
Sharding in MongoDB

Google Slide deck available

LESSON

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

https://docs.google.com/presentation/d/1JwYRGaNByAaZWkCChAmfm_7DDBpCMpN7y88cnM-i42o
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Data partitioning uses a
replica set per partition
or shard.

What is an Index in MongoDB?

Shard A Shard B Shard C

Let’s take a moment to recap what we’ve previously covered on Sharding in the
Architecture lesson.
Sharding is also known as data partitioning and it uses a replica set per partition or
shard.
Here’s a typical sharded cluster with Shard A (pause and click), Shard B (pause and
click), and Shard C for a three shard or three partition deployment.

Increase volume of
persisted data

Increase/distribute
throughput to scale both
reads & writes

Decrease latency of both
reads and writes

Why You Should Shard

Let’s just clarify again the reasons why you should or would want to shard.

Firstly, it allows for your deployment to deal with a greater volume of persistent data.
This is achieved by adding more storage associated to the machines/instances you
add as you shard.

Secondly, sharding allows for an increase in the throughput for both reads and also
for writes. The additional machines/instances added help improve throughput
because they add CPU cores, Storage IOPS, and add additional network interfaces to
service requests.

Finally, sharding helps decrease the latency of reads and of writes. The addition of
RAM (as you increase machines) helps to increase the size of the working set and as
such helps decrease these latencies.

Sharding Architecture

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

We’d previously covered the sharding architecture but it is useful to recap it here to
ensure we are clear on the components and their roles before diving deeper into
sharding.

The MongoDB Sharding architecture has three primary aspects, the metadata which
is held by the config servers.

The data itself which is held by the shard where it resides.

The routing of requests from the application to where the relevant data lives is
handled via the mongos routing layer.

The shard key determines how
documents are distributed
amongst a cluster's shards.

What Does a Shard
Key Do?

The shard key is either an indexed field or indexed compound fields.
It defines a space of values like points on a line.
Key ranges are segments of that line.

What Is a Shard Key Range?
A chunk is contiguous
range of shard key
values

Each shard key range is
associated to a chunk.

Each doc is assigned to a
chunk per it’s shard key.

The database strives to
balances these chunks
across the shards.

Let’s answer what a shard key range is and use the diagram on the slide to help
clarify.

Chunks are a contiguous range of shard key values.

Each shard key range is associated to a chunk, we can see the four ranges and four
chunks as the key space for X.

Each doc is assigned to a chunk per the value of it’s shard key.

The MongoDB database strives to balances these chunks across the shards to
ensure an even distribution.

The shard key is used to
route operations to the
appropriate shard. The
shard key is used for reads
and also for writes.

How is a Shard Key
Used?

The shard key is used to route operations to the appropriate shard.
The shard key is used for reads and also for writes.

All queries, inserts, updates,
and deletes would each be
distributed uniformly
across all of the shards.
Operations would only ever
go to the relevant shard with
the data.

What is the Perfect
Shard Key?

The perfect shard key is one where queries, inserts, updates and deletes are
uniformly distributed across all the shards.

It would further have operations only go to the shard with the data and never query
any other shard(s).

Sadly, this is an idealized representation and shard key design involves many
trade-offs and considerations, which we’ll look at next.

Cardinality

How well the shard key can be broken into smaller groups

Shard keys with lower cardinality will put many documents into a single
chunk

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

The first consideration is that of cardinality, specifically a shard key that can be broken
up into many smaller groups to give it a high cardinality. A low cardinality shard key
means MongoDB will attempt to put many documents into a single chunk.

The link at the bottom of the page links to a post which discusses these criteria in
more depth
https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Write Distribution

Design the shard key to evenly distribute writes

Evenly distributed writes should be across all the available shards to
optimise the write scalability of the shard key

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

The next consideration is that of write distribution, specifically you want to design the
shard key so that writes are evenly distributed across all of the available shards to
optimise your write scalability.

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Read Distribution

Design the shard key to evenly distribute reads

Evenly distributed reads should be across all the available shards to
optimize the read scalability of the shard key.

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

The third consideration is the distribution of your reads, in a similar fashion to your
writes you would also like that your read are evenly spread across all of the available
shards in your cluster to optimize the scalability of reads in your cluster.

