arbiter

Secondary Node Arbiter

Let’s look at the last role in a replica set, that of an arbiter member.

Arbiters are voting only members, they’re a historically artefact from MongoDB’s
earlier replication protocol. Ideally, they should not be used in your replica set.

Quiz

Quiz

Which of the following node types are data-bearing in
MongoDB replication?

A. Arbiter

B. Secondary

C. Primary

Quiz

Which of the following node types are data-bearing in
MongoDB replication?

A. Arbiter

B. Secondary

C. Primary

INCORRECT: Arbiter - An arbiter is a voting only member of a replica set, it does not
store any data.
CORRECT: Secondary - A secondary holds data and can vote
CORRECT: Primary - A primary holds data and takes the write operations from an
application, it then replicates these operations to the other secondary nodes who
themselves apply the operations to their data.

Quiz

Which of the following node types are data-bearing in
MongoDB replication?

A. Arbiter

B. Secondary

C. Primary

This incorrect. An arbiter
is a voting only member
of a replica set, it does
not store any data.

INCORRECT: Arbiter - An arbiter is a voting only member of a replica set, it does not
store any data.

Quiz

Which of the following node types are data-bearing in
MongoDB replication?

A. Arbiter

B. Secondary

C. Primary

This is correct. A
secondary hold data and
can vote.

CORRECT: Secondary - This is correct. A secondary holds data and can vote.

Quiz

Which of the following node types are data-bearing in
MongoDB replication?

A. Arbiter

B. Secondary

C. Primary

This is correct. A primary holds
data and takes the write
operations from an application,
it then replicates these
operations to the other
secondary nodes who
themselves apply the
operations to their data.

CORRECT: Primary - This is correct. A primary holds data and takes the write
operations from an application, it then replicates these operations to the other
secondary nodes who themselves apply the operations to their data.

Replication: Use
Cases

Replication: Use Cases
Use replication for:

● High Availability
● Read Reduce Latency

Do not use replication for:

● Scaling (use Sharding)
● Disaster Recovery (use Backups and multiple geographically separate DCs)

There are two use cases for replication, high availability and to reduce read latency.

High availability is focused on ensuring that despite individual node failure that the
replica set itself is available to service any client requests made to the database.

Reducing read latency applies to situations where members within the replica set
could be across data centers and potentially also geographically separate. If a
member is closer in terms of distance on the network and more specific in terms of
the latency from it to the client, it could be used to service the request faster at the
cost of potentially being slightly less fresh data.

Replication is not for scaling rather sharding should be used for scaling.
It is also not for disaster recovery, you should use backups and spread your
deployment across multiple geographically separate data centers.

High Availability (HA)
High availability (HA) refers to when data is still available even after
an equipment failure (e.g. server, network switch) and/or a data center
failure.

Replication in MongoDB uses automatic failover to provide HA. This
means, when a failure occurs the remaining servers have an election.

HA in MongoDB is not considered 'Active Active' but rather fast
failover.

High availability ensures that your client can maintain access to the data despite
various types of failure from equipment to hosting such as a failure at the datacenter.

Replication is the mechanism used by MongoDB to provide automatic failover. If a
failure occurs where the Primary node is lost then the other remaining members have
an election to determine who will be the next Primary node.

Failover in MongoDB does not involve hot swapping or changing to another standby
Primary rather one of the secondary members is quickly elected, hence it is a fast
failover rather than active active type of high availability.

In terms of MongoDB election specifics, there are multiple data bearing members in a
replica set and if the primary fails, then the remaining servers hold an election to elect
a new primary. It isn’t immediate and there is a short period in terms of seconds which
this is occurring where the replica set isn’t available for writing, it may be available for
reading depending on the read concerns (we’ll cover these later in the lesson).

High Availability (HA)

db.coll
ection.

findOne
()

Application

Here’s an example of how HA works with a typical 3 member replica set. The client
makes a findOne() request.

High Availability (HA)

db.coll
ection.

findOne
()

Application

However, the Primary it was attempting to read from had a critical failure and can no
longer service this operation.

