
Indexing in MongoDB

LESSON

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1Hf4QPviZXwFzURCgOSY5AAnjynNPZgO3Pa6aIfBdanM/edit?usp=sharing

What is an Index in MongoDB?
Indexes hold a small portion of the
collection's data in a form that's easy
to traverse. They are used to:

● Speed up queries and updates
● Avoid disk I/O as queries

eliminating the need for slow
collection scans

● Reduce overall computation

Indexes are designed to track a small portion of a collection’s data in a format that is
quick and easy to traverse.
Their goal is to speed up queries and updates.
They help to avoid disk input/output as without indexes every document in a collection
must be read to ensure the criteria of the query are met. This is called a collection
scan.
Indexed help reduce the overall computation in the system.

When to Use Indexes
Developers should use an index when querying data in a
collection, especially for frequently run queries.

When determining if an index should be used, consider:

● Four indexes is a good rule of thumb for the
ideal number for a given collection.

● Sixty-four indexes are the maximum per
collection, however, above 20 and
performances renders the system almost
unusable for workloads.

An index should support any query that updates or queries data in a collection, if
possible.
They should be present for the most frequent queries.
4 indexes are a good rule of thumb for the ideal number of indexes on a collection.
More than this and you should determine if the schema and indexing strategy
shouldn’t be refactored.

You can have at maximum 64 indexes per collection, however typically once there are
20 or more indexes on a collection then it can become highly unresponsive for a large
number of workloads and use cases.

Considerations When Using Indexes
Indexes require RAM.

Avoid unnecessary indexes at all cost, otherwise the write. performance will suffer. Each
index adds 10% overhead.

When does an index entry get modified?

● Data is inserted (applies to all indexes).
● Data is deleted (applies to all indexes).
● Data is updated in such a way that its indexed field

changes.

It is important to keep in mind that every index that you have should be used by a
query, otherwise an unused index will sit there, using up precious RAM space and
slowing down writes.

Unnecessary indexes should be avoided as they will impact write performance. Each
index adds approximately 10% overhead. How come an index slows down writes?
Because it gets modified every time a field that is an index key is modified.

When does an index entry get modified?

An index is modified any time a document:
● Is inserted (applies to all indexes)
● Is deleted (applies to all indexes)
● Is updated in such a way that its indexed field changes

Quiz

Quiz

Which of the following is true for indexing in MongoDB? More than one
answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent queries

E. Indexes do not add any performance impact on the database

Quiz

Which of the following is true for indexing in MongoDB? More than one
answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent queries

E. Indexes do not add any performance impact on the database

CORRECT: Supports query or update operators. - This is correct. Indexes are
designed to help these operators by more quickly returning the documents being
acted on than having to perform a collection scan for all documents.
INCORRECT: Necessary and required for querying. - This is incorrect, in the sense
that indexes apart from the _id index are not required. If there is no index then the
query will use a collection scan to read all the documents to service the query.
INCORRECT: All fields should be part of one or more indexes. - This is incorrect,
indexing should be limited to the fields that best support the queries so that it may not
even be necessary to add all the fields used in a query to an index.
CORRECT: Indexes should be used on the most frequent queries. - This is correct
and with a well designed indexing strategy significant performance improvements can
be seen.
INCORRECT: Indexes do not add any performance impact on the database. - This is
incorrect. Indexes do add an impact to performance, the index(es) must be updated
whenever the fields indexes are changed or updated or deleted.

Quiz
Which of the following is true for indexing in MongoDB?
More than one answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent
queries

E. Indexes do not add any performance impact on
the database

This is correct. Indexes are
designed to help these
operators by more quickly
returning the documents
being acted on than having
to perform a collection scan
for all documents.

CORRECT: Supports query or update operators. - This is correct. Indexes are
designed to help these operators by more quickly returning the documents being
acted on than having to perform a collection scan for all documents.

Quiz
Which of the following is true for indexing in MongoDB?
More than one answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent
queries

E. Indexes do not add any performance impact on
the database

This incorrect, in the sense
that indexes apart from the
_id index are not required. If
there is no index then the
query will use a collection
scan to read all the
documents to service the
query.

INCORRECT: Necessary and required for querying. - This is incorrect, in the sense
that indexes apart from the _id index are not required. If there is no index then the
query will use a collection scan to read all the documents to service the query.

Quiz
Which of the following is true for indexing in MongoDB?
More than one answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent
queries

E. Indexes do not add any performance impact on
the database

This incorrect, indexing
should be limited to the fields
that best support the queries
so that it may not even be
necessary to add all the
fields used in a query to an
index.

