
Querying in Relational and
Non-Relational Databases

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1G9WdYIkQzSCszzrHqhlHbSjYxjY7qwrIfJVhaz9GTNA/edit?usp=sharing

Comparing data
models

In this lesson, we will look very broadly at the data models in both SQL and in the
MongoDB Query Language (MQL). We’ll then describe at a high level how querying
works with regard to these data models.

What is the Document Model?
A way to organize and store data as a set of field-value pairs

Similar to:

● Dictionaries in Python

● Maps in Java

● JSON Object in JavaScript

In order to understand query structure in MongoDB, you need to have a good
understanding of the document model and its constructs.
A document is a way to organize and store data as a set of field-value pairs.
It represents information in a similar way that a dictionary in Python, a map in Java,
and a Javascript Object Notation (JSON) object in JavaScript do.
In MongoDB, documents are actually stored as BSON (binary JSON) in the
underlying storage engine. Documents in MongoDB are presented via the drivers or
via the MongoDB Shell as JSON.

3

{
 "_id" : ObjectId("5ad88534e3632e1a35a58d00"),
 "name" : {
 "first" : "John",
 "last" : "Doe" },
 "address" : [
 { "location" : "work",
 "address" : {
 "street" : "16 Hatfields",
 "city" : "London",
 "postal_code" : "SE1 8DJ"},
 "geo" : { "type" : "Point", "coord" : [
 -0.109081, 51.5065752]}},
+ {...}
],
 "dob" : ISODate("1977-04-01T05:00:00Z"),
 "retirement_fund" : NumberDecimal("1292815.75")
}

Tabular (Relational) Data Model
Related data is split across multiple records
and tables

Document Data Model
Related data is contained in a single, rich document

Contrasting Data Models

The key difference between these data models is that the relational / tabular records
are frequently split across records and tables whilst in documents the data is typically
within a single document.

Document Model Constructs

1. Fields (Attributes)

2. Sub-documents (Objects)

3. Arrays

The document model representation is based on three constructs: fields (also referred
to as attributes), sub-documents (also referred to as nested documents or objects),
and arrays. We’ll look at each of these in the coming slides in more detail.

5

Fields / Attributes

Cars
_id owner make model year
007 Daniel Ferrari GTS 1982
Q08 Daniel Fiat 500 2013

Tabular (Relational) Data Model Document Data Model

{
 "_id": 007,
 "owner": "Daniel",
 "make": "Ferrari",
 "model": "GTS",
 "year": 1982
}

{
 "_id": 008,
 "owner": "Daniel",
 "make": "Fiat",
 "model": "500",
 "submodel: "S",
 "year": 2013
}

Here is an example for both models representing cars. Let’s look at the various
models and their fields/attributes.

In the Tabular Relational data model, a "cars" table would have a list of column
names, and each car entry would have a set of values in the same order as the
column names.

In MongoDB, using the document model, the column names correspond to the field
names and values, whereas the relational database row names correspond to the
values of the key-pairs.

The main difference is that column names are appearing in each document, allowing
for greater flexibility in having documents with different shapes; in other words, having
different fields.

Each document is self-describing without the need to refer to global metadata like a
table definition.

Object/Sub-document: A One-to-One Relationship

Tabular (Relational) Data Model Document Data Model
Header with column names

Row with values
Each document explicitly list the

names of the fields and the values.

Cars

_id

007

Q08

owner

Daniel

Daniel

make

Ferrari

Fiat

Engines

_id car_id power consumptio
n

234808 007 660 10

Q08 008 120 45

Cars

_id owner make power consumption

007 Daniel Ferrari 660 10

Q08 Daniel Fiat 120 45

OR

{
 "_id": 007,
 "owner": "Daniel",
 "make": "Ferrari",
 "engine": {

"power": 660hp,
"consumption": 10mpg

 }
 …
}

An object, or sub-document, in the document model allows for information to be
grouped together or embedded as a one-to-one relationship between what would be
two tables from the tabular relational model.

We can seen how the car can be treated in a relational database for this one-to-one
relationship with either a car and a engine table or a single cars table. In the
document data model, this would be within a document representing a car as an
engine sub-document.