High Availability (HA)

db.collection.findOne()

Application

MongoDB automatically makes one retry attempt by default for failed read or write
operations.
In the second attempt here, it tries to read again but from the new Primary which will
be able to service the read and the document will be returned.

Application

High Availability (HA)

db.collection.findOne()

+40

= Voting node

In order to support the demands of global applications, replica sets can have up to 50
nodes.

These can be located in many data centers to add additional resilience through their
geographical disbursement.

Using several different geographical locations allows for nodes to be placed closer to
their users and facilitate additional features such as read preferences to ensure those
clients target the closest node to their location to provide faster responses in terms of
reduced network latency.

An important note is that the maximum number of voting members in a replica set is
7.

This has implicits to where these voting members should be located. For instance,
these should be spread in such a fashion that a failure of a single data center will still
allow for sufficient members (a majority of 4 if 7 voting members) are present in other
locations to allow for elections to proceed without requiring manual intervention.

Write Concern: Example

Application

db.collection.insert({x:3},
{writeConcern: {x: 'majority'}})

ok!!!!

{x:1}
{x:2}
{x:3}

{x:1}
{x:2}
{x:3}

{x:1}
{x:2}

This example highlights how the write concern ‘majority’ will ensure that the document
will be written to two of the three data bearing nodes in the replica set before the
insert function returns successfully.

It’s important to note the acknowledgement of the write doesn’t mean that the data or
document won’t be then replicated to the other member in this example. It means that
in the context of only this write concern and insert that the document must only get
acknowledgement of having successfully being written to two of the three data
bearing nodes before returning. The third node will be updated from the primary as
part of the normal replication of the oplog to it as a secondary.

Read Concern: Example

Application

db.collection.find().readConcern
('majority') {x: 1}

{x:1}

{x:1}
{x:2}

{x:1}

A read concern is a similar concept to a write concern, however it is focused on read
and ensuring that the data returned is indeed what is present on the nodes, in this
example on the majority of the nodes.

Read Preference: Example

Application

{x:1}

{x:1}
{x:2}

{x:1}

db.
col

lec
tio

n.f
ind

().
rea

dCo
nce

rn

('m
ajo

rit
y')

 {x
: 1

}

Read preference differs from Read concerns, it is focused on the routing of read
request to members in a replica set. Read preferences allow for nodes other than the
primary to be selected when a client makes a read request. The example here selects
the member (whether secondary or primary) that is closest to the client in terms of
network latency.

The main reasons to use read preferences is to support one of the following:
● Running systems operations that do not affect the front-end application.
● Providing local reads for geographically distributed applications.
● Maintaining availability during a failover.

Quiz

Quiz

Which of the following is true for replication in MongoDB?

A. Allows for 50 voting members

B. Allows for reads to select the nearest nodes to the
client application

C. Does not automatically retry a read or a write in the event of
a failure

D. Has a short window during a failover where a new primary is
elected

Quiz

Which of the following is true for replication in MongoDB?

A. Allows for 50 voting members

B. Allows for reads to select the nearest nodes to the
client application

C. Does not automatically retry a read or a write in the event of
a failure

D. Has a short window during a failover where a new primary is
elected

INCORRECT: Allows for 50 voting members - MongoDB allows for replica sets with 50
members, however only 7 of these may vote.
CORRECT: Allows for reads to select the nearest nodes to the client application -
Drivers can use the read preference of nearest to ensure they read their data from the
nearest nodes to them.
INCORRECT: Does not automatically retry a read or a write in the event of a failure -
MongoDB retries reads and writes once in the event of a failure.
CORRECT: Has a short window during a failover where a new primary is elected -
There is a short time, typically less than 5 seconds during this window the new
primary is elected.

Quiz

Which of the following is true for replication in
MongoDB?

A. Allows for 50 voting members

B. Allows for reads to select the nearest
nodes to the client application

C. Does not automatically retry a read or a
write in the event of a failure

D. Has a short window during a failover
where a new primary is elected

This incorrect. MongoDB
allows for replica sets
with 50 members,
however only 7 of these
may vote.