INCORRECT: All fields should be part of one or more indexes. - This is incorrect,
indexing should be limited to the fields that best support the queries so that it may not
even be necessary to add all the fields used in a query to an index.

Quiz
Which of the following is true for indexing in MongoDB?
More than 1 answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent
queries

E. Indexes do not add any performance impact on
the database

This is correct and with a well
designed indexing strategy
significant performance
improvements can be seen.

CORRECT: Indexes should be used on the most frequent queries. - This is correct
and with a well designed indexing strategy significant performance improvements can
be seen.

Quiz
Which of the following is true for indexing in MongoDB?
More than 1 answer choice can be correct.

A. Supports query or update operators

B. Necessary and required for querying

C. All fields should be part of one or more indexes

D. Indexes should be used on the most frequent
queries

E. Indexes do not add any performance impact on
the database

This incorrect. Indexes do
add an impact to
performance, the index(es)
must be updated whenever
the fields are changed or
updated or deleted.

INCORRECT: Indexes do not add any performance impact on the database. - This is
incorrect. Indexes do add an impact to performance, the index(es) must be updated
whenever the fields are changed or updated or deleted.

Types of Indexes in
MongoDB

Types of Indexes Available
Most common indexes:

● Single Field
● Compound Index

● Multikey Index
● Geospatial Index
● Text Index
● Hashed Index

● Time-To-Live (TTL) Index
● Hidden Index
● Partial Index
● Wildcard Index

Other types of specialized indexes including:

Single-field indexes are the most common index type.

Compound indexes are used to support queries using two or more fields.

Multikey indexes allow arrays to be indexed by adding an index key per element in
the array.

Geospatial indexes support queries on location fields, in MongoDB location fields can
be GeoJSON objects or coordinate pairs. If you wanted to find the closest location
within a specified geographical area then this index can support your query.

Text indexes allow for string fields or arrays with string elements to be effectively
queried. If you had product descriptions or review fields then this type of index would
help effectively support your query. A richer type of text index is available in MongoDB
Atlas that allows for much greater support of these types of queries, it is the Atlas
Search feature and uses Apache Lucene.

Hashed indexes are used to support querying in sharding. The hash of a value is
indexed rather then the value itself.

Time-To-Live (TTL) indexes are used primarily for data expiration. They allow
documents to be removed after a period of time or at a specific clock time. They are a
specialised use of a single-field index but are worth discussing separately.

Hidden index are an optimisation feature for indexes in MongoDB. A index that is set
to hidden will not be visible to the query planner and as such cannot be used to
support a query. This type of index can be done on any index type with the exception
of the _id index. The purpose of a hidden index is to all you to see what happens if
you remove an index but gives the advantage that you haven't deleted it. If the index
turns out to be used and important to your queries then it can be unhidden.
Previously, if an index was removed it had to be completely deleted and if it was
needed again then it would have to be rebuilt from scratch.

Partial indexes allow you to define a specific filter expression and only index the
subset of documents in a collection that match the expression. This can reduce the
storage requirements and reduce the performance costs for index creation and
maintenance.

Wildcard indexes can be used to support queries against unknown or arbitrary fields.
MongoDB supports dynamic schemas allowing applications to query against fields
whose names cannot be known in advance or which may be arbitrary. This type of
index can support querying this type of dynamic schema. This type of index has some
limitations and is not designed to replace single or compound indexes so please refer
to the MongoDB documentation for more details on how and when to specifically use
this index type.

Quiz

Quiz

Fill in the blank for each of these questions from what we have just learnt.

A. The ______ index is primarily used for data expiration.

B. The ___________ index can be used to index a subset of documents
within a collection using an expression.

C. The ________ index supports dynamic schema where fields and their
names may not be known in advance.

D. A compound index supports queries on ___________ fields.

Quiz

Fill in the blank for each of these questions from what we have just learnt.

A. The ______ index is primarily used for data expiration.

B. The ___________ index can be used to index a subset of documents
within a collection using an expression.

C. The ________ index supports dynamic schema where fields and their
names may not be known in advance.

D. A compound index supports queries on ___________ fields.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data
expiration.

B. The ______ index can be used to index a subset of documents
within a collection using an expression.

C. The ________ index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on ___________ fields.

The Time-To-Live (TTL) index is primarily used for data expiration.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data expiration.

B. The ______ index can be used to index a subset of documents
within a collection using an expression.

C. The ________ index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on ___________ fields.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data expiration.