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Read Targeting

Design your read to use a shard key that can target an individual shard

The shard key should avoid scatter/gather where all shards need to be
queried in order to return a result

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

The fourth aspect to consider is that of read targeting, ideally your read requests
should use a shard key that support targeting an individual shard and should not be
scatter/gather where all the shards must be queried to return a result.

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Read Locality

The locality of a read applies to queries involving ranges

Specifically you want to balance read targeting against read locality in
certain cases

Social network application - influencers, user name and time of each
content item to help locality

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

The fifth aspect to consider when creating a good shard key is read locality. This
criteria applies only to the range query strategy, which we’ll cover on the next slide. In
the case of read locality you may need to balance read targeting against it for specific
situations.

Take a social network application, there are influencers who have either huge
numbers of followers or significant amounts of content they have created. In such a
situation, you will likely need to use a compound shard key that keeps the data you
are reading on a single shard. This means for a social media influencer who has
generated a large amount of content you would likely have their name or user
identified and the time when each content item was posted as the compound shard
key to help localise the read to a single shard.

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Index Locality

How indexes for large data sets are loaded into RAM has an impact

Taking the previous read locality influencer example, using a user name
and content time spreads the index entries rather than locates them
closely

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

A related consideration to read locality is index locality. This relates to how RAM
needs to be considered with large data sets in terms of how it is indexed and how the
index needs to be designed to ensure only portions rather than the entire of the index
space needs to be loaded into RAM.

The example for read locality also applied here where the user name and time the
content was created would make for a better index as well as locating the document
on the same shard versus simply using the user name as the index. In the latter,
whilst the user name and documents associated to it will go to a single shard, the
index will be spread rather than located closely together in terms of how the index is
stored.

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

General considerations

The shard key should be used in the majority of your queries

A shard key should not have more than 64MB sharing the key to avoid
jumbo chunks where too many documents have the same key

A shard key should co-locate data you query together (similar to read
locality)

See: https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Considerations for a Good Shard Key

Ideally, you should consider a shard key that is in the majority of your queries.

A shard key should not have more than 64MB sharing the key to avoid jumbo chunks
where too many documents have the same key

A shard key should co-locate data you query together (similar to read locality)

https://www.mongodb.com/blog/post/on-selecting-a-shard-key-for-mongodb

Quiz

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

CORRECT: Write Distribution - Being able to spread the load of writes across all the
shards in a cluster to avoid bottlenecks is another criteria for a good shard key.

INCORRECT: Typical number of documents returned by a query - This is not a good
shard key criteria, it is related to designing good queries which is another aspect to
consider within the design of your application.

CORRECT: Read Distribution - Being able to spread the load of reads across all the
shards in a cluster to avoid bottlenecks is another criteria for a good shard key.

CORRECT: Read Targeting - Being able to read from one shard with a targeted query
rather than needing to query all the shards (broadcast / scatter-gather) is an important
criteria for a good shard key.

INCORRECT: Document Size - The size of the document is not related to criteria for a
good shard key.

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

This is correct. Being able to
spread the load of writes
across all the shards in a
cluster to avoid bottlenecks is
another criteria for a good
shard key.

CORRECT: Write Distribution - This is correct. Being able to spread the load of writes
across all the shards in a cluster to avoid bottlenecks is another criteria for a good
shard key.

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

This is incorrect. This is not a
good shard key criteria, it is
related to designing good
queries which is another
aspect to consider within the
design of your application.

INCORRECT: Typical number of documents returned by a query - This incorrect. This
is not a good shard key criteria, it is related to designing good queries which is
another aspect to consider within the design of your application.

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

This is correct. Being able to
spread the load of reads
across all the shards in a
cluster to avoid bottlenecks is
another criteria for a good
shard key.

CORRECT: Read Distribution - This is correct. Being able to spread the load of reads
across all the shards in a cluster to avoid bottlenecks is another criteria for a good
shard key.

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

This is correct. Being able to read
from one shard with a targeted
query rather than needing to
query all the shards (broadcast /
scatter-gather) is an important
criteria for a good shard key.

CORRECT: Read Targeting - This is correct. Being able to read from one shard with a
targeted query rather than needing to query all the shards (broadcast / scatter-gather)
is an important criteria for a good shard key.

Quiz
Which of the following are criteria you need to consider when
picking a good shard key?More than one answer choice can be
correct.

A. Write Distribution

B. Typical number of documents returned by a query

C. Read Distribution

D. Read Targeting

E. Document Size

This is incorrect. The size of the
document is not related to criteria
for a good shard key.