Array: A One-to-Many

Tabular (Relational) Data Model Document Data Model
One-to-Many relationship

from a car to the its wheels
One-to-Many wheels

expressed as an array

Cars
_id

007

Q08

owner

Daniel

Daniel

make

Ferrari

Fiat

{
 "_id": 007,
 "owner": "Daniel",
 "make": "Ferrari",
 wheels: [

{ "partNo": 234819 },
{ "partNo": 281928 },
{ "partNo": 392838 },
{ "partNo": 928038 }

],
 ...
}

Wheels
_id car_id

234819 007
281928 007
392838 007
928038 007
950555 008

Arrays are typically used to model one-to-many relationships.

As for the array, it can contain values or objects. In other words, you can have an
array of objects. The array models one-to-many relationships into a single document.
These relationships would be represented by a parent-child table in traditional
relational database models,

For example, in the tabular relational model, we have a parent "Cars" table and its
child table "Wheels". In MongoDB, the "Wheels" data is simply embedded in the
"Cars" collection. There is no need for a "Wheels" collection.

Quiz

Quiz

Which statements are accurate statements on the document model
used in MongoDB? Select all that apply. More than one answer choice
can be correct.

A. It is identical to JSON

B. It is similar to maps in Java and dictionaries in Python

C. It allows us to model one-to-one and one-to-many relationships

Quiz

Which statements are accurate statements on the document model
used in MongoDB? Select all that apply. More than one answer choice
can be correct.

A. It is identical to JSON

B. It is similar to maps in Java and dictionaries in Python

C. It allows us to model one-to-one and one-to-many relationships

INCORRECT: It is identical to JSON - This is incorrect. In examples, documents are
often represented in JSON, but under the hood, MongoDB uses BSON which offers
more data types and better performance.
CORRECT: It is similar to maps in Java and dictionaries in Python - This is correct.
Conceptually the document model is very similar to maps in Java and dictionaries in
Python. This provides a familiar data structure for programmers to use.
CORRECT: It allows us to model one-to-one and one-to-many relationships - This is
correct. The document model provides modelling for one-to-one, one-to-many, and
many-to-many relationships making it easy to model complex data in MongoDB.

Quiz

Which statements are accurate statements on the document model
used in MongoDB? Select all that apply. More than one answer choice
can be correct.

A. It is identical to JSON

B. It is similar to maps in Java and
dictionaries in Python

C. It allows us to model one-to-one and
one-to-many relationships

This is incorrect. In
examples, documents are
often represented in
JSON, but under the
hood, MongoDB uses
BSON which offers more
data types and better
performance.

INCORRECT: It is identical to JSON - This is incorrect. In examples, documents are
often represented in JSON, but under the hood, MongoDB uses BSON which offers
more data types and better performance.

Quiz

Which statements are accurate statements on the document model
used in MongoDB? Select all that apply. More than one answer choice
can be correct.

A. It is identical to JSON

B. It is similar to maps in Java and
dictionaries in Python

C. It allows us to model one-to-one and
one-to-many relationships

This is correct.
Conceptually the
document model is very
similar to maps in Java
and dictionaries in
Python. This provides a
familiar data structure
for programmers to use.

CORRECT: It is similar to maps in Java and dictionaries in Python - This is correct.
Conceptually the document model is very similar to maps in Java and dictionaries in
Python. This provides a familiar data structure for programmers to use.

Quiz

Which statements are accurate statements on the document model
used in MongoDB? Select all that apply. More than one answer choice
can be correct.

A. It is identical to JSON

B. It is similar to maps in Java and
dictionaries in Python

C. It allows us to model one-to-one and
one-to-many relationships

This is correct. The
document model
provides modelling for
one-to-one,
one-to-many, and
many-to-many
relationships making it
easy to model complex
data in MongoDB.

CORRECT: It allows us to model one-to-one and one-to-many relationships - This is
correct. The document model provides modelling for one-to-one, one-to-many, and
many-to-many relationships making it easy to model complex data in MongoDB.

Querying

In this section, we’ll broadly look at how querying works in relational databases and
how it works in a document database, taking MongoDB as the specific non-relational
database example.

Querying in MongoDB and in Relational
DBs

MongoDB Query
Language

MongoDB
Aggregation
Framework

Structured Query
Language

We will cover both of the MongoDB query approaches in more detail later but firstly
let’s introduce them as the counterpart to SQL for querying.