B. The Partial index can be used to index a subset of documents
within a collection using an expression.

C. The ________ index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on ___________ fields.

The Partial index can be used to index a subset of documents within a collection
using an expression.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data expiration.

B. The Partial index can be used to index a subset of documents
within a collection using an expression.

C. The ________ index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on ___________ fields.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data expiration.

B. The Partial index can be used to index a subset of documents
within a collection using an expression.

C. The Wildcard index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on ___________ fields.

The Wildcard index supports dynamic schema where fields and their names may not
be known in advance.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data expiration.

B. The Partial index can be used to index a subset of documents
within a collection using an expression.

C. The Wildcard index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on ___________ fields.

Quiz

A. The Time-To-Live (TTL) index is primarily used for data expiration.

B. The Partial index can be used to index a subset of documents
within a collection using an expression.

C. The Wildcard index supports dynamic schema where fields and
their names may not be known in advance.

D. A compound index supports queries on two or more fields.

A compound index supports queries on two or more fields.

Single Field
Indexes

Let’s move to look at Single Field Indexes.

Single Field Indexes

Note: The indexing an object type field does not index all the values separately.

Can be on any data
type.

Vast majority of all
indexes created/used.

Optimized to help search for
values within a given field.

The most common type of index created and used in MongoDB is the single field
index.

It is designed to help optimise searching for values within a given field.

Single field indexes can be used on any data type.

Single field indexes can index an object type field but you should note that it does not
index all the values separately.

Let’s take a walkthrough of how to add an index but first let’s look at what happens
without an index.

EXAMPLE

db.<col>.find()
>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { item: "journal", qty: 25, tags: ["blank", "red"], dim_cm: [14, 21] },

 { item: "notebook", qty: 50, tags: ["red", "blank"], dim_cm: [14, 21] },

 { item: "paper", qty: 100, tags: ["red", "blank", "plain"], dim_cm: [14, 21]

},

 { item: "planner", qty: 75, tags: ["blank", "red"], dim_cm: [22.85, 30] },

 { item: "postcard", qty: 45, tags: ["blue"], dim_cm: [10, 15.25] }

]);

To ensure we don’t have any old data that might interfere with our example, let’s drop
this collection as we will add data into it in the next step.

In order to have some data, let’s insert some documents into the inventory collection.
We’ve highlighted the qty 75 in the planner document as we’ll search for that in the
next step.

EXAMPLE

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { item: "journal", qty: 25, tags: ["blank", "red"], dim_cm: [14, 21] },

 { item: "notebook", qty: 50, tags: ["red", "blank"], dim_cm: [14, 21] },

 { item: "paper", qty: 100, tags: ["red", "blank", "plain"], dim_cm: [14, 21]

},

 { item: "planner", qty: 75, tags: ["blank", "red"], dim_cm: [22.85, 30] },

 { item: "postcard", qty: 45, tags: ["blue"], dim_cm: [10, 15.25] }

]);

>>> db.inventory.find({qty:75})

{ "_id" : ObjectId("5f5f8e0d789a1e68da1c0d7d"), "item" : "planner", "qty" : 75,

"tags" : ["blank", "red"], "dim_cm" : [22.85, 30] }

Let’s now search for all documents where the quantity in the inventory is exactly 75
and we find the planner document.

db.inventory.drop();
db.inventory.insertMany([
 { item: "journal", status: "A", size: { h: 14, w: 21,
uom: "cm" }, instock: [{ warehouse: "A", qty: 5 }] },
 { item: "notebook", status: "A", size: { h: 8.5, w: 11,
uom: "in" }, instock: [{ warehouse: "C", qty: 5 }] },
 { item: "paper", status: "D", size: { h: 8.5, w: 11,
uom: "in" }, instock: [{ warehouse: "A", qty: 60 }] },
 { item: "planner", status: "D", size: { h: 22.85, w: 30,
uom: "cm" }, instock: [{ warehouse: "A", qty: 40 }] },
 { item: "postcard", status: "A", size: { h: 10, w:
15.25, uom: "cm" }, instock: [{ warehouse: "B", qty: 15
}, { warehouse: "C", qty: 35 }] }
]);
db.inventory.find({qty:75});

See:
https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/

https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/

EXAMPLE

How the query is interpreted by the DB

>>> db.inventory.find({qty:75}).explain()

An explain is the method that allows us to see how the database interprets and
processes the query.
We can simply rerun the last query and add explain() to the end of the query to see
how the DB interprets and processes the query.