INCORRECT: Document Size - This is incorrect. The size of the document is not
related to criteria for a good shard key.

Quiz

Exercise: Pick a shard key for viewing inboxes

Design a shard key for a web based email service and select which one
of the following keys would be the most suitable key for viewing
inboxes and discuss:

a. { from: 1 }

b. { from: 1, to: 1 }

c. { to: 1, sent_on: 1 }

d. { from: 1, message: 1 }

{

 from: "Joe",

 to: ["Bob", "Jane"],

 sent_on: new Date(),

 message: "Hi!"

}

(NOTE) In this exercise, take a few minutes and sketch out the various aspects given
the example document and in small groups or individually discuss the metrics of the
four options presented on the slide.

Design a shard key for a web based email service and select which one of the
following keys would be the most suitable key for viewing inboxes and discuss:

A. { from: 1 }
B. { from: 1, to: 1 }
C. { to: 1, sent_on: 1 }
D. { from: 1, message: 1 }

Finally, here is an example document of what is stored in terms of an email for the
email service.

Exercise: Pick a shard key for viewing inboxes

Design a shard key for a web based email service and select which one
of the following keys would be the most suitable key for viewing
inboxes and discuss:

a. { from: 1 }

b. { from: 1, to: 1 }

c. { to: 1, sent_on: 1 }

d. { from: 1, message: 1 }

{

 from: "Joe",

 to: ["Bob", "Jane"],

 sent_on: new Date(),

 message: "Hi!"

}

The most suitable shard key of the suggestions is “c” when we consider it specifically
for viewing inboxes.

The best of this selection of possible shard keys is { to: 1, sent_on: 1} as it provides a
nice way to locate the message (to) and order them (sent_on) which facilitates
viewing inboxes and messages

Exercise: Pick a shard key for viewing inboxes

Design a shard key for a web based email service and select which one
of the following keys would be the most suitable key for viewing
inboxes and discuss:

a. { from: 1 }

b. { from: 1, to: 1 }

c. { to: 1, sent_on: 1 }

d. { from: 1, message: 1 }

{

 from: "Joe",

 to: ["Bob", "Jane"],

 sent_on: new Date(),

 message: "Hi!"

}

The other shard keys are possibilities but are not ideally suited for viewing inboxes.
In the case of { from: 1 }, the lack of a time field hinders viewing as additional sorting
and processing would be required to say return the last 10 emails from a specific
sender.

In the case of { from: 1, to: 1 }, it’s a similar issue that whilst the key contains the
participants in the email there is no time field to help with sorting and presenting
emails for viewing in a chronological fashion.

The best of this selection of possible shard keys is { to: 1, sent_on: 1} as it provides a
nice way to locate the message (to) and order them (sent_on) which facilitates
viewing inboxes and messages.

The final option { from: 1, message: 1} has the same issues as ‘a’ and ‘b’. There is no
easy way to sort these messages for viewing the inboxes.

This example is simplified and you would have more fields plus considerations that
you would use for a real world system when design a shard key.

Sharding Strategies

Contiguous ranges
determined by the shard key
values.

A “close” shard key value
should have documents on
the same chunk or shard.

Default sharding strategy in
MongoDB.

See: https://docs.mongodb.com/manual/core/ranged-sharding/

Sharding Strategies: Range Sharding

We’ve already seen this type of sharding without covering in depth. Here’s a few
additional aspects to note for range sharding.

The contiguous ranges are determined by the shard key values.

If a shard key value is ‘close’ to another document’s shard key value then it is likely
they will be present on the same chunk or at least within the same shard.

Range based sharding is the default sharding strategy in MongoDB.

The web link has the detailed MongoDB documentation page on range sharding for
more information.

https://docs.mongodb.com/manual/core/ranged-sharding/

Single field hashed index
or compound field
hashed index.

Computes the hash value
as the shard key value.

Better data distribution
at the cost of potentially
more broadcast queries.

See: https://docs.mongodb.com/manual/core/ranged-sharding/

Sharding Strategies: Hashed Sharding

Hashed sharding was designed for shard keys with fields that change monotonically
like ObjectId values or timestamps. These shard keys would cluster on a single shard
with range based sharding and create a ‘hot’ shard. Hashed sharding attempts to
avoid that situation for these types of shard keys.