INCORRECT: Allows for 50 voting members - MongoDB allows for replica sets with 50
members, however only 7 of these may vote.

Quiz

Which of the following is true for replication in
MongoDB?

A. Allows for 50 voting members

B. Allows for reads to select the nearest
nodes to the client application

C. Does not automatically retry a read or a
write in the event of a failure

D. Has a short window during a failover
where a new primary is elected

This is correct. Drivers can
use the read preference
of nearest to ensure they
read their data from the
nearest nodes to them.

CORRECT: Allows for reads to select the nearest nodes to the client application - This
is correct. Drivers can use the read preference of nearest to ensure they read their
data from the nearest nodes to them.

Quiz

Which of the following is true for replication in
MongoDB?

A. Allows for 50 voting members

B. Allows for reads to select the nearest nodes
to the client application

C. Does not automatically retry a read or a
write in the event of a failure

D. Has a short window during a failover where
a new primary is elected

This incorrect.
MongoDB retries reads
and writes once in the
event of a failure.

INCORRECT: Does not automatically retry a read or a write in the event of a failure -
This is incorrect. MongoDB retries reads and writes once in the event of a failure.

Quiz

Which of the following is true for replication in
MongoDB?

A. Allows for 50 voting members

B. Allows for reads to select the nearest
nodes to the client application

C. Does not automatically retry a read or a
write in the event of a failure

D. Has a short window during a failover
where a new primary is elected

This is correct. There is a
short time, typically less
than 5 seconds during
this window the new
primary is elected.

CORRECT: Has a short window during a failover where a new primary is elected -
This is correct. There is a short time, typically less than 5 seconds during this window
the new primary is elected.

Oplog

What is the Oplog?

Operations log

Capped collection

Stores all operations that modify the data.

The primary records it’s operations and the secondaries
replicate the oplog in an asynchronous fashion.

Each replica set member holds a copy of the log, in
local.oplog.rs

MongoDB uses an operations log or oplog for replication. It is a capped collection, a
fixed sized collection that rewrites its oldest entries once it is full. It’s very similar to
the concept of a circular buffer, a circular queue, or a ring buffer which are all
essential implementations of the same idea.

It stores only the operations that modify the data. Each operation that is stored is
idempotent. That is, oplog operations produce the same results whether applied once
or multiple times to the target dataset.

The primary writes it’s oplog and the secondaries replicate these oplog entries in an
asynchronous fashion by copying and then applying the operations to their own
databases and collections.

Every member of the replica set holds a copy of the log in their local database in the
oplog.rs collection.

Oplog: Type of Replication

Statement based replication

Document based replication

Binary replication (file copy)

There are three main types of replication used in databases.
Statement based replication, where the statement that changes the database is
recorded into the log and that is shared to other members. A single statement can
change multiple documents.

Document based replication, where the changes to each document are stored in the
log and shared with other members. Each change to each document is a single
operation record. This is how MongoDB stores the changes and it is what is replicated
to other members.

Binary replication or file copy, is where the file storing the data is simply copied to the
other members or the changed parts of the file.

The main advantage of document based replication over statement based replication
is that as the changes are idempotent they can be replayed in parallel and make that
replaying a crash safe process (in terms of recovery).

For more details checkout this blog from one of our principal engineers -
http://smalldatum.blogspot.com/2020/02/describing-replication.html

The operations log (oplog)
holds idempotent statements
that modify the database.
MongoDB does this at the
document level, each log entry
represents one change
document.

The Oplogdb.bar.insertMany([{a:1}, {a:2},

{a:3}])

use local

db.oplog.rs.find({"o.msg": {$ne:

"periodic noop"}}, {op:1,

o:1}).sort({$natural:-1}).limit(3)

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 3 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 2 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 1 } }

The operations log holds idempotent statements that modify data in the database.
This is done at the document level with each log entry corresponding or representing
a change to one document.

Insert some test data into the
collection bar.