For more details on explain, checkout the documentation page at
https://docs.mongodb.com/manual/reference/method/db.collection.explain/index.html

The important point in this output is the COLLSCAN, which is short for Collection
Scan. This means that to fulfil this query every document in the collection was looked
at. This is not a very efficient approach and as the number of documents grow this will
have significant performance impacts.

EXAMPLE

How the query is interpreted by the DB
>>> db.inventory.find({qty:75}).explain()

{
"queryPlanner" : {

"plannerVersion" : 1,
"namespace" : "test.inventory",
"indexFilterSet" : false,
"parsedQuery" : { "qty" : { "$eq" : 75 } },
"queryHash" : "36DB8386",
"planCacheKey" : "36DB8386",
"winningPlan" : {

"stage" : "COLLSCAN",
"filter" : { "qty" : { "$eq" : 75 } },
"direction" : "forward"

},
"rejectedPlans" : []

},
"serverInfo" : {

The explain() command provides a lot of output, specifically we want to look at the
winningPlan.
The important point in this output is the COLLSCAN, which is short for Collection
Scan. This means that to fulfil this query every document in the collection was looked
at. This is not a very efficient approach and as the number of documents grow this will
have significant performance impacts.
This indicates that the query did not have a suitable index that could be used to
service the query.

For more details on explain, checkout the documentation page at
https://docs.mongodb.com/manual/reference/method/db.collection.explain/index.html

Explaining explain()

explain() verbosity can be adjusted:

● default: Determines the winning query plan but does not
execute query

● executionStats: Executes query and gathers more
statistics

● allPlansExecution: Runs all candidate plans to
completion and gathers statistics on all of these

Explain() is the function which provides details on how the query planner interpreted
the query and what method it used to find and return the documents.

It has three levels of verbosity:

the default level which we have just covered and that only highlights the winning
query plan but does not execute the query.

The next level of verbosity in terms of more information is executionStats. This level
executes the query and gathers more detailed statistics than the default level.

The highest level of verbosity is the allPlansExecution level. This runs all of the
candidate plans to completion and then provides detailed statistics on all of these.

Let’s look at the query in more depth with the executionStats, firstly without an index
and then by adding an index to compare the differences.

EXAMPLE

Deeper Dive into explain() Statistics
>>> db.inventory.find({qty:75}).explain("executionStats")
{

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.inventory",
"indexFilterSet" : false,
"parsedQuery" : {

"qty" : {
"$eq" : 75

}
},
"winningPlan" : {

"stage" : "COLLSCAN",
"filter" : {

"qty" : {
"$eq" : 75

}
},

"direction" : "forward"
},
"rejectedPlans" : []

},

This output shows similar results to the default setting, however let’s look at the next
slide to see some more detailed statistics in the output

EXAMPLE

Deeper Dive into explain() Statistics
>>> db.inventory.find({qty:75}).explain("executionStats")
{....

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 0,
"totalKeysExamined" : 0,
"totalDocsExamined" : 5,
"executionStages" : {

"stage" : "COLLSCAN",
"filter" : { "qty" : { "$eq" : 75 } },
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 7, "advanced" : 1,
"needTime" : 5, "needYield" : 0,
"saveState" : 0, "restoreState" : 0,
"isEOF" : 1, "direction" : "forward",
"docsExamined" : 5

}
},

"rejectedPlans" : []
},

We can see more details here on the query, that it needed to examine 5 documents in
order to return a single document to satisfy the query criteria. It also didn’t examine
any keys as there are no indexes applicable for this query.

totalDocsExamined is the statistic that indicates how many documents were
examined by the query, 5 in this example.
totalKeysExamined is the statistic that indicates how many index keys were examined
by the query, 0 in this example as there is no suitable index available.
nReturned is the number of documents return by the query that satisfied the query
criteria.

EXAMPLE

What Does Adding an Index Do?
>>> db.inventory.createIndex({qty:1})

Before re-running the query, let’s add a single field index to the collection to support
the query we want to run.

EXAMPLE

What Does Adding an Index Do?
>>> db.inventory.createIndex({qty:1})
>>> db.inventory.find({qty:75}).explain("executionStats")
{....

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 0,
"totalKeysExamined" : 1,
"totalDocsExamined" : 1, ...
"executionStages" : {

"stage" : "FETCH", ...
"inputStage" : {

"stage" : "IXSCAN",
"nReturned" : 1,
"keyPattern" : { "qty" : 1},
"indexName" : "qty_1",
"keysExamined" : 1, ...

}
},

"rejectedPlans" : []
},

After adding the index, let’s re-run the query from our previous example and again
use the explain function to explore how the query is being processed by the database

We can see even more details here on the query with the explain after adding the
index. We can see that it now needed to examine 1 key in order to return a single
document to satisfy the query criteria.