Hashed sharding can use single field hashed index or a compound field hashed
index. The compound field hashed index computes the hash value of a single field in
the compound index; this value is used along with the other fields in the index as your
shard key.

The process of hashed sharding uses a hash function the value of this for the field is
used as the shard key value or as part of the shard key if a compound field hashed
index.

The idea behind hashed sharding was to provide better data distribution. There is a
tradeoff in this case as it is likely to increase the number of broadcast/scatter-gather
queries.

Ideally for hashed sharding you should use a low cardinality hash (~720 values) of the
field combined with an incrementing value. This provides a good spread of values
over the shards with a fast incrementing shard key.

The web link has the detailed MongoDB documentation page on hashed sharding for
more information.

https://docs.mongodb.com/manual/core/ranged-sharding/

Dangers of Hashed Sharding

Cardinality

Write Distribution

Read Distribution

Read Targeting

Read Locality

Index Locality

Scatter/gather
across all Shards
THEN
Random Access
Index on each
Shard

Index Contents

Hashed sharding can be a useful technique but there are some caveats and dangers
when using this sharding strategy that you should consider when designing your
shard key.

Specifically, it can provide good cardinality, write and read distribution with a good
shard key.
However, it does not provide good read targeting as the hashed nature of the shard
key and the data distribution means that a broadcast/scatter-gather query will be
required to find and return the document(s) for a query.

In a similar fashion, it has poor read locality as related documents are unlikely to be
located on the same shard.

Finally and significantly it can have poor index locality, this means that to service the
query the entire index must be loaded in memory as the random access nature of the
shard key means it is not possible to know or predict which portion of the index file will
be needed. This means that the entire index needs to be loaded in memory to
effective service queries using as hashed sharded key.

When Should You Shard?

You have a reasonable and growing data size ~200GB to
0.5TB

A resource is maxed out (and you know why)

Vertical scaling is not possible or cost effective

Your schema and your code have already been optimized

Sharding is not something that is needed for all applications and thankfully there are
some clear reasons or flags as to when you should consider sharding.

If you already have a reasonable size of data which is growing and you predict it will
continue to grow. After your data is larger than 200GB and smaller than 0.5TB is
probably a good point to consider sharding but it is application and scenario specific.

If you have maxed out your hardware and it is not possible or cost effective to buy a
bigger machine then it’s time to consider sharding.

If you have optimized your schema and your code then it is also time to consider
sharding.

Typically, you will have several of these reasons occurring as the ideal time to
undertake sharding your data.

Querying in a
Sharded Cluster

Querying in a Sharded Cluster

Application / Driver mongos

Shard 1 Shard 2

CSRS

When querying from a sharded cluster, the first stage is the application / driver makes
the request to the mongos routing process.

Let’s look at how the mongos handles a read request from the application.

If query contains shard key
(or at least first field of key)

Lookup where data with that
key is stored

Send query to those replica
sets to run as normal

When results come back
stream to client

If the query does not contain
shard key

Send query to all servers

When results come back
stream to client

Querying in a Sharded Cluster for Reads

Let’s look at how a read happens in a sharded cluster from the viewpoint of the
mongos.

If the query has the shard key or at least the first field of key then this will be used. A
lookup with this from the mongos cache of the routing table will happen to determine
which shard holds the chunk with the range containing the key. The query is then
passed to the replica set (shard) as normal. The results are then sent back to the
mongos which streams them to the client.

If the query doesn’t contain any details that can be used to route then the query must
be sent to all servers. Once the results are back to the mongos it again also streams
them back to the client.

Metadata and
Routing

How Does a MongoS Know Where the Data Is?

Looking again at our cluster, it’s easy to see we use shards to host our data but how
does a mongos route a query from an application to the right shard?

Let’s look at how the data about data or metadata is stored and how this helps the
mongos route the query correctly.

Let’s first look at the Config Servers which we haven’t spoken about before, it is here
that the metadata is stored for the cluster.

Config Server Replica Set (CSRS)

Routing table: List of chunks on every Shard + the ranges that define
the chunks (‘config’ DB).

Metadata: Authentication metadata (RBAC rules + internal
authentication settings for the entire Sharded cluster (‘admin’ DB).

Shards read chunk metadata from the config servers using Read
Concern of Majority.

MongoS caches the metadata from the CSRS & uses it to route.