Adding data to
MongoDB (and to the
oplog)

db.bar.insertMany([{a:1}, {a:2}, {a:3}])

use local

db.oplog.rs.find({"o.msg": {$ne: "periodic

noop"}}, {op:1,

o:1}).sort({$natural:-1}).limit(3)

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 3 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 2 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 1 } }

In order to better understand the operations log or Oplog as it is more commonly
known/referred to, let’s work through a simple example.

In this case let’s insert three documents into the bar collection. This assumes you are
connected to a MongoDB replica set primary. Only replica sets provide the operations
log, if you run a standalone instance then these command will not work.

The oplog itself special capped collection that keeps a rolling record of all operations
that modify the data stored in your databases.

db.bar.insertMany([{a:1}, {a:2},

{a:3}])

use local

db.oplog.rs.find({"o.msg": {$ne:

"periodic noop"}}, {op:1,

o:1}).sort({$natural:-1}).limit(3)

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 3 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 2 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 1 } }

To find what we added
we need to search the
local database for the
corresponding oplog
entries.

Searching the Oplog

In the MongoShell, we connect to the instance and then change to the ‘local’
database which stores various instance details including the operations log in the
collection ‘oplog.rs’.

Each member keeps their own oplog copy in this collection. The fact that the oplog is
a circular buffer means that we know the ordering of the inserted documents can be
used with the $natural operator to retrieve them in the order they were written. By
using an inverse natural order we can look starting at the end of the oplog and find
the latest documents which contain the operations that were written to the collection.

We then search this collection for the last three operations excluding any periodic no
operation messages which are frequently logged to track time within the log.

db.bar.insertMany([{a:1}, {a:2}, {a:3}])

use local

db.oplog.rs.find({"o.msg": {$ne:

"periodic noop"}}, {op:1,

o:1}).sort({$natural:-1}).limit(3)

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 3 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 2 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 1 } }

The field “op” represents
the type of operations
and “o” represents the
document being
modified.

What is stored in the
Oplog documents?

The documents in the oplog collection show one document for each of the documents
we inserted.

The “op” field is the type of operation, in this case “i” means an insert operation.
The “o” field gives the sub document which includes the details on the operation, in
this case the document itself we inserted with the ObjectId automatically added for us.

db.bar.insertMany([{a:1}, {a:2},

{a:3}])

use local

db.oplog.rs.find({"o.msg": {$ne:

"periodic noop"}}, {op:1,

o:1}).sort({$natural:-1}).limit(3)

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 3 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 2 } }

{ "op" : "i", "o" : { "_id" :

ObjectId("..."), "a" : 1 } }

The operations log (oplog)
holds idempotent
statements that modify
the database. MongoDB
does this at the document
level, each log entry
represents one change
document.

Idempotency + the Oplog

Idempotency is an important aspect of this log. Idempotent statements can be applied
many times without changing the final result after they have been applied the first
time.

Each operation in the oplog is idempotent. That is, oplog operations produce the
same results whether applied once or multiple times to the target dataset.

This approach of logging operations can require a larger log for specific types of
workload such as when updating multiple documents at once, when you are deleting
the same amount of data as you are inserting, or when there are a significant number
of in-place update operations.

Quiz

Quiz

What kind of information does the operations log (oplog)
store and replicate to the other nodes?

A. Statements that modify the databases

B. Changes per document modified

C. Binary file changes to the file storing the database

Quiz

What kind of information does the operations log (oplog)
store and replicate to the other nodes?

A. Statements that modify the databases

B. Changes per document modified

C. Binary file changes to the file storing the database

INCORRECT: Statements that modify the databases - The oplog does not store
changes to the configuration of the database.
CORRECT: Changes per document modified - The oplog stores changes per
document.
INCORRECT: Binary file changes to the file storing the database - The oplog does not
track changes to any specific file at the level of file system changes.

Quiz

What kind of information does the
operations log (oplog) store and replicate
to the other nodes?

A. Statements that modify the
databases

B. Changes per document modified

C. Binary file changes to the file
storing the database

This incorrect. The oplog
does not store changes to
the configuration of the
database.

INCORRECT: Statements that modify the databases - The oplog does not store
changes to the configuration of the database.