The ‘qty’ index we added was able to service the query and hence it was an index
rather than collection scan (IXSCAN) which was used. This is much more efficient and
scalable than the previous query without an index.

explain() uses several acronyms to highlight the various aspects:

● COLLSCAN: Looks through the documents in a collection

● IXSCAN: Looks through index

● FETCH: Reads a known document, retrieval of the document

● totalKeysExamined/totalDocsExamined:How many of the keys or documents
needed to be read as part of the query.

● nReturned: How many documents were returned by the query.

Acronyms Used by explain()

Explain uses a number of acronyms are important to remember. These are the main
items that you should look for when visually scanning the output from the explain() to
help you pinpoint the key statistics on your query.

COLLSCAN - this means the query must look through all of the documents in the
collection to fulfill the query
IXSCAN - this means the query must look through an index to fulfill the query.
FETCH - this is where the query planner reads and returns a known document
totalKeysExamined - this is the number of index keys examined in servicing the query
totalDocsExamined - this is the number of documents examined in servicing the query
nReturned - this is how many documents that this query returned to fulfil the query’s
criteria

Quiz

Quiz

Which of the true for explain() in MongoDB? More than one answer
choice can be correct.

A. Supports various levels of verbosity of detail.

B. executionStats is the default level of verbosity.

C. All calls to explain() will run all the candidate plans for a
query.

D. Explain() provides output on how many index keys and
how many documents were read to service the query.

Quiz

Which of the true for explain() in MongoDB? More than one
answer choice can be correct.

A. Supports various levels of verbosity of detail.

B. executionStats is the default level of verbosity.

C. All calls to explain()will run all the candidate plans for a
query.

D. Explain() provides output on how many index keys and
how many documents were read to service the query.

CORRECT: Supports various levels of verbosity of detail. - It supports three levels of
verbosity
INCORRECT: executionStats is the default level of verbosity. - Default is the default
level of verbosity
INCORRECT: All calls to explain() will run all the candidate plans for a query. - Only
allPlansExecuted performs this.
CORRECT: Explain() provides output on how many index keys and how many
documents were read to service the query. - This is correct.

Quiz

Which of the true for explain() in MongoDB? More than one
answer choice can be correct.

A. Supports various levels of verbosity of detail.

B. executionStats is the default level of verbosity.

C. All calls to explain() will run all the candidate plans
for a query.

D. Explain() provides output on how many index keys
and how many documents were read to service the
query.

This is correct. It
supports three levels
of verbosity.

CORRECT: Supports various levels of verbosity of detail. - It supports three levels of
verbosity

Quiz

Which of the true for explain() in MongoDB? More than
one answer choice can be correct.

A. Supports various levels of verbosity of detail.

B. executionStats is the default level of verbosity.

C. All calls to explain() will run all the candidate plans
for a query.

D. Explain() provides output on how many index
keys and how many documents were read to service
the query.

This incorrect. Default
is the default level of
verbosity.

INCORRECT: executionStats is the default level of verbosity. - This is incorrect.
Default is the default level of verbosity

Quiz

Which of the true for explain() in MongoDB? More than
one answer choice can be correct.

A. Supports various levels of verbosity of detail.

B. executionStats is the default level of verbosity.

C. All calls to explain() will run all the candidate plans
for a query.

D. Explain() provides output on how many index keys
and how many documents were read to service the
query.

This incorrect. Only
allPlansExecuted
performs this.

INCORRECT: All calls to explain() will run all the candidate plans for a query. - This is
incorrect. Only allPlansExecuted performs this.

Quiz

Which of the true for explain() in MongoDB? More than
one answer choice can be correct.

A. Supports various levels of verbosity of detail.

B. executionStats is the default level of verbosity.

C. All calls to explain() will run all the candidate
plans for a query.

D. Explain() provides output on how many index
keys and how many documents were read to service
the query.

This is correct.
Explain() provides
these details.

CORRECT: Explain() provides output on how many index keys and how many
documents were read to service the query. - This is correct. Explain provides these
details

Multikey Indexes

Multikey Indexes

A multikey index provides on index entry for each value in an array.

● Supports primitives, documents, or sub-arrays.

Created with the same syntax as normal indexes.

A compound multikey index can only have at most one indexed field
whose value is an array.

Each array element is given one entry in the index. This can create
very large indexes in comparison to single field indexes.

A multikey index provides one index entry per value in an array. It can support
documents, primitives, or sub-arrays.

It uses the normal/standard syntax for normal indexes.