When the metadata changes the MongoS cache gets updated.

The config servers or the config server replica set (CSRS) holds the routing table for
the data, which lists all the chunks on each shard and the ranges that define these
chunks. It also holds the authentication metadata to control access for the sharded
cluster.

When metadata is read by the shards, it is done so using the read concern of
majority.

The mongos router(s) take and cache a copy of the metadata from the config servers.
The mongos uses this copy to route the requests from application to the appropriate
shards. If and when the metadata changes then the mongos cache gets updated.

What Are Chunks?
A chunk is the term used to refer to all documents where the shard
key is in a given range of values.

Each chunk exists on a single shard.

If a shard key falls into the range then it is set to be in the chunk.

Any read or write requests are routed to the shard hosting that chunk.

A chunk is the term used to refer all the documents that are within a given range of
values for a shard key.

Each chunk exists on a single shard.

If a shard key falls within the range for the chunk then it is said to be within that
chunk.

Any read or write request will be routed to the shard hosting the chunk.

Balancing and Migrations of Chunks
Balancing occurs on the primary config server.

A regular check for an imbalance in terms of the number of chunks
between shards.

If an imbalance is detected a chunk migration occurs with chunks
are moved between the shards to balance the distribution.

This chunk move process is called a chunk migration.

Balancing is an automatic process that occurs regularly in a sharded cluster. It occurs
on the primary config server. This process checks for an imbalance in the number of
chunks between shards.

If an imbalance is detected then a chunk migration is triggered. This migration
process seeks to balance the distribution of chunks between shards.

Chunk Splitting
Splits occur on the primary of the shard with the chunk. It is the
process that stops chunks growing too large.

It happens when:

● a chunk grows beyond a specified chunk size, or

● when the maximum number of documents per chunk setting is
exceeded.

Chunk splitting is an automatic process within a sharded cluster. It occurs on the
primary of a shard. It is designed to stop chunks from growing too large.

It is triggered when a chunk grows beyond a specified chunk size or when the
maximum number of documents per chunk setting is exceeded.

How Does a MongoS Route?

mongos

We’ve covered how the metadata is managed and maintained by MongoDB. Let’s
look now at the MongoS in more depth to see how it routes and operates.

MongoS

● Routes reads and writes to the relevant shard(s)
● Maintains connection pools to all members (including the

config servers)
● Each request it sends has it’s version of the cache included. If

this is determined to be outdated by the shard receiving the
request, an error is returned and the mongos refreshes its
cache.

● MongoDB driver will pick a random mongos but from those
with the lowest latency from the seed-list of mongos
processes automatically.

The mongos routes reads and writes to the relevant shard(s). It does this by
establishing a cursor on all targeted shards, then merging all the results. If there
sorting required then the primary of the shard(s) sorts not the mongos which only gets
th end results.

The MongoS also maintains connection pools to all members (including the config
servers).

Each request it sends has it’s version of the cache included. If this is determined to be
outdated by the shard receiving the request, an error is returned and the mongos
refreshes its cache.

MongoDB driver will pick a random mongos but from those with the lowest latency
from the seed-list of mongos processes automatically.

Quiz

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the _________ where the shard key is
in a given range of values.

B. Balancing occurs on the _________.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to _________ read and
write operations.

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is in
a given range of values.

B. Balancing occurs on the _________.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to _________ read and
write operations.

The first is:

A. A chunk refers to the documents where the shard key is in a given range
of values

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is in
a given range of values.

B. Balancing occurs on the ___________.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to _________ read and
write operations.

Balancing occurs on the ___________

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is in
a given range of values.

B. Balancing occurs on the primary config server.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to _________ read and
write operations.

Balancing occurs on the primary config server

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is in
a given range of values.

B. Balancing occurs on the _________.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to _________ read and
write operations.

Chunk splitting occurs on the

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is
in a given range of values.

B. Balancing occurs on the _________.

C. Chunk splitting occurs on the primary of the shard with
the chunk.

D. The purpose of a mongos is to _________ read and
write operations.

Chunk splitting occurs on the primary of the shard with the chunk

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is in
a given range of values.

B. Balancing occurs on the _________.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to _________ read and
write operations.

The purpose of a mongos is to _____ read and write operations

Quiz
Fill in the blank for each of these questions from what we
have just learnt.