Quiz

What kind of information does the
operations log (oplog) store and replicate
to the other nodes?

A. Statements that modify the
databases

B. Changes per document modified

C. Binary file changes to the file
storing the database

This is correct. The oplog
stores changes per
document.

CORRECT: Changes per document modified - The oplog stores changes per
document.

Quiz

What kind of information does the
operations log (oplog) store and replicate
to the other nodes?

A. Statements that modify the
databases

B. Changes per document modified

C. Binary file changes to the file
storing the database

This incorrect. The oplog
does not track changes to
any specific file at the
level of file system
changes.

INCORRECT: Binary file changes to the file storing the database - This is incorrect.
The oplog does not track changes to any specific file at the level of file system
changes.

Sharding

We’ll cover sharding in an overview in this lesson. A later lesson has a deeper dive
around the mechanisms and best practices of sharding, this section is an introduction
to this component within the architecture of MongoDB. The goal of this piece of
MongoDB’s architecture is to provide a mechanism to scale your database as your
data grows beyond the limits of the hardware capacity of any single machine.

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

MongoDB scales up using sharding to partition data. Each shard consists of a replica set.

Sharding

Sharding is how MongoDB and many other non-relational databases partition data to
scale horizontally across many machines/instances.

This is done in MongoDB by partitioning the data into key ranges and assigning these
key ranges across the machines/instances.

Sharding is how you scale up with MongoDB, it is designed to support very large data
sets and high throughput operations.

Let’s look at an overview of sharding and the components behind it in the next slides,
we’ll cover sharding itself and how you can use it in your applications in more depth in
a later lesson.

Sharding cont.

● Native-Sharding for horizontal scale-out

● Automatically scale beyond the
constraints of a single node

● Application transparent

● Scale, refine, and rebalance data
incrementally, in real time

● Distributed transactions

Sharding is natively available in MongoDB as an inbuilt feature designed to support
the horizontal scale-out of your data.

Sharding helps overcome the constraints in terms of hardware of a single node.

Sharding uses a query layer and provides a transparent (to applications) routing of
their requests to the database to the correct shard(s).

Sharding scales and refines the partitioning dynamically in real time and when
needed it will also automatically rebalance it.

Sharding also supports distributed transaction, this means that you can design ACID
transactions in your MongoDB application and have them safely executed on a
sharded cluster.

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

Sharding Architecture

Config Servers

PRIMARY

SECONDARY

SECONDARY

MongoDB sharding uses three components:
● shards: Each shard contains a subset of the sharded data. Each shard must

be deployed as a replica set.
● mongos: The mongos acts as a query router, providing an interface between

client applications and the sharded cluster.
● config servers: Config servers store metadata and configuration settings for

the cluster. As of MongoDB 3.4, config servers must be deployed as a replica
set (CSRS).

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

Sharding Architecture

Config Servers

PRIMARY

SECONDARY

SECONDARY

MongoDB sharding adds a routing layer with one or more routers called ‘mongos’
these are what your driver/application connect to. Any query or command issued
against a shard cluster will go through a ‘mongos’ which will check to determine on
which shard(s) the data is and return it back to your application or process the
command on the appropriate shard(s).

The key points for a mongos are:
● Caches where the data is located
● Reads it from the config server
● Has no persistent storage
● Speaks the database server protocol

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

Sharding Architecture

Config Servers

PRIMARY

SECONDARY

SECONDARY

Config servers hold the meta data for all of the shards in your sharded cluster. The
metadata reflects state and organization for all data and components within the
sharded cluster. The metadata includes the list of chunks on every shard and the
ranges that define the chunks. The config servers are all part of a single replica set.

The mongos instances cache this data and use it to route read and write operations to
the correct shards. mongos updates the cache when there are metadata changes for
the cluster.

In summary for config servers, they:
● Durably persists where data is located
● Uses replication for durability and high availability
● Does not contain any user data, only metadata

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

Sharding Architecture

Config Servers

PRIMARY

SECONDARY

SECONDARY

A shard contains a subset of sharded data for a sharded cluster. Together, the
cluster’s shards hold the entire data set for the cluster.
Each shard is itself a replica set.