A compound multikey index can have only one indexed field whose value is an array.

Every and each array element is assigned an index entry, this can create very large
indexes in comparison to single field indexes.

Let’s Try Out Indexing and Explains
Change <A> and as necessary below to create the index and then to the fields you
have created the index on.

How many keys were examined? How many documents were examined?

>>> db.inventory.drop()
>>> db.inventory.insertMany([{ _id: 1, item: "abc", stock: [{ size: "S", color:
"red", quantity: 25 }, { size: "S", color: "blue", quantity: 10 }, { size: "M", color:
"blue", quantity: 50 }] }, { _id: 2, item: "def", stock: [{ size: "S", color: "blue",
quantity: 20 }, { size: "M", color: "blue", quantity: 5 }, { size: "M", color: "black",
quantity: 10 }, { size: "L", color: "red", quantity: 2 }] }, { _id: 3, item: "ijk",
stock: [{ size: "M", color: "blue", quantity: 15 }, { size: "L", color: "blue",
quantity: 100 }, { size: "L", color: "red", quantity: 25 }] }])
>>> db.inventory.createIndex({ "stock.size": <A>, "stock.quantity": })
>>> db.inventory.find({ <A>: "S", : { $gt: 20 } }).explain("executionStats")

Let’s dive into a hands-on, in this exercise you will use the example code to drop the
existing inventory collection and recreate it with some documents. This will give us the
baseline from which you can then try creating an indexing and interpreting the explain
output for a query.

Here is the complete code for this exercise with the solution below:
db.inventory.drop();
db.inventory.insertMany([{ _id: 1, item: "abc", stock: [{
size: "S", color: "red", quantity: 25 }, { size: "S", color:
"blue", quantity: 10 }, { size: "M", color: "blue", quantity:
50 }] }, { _id: 2, item: "def", stock: [{ size: "S", color:
"blue", quantity: 20 }, { size: "M", color: "blue", quantity: 5
}, { size: "M", color: "black", quantity: 10 }, { size: "L",
color: "red", quantity: 2 }] }, { _id: 3, item: "ijk", stock:
[{ size: "M", color: "blue", quantity: 15 }, { size: "L",
color: "blue", quantity: 100 }, { size: "L", color: "red",
quantity: 25 }] }]);
db.inventory.createIndex({ "stock.size": 1, "stock.quantity":
1 });
db.inventory.find({ "stock.size": "S", "stock.quantity": {
$gt: 20 } }).explain("executionStats");

The answers are:
● 3 index keys were examined

● 2 documents were examined

Results: Indexing and Explains

For the fields to the query <A> should be "stock.size" and
should be "stock.quality".

>>> db.inventory.find({ “stock.size” : "S", “stock.quality”: { $gt: 20 } }
).explain("executionStats")

In this case, let’s set <A> to “stock.size” and to “stock.quality” as well as adding
the “executionStats” option to the explain function. We’ll now run the query.

Results: Indexing and Explains

For the fields to the query <A> should be "stock.size" and should
be "stock.quality".

3 keys were examined and 2 documents were examined to return 1
document.

>>> db.inventory.find({ “stock.size” : "S", “stock.quality”: { $gt: 20 } }
).explain("executionStats")
…

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 0,
"totalKeysExamined" : 3,
"totalDocsExamined" : 2,

…

Let’s break down the results from the “executionStats” output, firstly the query
examined 3 index keys indicated by “totalKeysExamined.,

Results: Indexing and Explains

For the fields to the query <A> should be "stock.size" and should
be "stock.quality".

3 keys were examined and 2 documents were examined to return 1
document.

>>> db.inventory.find({ “stock.size” : "S", “stock.quality”: { $gt: 20 } }
).explain("executionStats")
…

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 0,
"totalKeysExamined" : 3,
"totalDocsExamined" : 2,

…

The query looked at 2 documents as indicated by the “totalDocsExamined” field in the
“executionStats” output.

Results: Indexing and Explains

For the fields to the query <A> should be "stock.size" and should
be "stock.quality".

3 keys were examined and 2 documents were examined to return 1
document.

>>> db.inventory.find({ “stock.size” : "S", “stock.quality”: { $gt: 20 } }
).explain("executionStats")
…

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 0,
"totalKeysExamined" : 3,
"totalDocsExamined" : 2,

…

The final piece of information of interest from this piece of the “executionStats” output
is that the query returned a single / one document.

Compound Indexes

What are Compound Indexes?

Indexes created on two or more fields, with a maximum of 32 fields.