A. A chunk refers to the documents where the shard key is in
a given range of values.

B. Balancing occurs on the _________.

C. Chunk splitting occurs on the _________.

D. The purpose of a mongos is to route read and write
operations.

The purpose of a mongos is to route, read and write operations

Zoned Sharding

Sharding strategies: Range sharding

Isolate subsets of the
data to specific shards

To support data
sovereignty

To enable low-latency
reads & writes from
local applications

To allow for tiered
storage on hardware

See: https://docs.mongodb.com/manual/core/zone-sharding/

Zoned sharding can be used to create zones of sharded data, a zone can be
associated with one or more shards. A shard can be associated with any number of
zones.

Zoned sharding allow for data to isolated to specific shards, looking at the diagram we
can see two zones, one for North America and one for Europe.

These zones can used to support data sovereignty for example ensuring European
user’s data is retained within the EU (or the EU zone in this example).
Zoning in this fashion can also help applications in the different continents to target
their local zone so North American users can target the NA zone to reduce the latency
for their reads and their writes.
Another possibility with zoned shared is it allows the ability to use tiered storage,
essentially this means HDDs and SSDs together and being able to use the shard key
to send older or archival records which your application may not be using to the
cheaper HDDs and keep your working set/the current documents on the more
expensive SSDs.

https://docs.mongodb.com/manual/core/zone-sharding/

Quiz

Quiz

Which of the following scenarios are supported by zone
sharding? More than one answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

Quiz

Which of the following scenarios are supported by zone
sharding? More than 1 answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

CORRECT: Isolating data to a specific geographic region - This is one of the key use
cases for zones in sharding.
CORRECT: Directing applications to the nearest data in terms of latency - The
nearest zone can be targeted by the applications to support this.
CORRECT: Using different types of disk storage - This is another of the key use
cases for zones in sharding, easily being able to use cheaper but slower disk storage
along with expensive but faster disk storage allows for example archival data moved
to the cheaper storage tier.
INCORRECT: Geographical failover and disaster recovery - Zone sharding and
indeed sharding is not used for disaster recovery or high availability. Those aspects
are handled by replication.
INCORRECT: Optimal shard chunk / data distribution - The balancer controls the
chunk distribution and manages optimal data distribution within the sharded cluster.
This is a separate feature and unrelated to zone sharding.

Quiz
Which of the following scenarios are supported by zone
sharding? More than 1 answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of
latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

This is correct. This
is one of the key
use cases for zones
in sharding.

CORRECT: Isolating data to a specific geographic region - This is correct. This is one
of the key use cases for zones in sharding.

Quiz
Which of the following scenarios are supported by zone
sharding? More than 1 answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of
latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

This is correct. The
nearest zone can be
targeted by the
applications to
support this.

CORRECT: Directing applications to the nearest data in terms of latency - This is
correct. The nearest zone can be targeted by the applications to support this.

Quiz
Which of the following scenarios are supported by zone
sharding? More than 1 answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of
latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

This is correct. Being able to
use cheaper but slower disk
storage along with expensive
but faster disk storage allows
for example archival data
moved to the cheaper storage
tier.

CORRECT: Using different types of disk storage - This is correct. Being able to use
cheaper but slower disk storage along with expensive but faster disk storage allows
for example archival data moved to the cheaper storage tier.

Quiz
Which of the following scenarios are supported by zone
sharding? More than 1 answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of
latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

This is incorrect. Zone sharding
and indeed sharding is not used
for disaster recovery or high
availability. Those aspects are
handled by replication.

INCORRECT: Geographical failover and disaster recovery - This is incorrect. Zone
sharding and indeed sharding is not used for disaster recovery or high availability.
Those aspects are handled by replication.

Quiz
Which of the following scenarios are supported by zone
sharding? More than 1 answer choice can be correct.

A. Isolating data to a specific geographic region

B. Directing applications to the nearest data in terms of
latency

C. Using different types of disk storage

D. Geographical failover and disaster recovery

E. Optimal shard chunk / data distribution

This is incorrect. The balancer
controls the chunk distribution and
manages optimal data distribution
within the sharded cluster. This is a
separate feature and unrelated to
zone sharding.

INCORRECT: Optimal shard chunk / data distribution - This is incorrect. The balancer
controls the chunk distribution and manages optimal data distribution within the
sharded cluster. This is a separate feature and unrelated to zone sharding.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