The key points for a shard are:
● Caches what data it owns (specified by the key range for the shard)
● Reads it from the config server
● Durably persists the actual data of the collection

In our later lesson on sharding, we’ll look at how you can use sharding in your
application to scale out when and as required.

Hopefully this lesson has given you an understand of the mechanics and mechanisms
used in sharding.

Quiz

Quiz

Which of the following are true for MongoDB Architecture?

A. The database can use different storage engines

B. Sharding provides high-availability of data

C. Sharding provides a means of distributing data across
multiple machines

D. Replication provides redundancy for the database both for it
as an application and for the data it stores

Quiz

Which of the following are true for MongoDB Architecture?

A. The database can use different storage engines

B. Sharding provides high-availability of data

C. Sharding provides a means of distributing data across
multiple machines

D. Replication provides redundancy for the database both for it
as an application and for the data it stores

CORRECT: The database can use different storage engines - MongoDB can use a
variety of underlying storage engines, typically the default storage engine is
WiredTiger but you can use others.
INCORRECT: Sharding provides high-availability of data - Replication is how high
available of data is provided, sharding is a mechanism to scale data by partitioning it
across machines.
CORRECT: Sharding provides a means of distributing data across multiple machines
- Sharding partitions data across multiple machines, in MongoDB each partition is
called a shard and is backed by a replica set.
CORRECT: Replication provides redundancy for the database both for it as an
application and for the data it stores - Replication provides multiple copies of the data
for redundancy, it further ensures that in the case of the failure of the primary node
that an election will occur ensuring a new primary is elected which provides
redundancy for your application.

Quiz
Which of the following are true for MongoDB
Architecture?

A. The database can use different storage engines

B. Sharding provides high-availability of data

C. Sharding provides a means of distributing data
across multiple machines

D. Replication provides redundancy for the
database both for it as an application and for the
data it stores

This is correct.
MongoDB can use
a variety of
underlying storage
engines, typically
the default storage
engine is
WiredTiger but you
can use others.

CORRECT: The database can use different storage engines - MongoDB can use a
variety of underlying storage engines, typically the default storage engine is
WiredTiger but you can use others.

Quiz
Which of the following are true for MongoDB
Architecture?

A. The database can use different storage engines

B. Sharding provides high-availability of data

C. Sharding provides a means of distributing data
across multiple machines

D. Replication provides redundancy for the
database both for it as an application and for the
data it stores

This incorrect.
Replication is how
high availability of
data is provided,
sharding is a
mechanism to
scale data by
partitioning it
across machines.

INCORRECT: Sharding provides high-availability of data - This is incorrect.
Replication is how high availability of data is provided, sharding is a mechanism to
scale data by partitioning it across machines.

Quiz
Which of the following are true for MongoDB Architecture?

A. The database can use different storage engines

B. Sharding provides high-availability of data

C. Sharding provides a means of distributing data
across multiple machines

D. Replication provides redundancy for the database
both for it as an application and for the data it
stores

This is correct.
Sharding partitions
data across multiple
machines, in
MongoDB each
partition is called a
shard and is backed
by a replica set.

CORRECT: Sharding provides a means of distributing data across multiple machines
- This is correct. Sharding partitions data across multiple machines, in MongoDB each
partition is called a shard and is backed by a replica set.

Quiz
Which of the following are true for MongoDB Architecture?

A. The database can use different storage engines

B. Sharding provides high-availability of data

C. Sharding provides a means of distributing data
across multiple machines

D. Replication provides redundancy for the database
both for it as an application and for the data it
stores

This is correct.
Replication provides
multiple copies of
the data for
redundancy, and in
the case of the
failure of the primary
node that an
election will occur
ensuring a new
primary to provide
redundancy.

CORRECT: Replication provides redundancy for the database both for it as an
application and for the data it stores - This is correct. Replication provides multiple
copies of the data for redundancy, and in the case of the failure of the primary node
that an election will occur ensuring a new primary to provide redundancy.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