Key Considerations:

● Direction and field order are of critical importance.
● A compound index can be used as long as the first field in

index is in the query then the other index fields do not need
to be part of the query.

● ESR - Equality then Range or Sort (usually sort)
● A limit of one array field per compound index.

Compound indexes are created on two or more fields, they have a limit of using a
maximum of 32 fields.

In creating these indexes, the direction and field ordering are of critical importance to
ensure the maximum utility of the index.

A compound index can be used in any query once the first field in the index is in the
query, this is regardless of whether or not other fields from the index are present or
not in the query.

Equality-Sort-Range This highlights Equality First then narrow down the amount of
documents that will need to be queried by range or sorted. Fewer documents will
mean less work required which ranks this index higher in the query planner’s
assessment, making it more likely to be the index that is chosen to support the query.

ESR applies to most but not to all situations, so it’s a guide rather than a rule.

There is a limit of one array field per compound index.

Example: Field Ordering
find({country:"IE",city:"Dublin"})

createIndex({country:1,state:1,city:1})

createIndex({country:1,city:1,state:1})

The latter index {country:1,city:1,state:1} is the
better choice. It doesn’t requiring examining all the keys for
that country and for every state in that country.

 It goes directly to the country and to the city.

Given this example query for location with a city, county and where the document also
contains the state geographical information, we can create the index on country, state,
and city.

We can equally create the index on country, city, and state.

The ordering is important as the latter index on country, city and state is a better
choice. The ordering prevents the query from needing to examine all of the state keys
for the country.

Instead it can query directly to the country and to the city required.

E S R
Equality
{ “name” : “sean” }

Sort
.sort({ “city”: -1 })

Range
{ “age”: { $gt: 42 } }

Taking an aside for a moment, let’s look at the ESR guide. Let’s first define ESR.

E is for Equality

S is for Sort

R is for Range

Cardinality
Attempts to quantify how unique the data values are for the field and the given number
of values possible for the field.

Distinct Values / Number of Values

High Cardinality: _id

Medium Cardinality: name

Low Cardinality: isEmployee

Cardinality is a metric that attempts to quantify how unique the data values are for a
given field and the given number of possible values for that field.

_id is an example of a high cardinality field, name would be a medium cardinality field
and the boolean isEmployee would be a low cardinality field.

Selectivity and Compound Indexes
What do we mean by selectivity?

● Selectivity defines how much an index can reduce the items to be examined.
● Effective indexes are more selective
● Compound indexes improve the selectivity of low-selectivity fields
● Include the low-selectivity field (name) and another field (age)

Note: If we are creating a compound index and the query matches on two fields Name and Age, then
creating an index {Name, Age} or {Age, Name} will have the same performance irrespective of the
selectivity of each individual field.

{ Name, Age } is equally selective as { Age, Name }

Selectivity defines how much an index helps in reducing the number of items to be
examined when fulfilling the query.

More selective indexes are more effective.

A compound index can help improve the selectivity of low-selectivity fields (say
combing name with another field such as age).

It’s important to note that is we have a compound index with a query which is a match
on both fields say Name and Age. The ordering of these fields is irrelevant as either
ordering is equally selective.

Quiz

Quiz

Which of the following are true for compound indexes in MongoDB? More
than one answer choice can be correct.

A. Field direction and field ordering are not important

B. It can be used for a query only if all the fields in the query are in the
index

C. 64 is the maximum number of fields be used in this type of index

D. A limit of one array field per compound index

Quiz

Which of the following are true for compound indexes in MongoDB? More
than one answer choice can be correct.

A. Field direction and field ordering are not important

B. It can be used for a query only if all the fields in the query are in the
index

C. 64 is the maximum number of fields be used in this type of index

D. A limit of one array field per compound index

INCORRECT: Field direction and field ordering are not important. - This is false as the
ordering of fields and their direction are very important to the performance of a
compound index.
INCORRECT: It can be used for a query only if all the fields in the query are in the
index. - This is not true, you can use a compound index so long as the first field of the
index is in the query.
INCORRECT: 64 is the maximum number of fields be used in this type of index. - 64
is the number of indexes you can have in a collection, 32 is the number of fields you
can index with a compound index.
CORRECT: A limit of one array field per compound index. - You can use up to 32
fields in this type of index but only one may be an array field.

Quiz
Which of the following are true for compound indexes in
MongoDB? More than one answer choice can be correct.

A. Field direction and field ordering are not important

B. It can be used for a query only if all the fields in the
query are in the index

C. 64 is the maximum number of fields be used in this
type of index

D. A limit of one array field per compound index

This incorrect. The
ordering of fields and
their direction are very
important to the
performance of a
compound index.