The MongoDB Query Language (MQL) is used to query single collections.
The MongoDB Aggregation Framework is used to create aggregations and
manipulate data which can involve multiple collections.
Structured Query Language (SQL) performs both queries and aggregations.

SQL is a declarative language whilst MQL and the MongoDB Aggregation Framework
are imperative languages. In SQL, you describe the desired result whilst in MongoDB
query languages you tell it what to do.

MongoDB explicitly split single collection queries and CRUD operations on single
collections to be the focus of MQL.
The Aggregation Framework was originally designed to replace earlier Map-Reduce
functionality with MongoDB. The Aggregation Framework was built due to the clear
requirement to be able to perform complex data processing tasks within the database
itself.

While SQL is most often used and associated with relational databases, you can still
use it within MongoDB using a connector. It is not a native language for MongoDB but
connectors can take a SQL query and translate it to a MQL query.

MongoDB Query Language
(MQL)

Simple syntax

Designed to query

documents

Only queries a single

collection

MQL uses a simple syntax which is designed to query documents within a single
collection. It is not designed for aggregations or complex manipulation of documents.
The structure of the syntax in MQL specifically limits it to a single collection. We’ll
explore MQL in more depth later in this course.

If you need to construct a query across multiple collections or indeed across
databases then you must instead use the MongoDB Aggregation Framework which
we’ll introduce now.

MongoDB Aggregation
Framework

Designed for aggregations

Complex operations broken

into stages

Operators called within

stages

Functionality within the DB

MongoDB’s Aggregation Framework was designed to make it easier to create
aggregations by breaking complex operations into smaller stages. It provides a set of
common operators for data manipulation/transformation which can be used within the
stages.

Aggregation pipelines are used when you have to run complex queries and a simple
MQL query will not suffice. Typical cases include where you need to restructure and
change the data, where the data is in multiple collections, or for reporting and
analytics.

Complex aggregations are broken down into stages, each stage typically uses one
operator to manipulate the data. A big advantage of this approach is that errors or
issues can easily be tracked back to the problematic stage or stages. It greatly
simplifies debugging aggregations.

This functionality is an integral part of MongoDB.

Structured Query Language

Designed to query records

De-facto standard in many
relational databases

Domain specific language

SQL was the first query language to allow for many records to be queried using a
single command. Secondly, it removed the need to explicitly define how the DB
should locate the record (whether with or without an index).

It is a domain specific language for data querying and data management.

It was designed for tabular records and relational databases.

It is the standard for querying in many database systems.

Quiz

Quiz

When querying in SQL, you query a _________?

When querying in MongoDB, you query a _______?

What are the two languages for querying in MongoDB?

In this quiz, you should fill in the blank for the first two questions:
1. When querying in SQL, you query a …….?
2. When querying in MongoDB, you query a ……?

In the final question, you should list the two languages you can use to query in
MongoDB

Quiz

When querying in SQL, you query a _________?

When querying in MongoDB, you query a _______?

What are the two languages for querying in MongoDB?

Fill in the blank - When querying in SQL, you query a ________?

Quiz

When querying in SQL, you query a table.

When querying in MongoDB, you query a _______?

What are the two languages for querying in MongoDB?

Records are stored in tables in relational databases, when you query a relational
database the query can involve one or more tables.

Quiz

When querying in SQL, you query a table.

When querying in MongoDB, you query a _______?

What are the two languages for querying in MongoDB?

Fill in the blank - When querying in MongoDB, you query a ________?

Quiz

When querying in SQL, you query a table.

When querying in MongoDB, you query a collection.

What are the two languages for querying in MongoDB?

In MongoDB documents are stored in a collection, when you query in MongoDB you
query one or more collections.

Quiz

When querying in SQL, you query a table.

When querying in MongoDB, you query a collection.

What are the two languages for querying in MongoDB?

What are the two languages for querying in MongoDB?

Quiz

When querying in SQL, you query a table.

When querying in MongoDB, you query a collection.

What are the two languages for querying in MongoDB?

MongoDB Query Language (MQL)

MongoDB Aggregation Framework

The two languages used for querying in MongoDB are the MongoDB Query
Language (MQL) and the MongoDB Aggregation Framework, we covered them very
briefly in this lesson but that’s a far more to cover on each topic.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