INCORRECT: Field direction and field ordering are not important. - This is false as the
ordering of fields and their direction are very important to the performance of a
compound index.

Quiz
Which of the following are true for compound indexes in
MongoDB? More than one answer choice can be correct.

A. Field direction and field ordering are not important

B. It can be used for a query only if all the fields in the
query are in the index

C. 64 is the maximum number of fields be used in this
type of index

D. A limit of one array field per compound index

This incorrect. You can use
a compound index so long
as the first field of the
index is in the query.

INCORRECT: It can be used for a query only if all the fields in the query are in the
index. - This is incorrect. You can use a compound index so long as the first field of
the index is in the query.

Quiz
Which of the following are true for compound indexes in
MongoDB? More than one answer choice can be correct.

A. Field direction and field ordering are not important

B. It can be used for a query only if all the fields in the
query are in the index

C. 64 is the maximum number of fields be used in this
type of index

D. A limit of one array field per compound index

This incorrect. 64 is the
number of indexes you
can have in a collection,
32 is the number of fields
you can index with a
compound index.

INCORRECT: 64 is the maximum number of fields be used in this type of index. - This
is incorrect. 64 is the number of indexes you can have in a collection, 32 is the
number of fields you can index with a compound index.

Quiz
Which of the following are true for compound indexes in
MongoDB? More than one answer choice can be correct.

A. Field direction and field ordering are not important

B. It can be used for a query only if all the fields in the
query are in the index

C. 64 is the maximum number of fields be used in this
type of index

D. A limit of one array field per compound index

This is correct. You can
use up to 32 fields in this
type of index but only one
may be an array field.

CORRECT: A limit of one array field per compound index. - This is correct. You can
use up to 32 fields in this type of index but only one may be an array field.

Example: ESR -
Message Board

In this section of the lesson, we’ll talk about the equality sort range guidance in the
context of a message board example application.

EXAMPLE

Let’s add data
>>> db.messages.drop()

>>> a = [

{ "timestamp": 1, "username": "anonymous", "rating": 3 },

{ "timestamp": 2, "username": "anonymous", "rating": 5 },

{ "timestamp": 3, "username": "sam", "rating": 1 },

{ "timestamp": 4, "username": "anonymous", "rating": 2 },

{ "timestamp": 5, "username": "martha", "rating": 5 }]

>>> db.messages.insertMany(a)

//Index on timestamp

>>> db.messages.createIndex({ timestamp: 1 })

In this example of a message board application, let’s firstly add some data to help us
explore equality, sort and range.

As good practice, we’ll clear the collection before we add data to it to ensure we start
from a known good state / set of documents. Let's start with an index on just the
timestamp, that is our first criteria after all.

Here’s the code that you can cut and paste to add the data:
db.messages.drop()
a = [
{ "timestamp": 1, "username": "anonymous", "rating": 3 },
{ "timestamp": 2, "username": "anonymous", "rating": 5 },
{ "timestamp": 3, "username": "sam", "rating": 1 },
{ "timestamp": 4, "username": "anonymous", "rating": 2 },
{ "timestamp": 5, "username": "martha", "rating": 5 }]
db.messages.insertMany(a)
db.messages.createIndex({ timestamp: 1 })

EXAMPLE

Let’s explain it
>>> db.messages.find({timestamp: { $gte: 2, $lte: 4 } })

.explain("executionStats")

//"nReturned" : 3,

//"executionTimeMillis" : 0,

//"totalKeysExamined" : 3,

//"totalDocsExamined" : 3,

// Looks great. nReturned = totalKeysExamined

// How will it hold up when we add the {username: "anonymous"} criteria?

the explain results look good:
"executionSuccess" : true,

"nReturned" : 3,
"executionTimeMillis" : 0,
"totalKeysExamined" : 3,
"totalDocsExamined" : 3,

Let's add the {username: "anonymous"} criteria to the query

EXAMPLE

Updating the query with a username

>>> db.messages.find({timestamp: { $gte: 2, $lte: 4 },

username: "anonymous" }).explain("executionStats")

// Less great. nReturned < totalKeysExamined

// Should we add username to the index?

db.messages.createIndex({ timestamp: 1, username: 1 })

// Still nReturned < totalKeysExamined :(

How does the explain result change with this additional query requirement?
What happens when we traverse the existing index?

Index in the Wrong Order
Query: {timestamp:{$gte:2, $lte:4}, username:"anonymous"}
Index: { timestamp: 1, username: 1 }

1. Must do range part first as timestamp is first in index
2. Start at first timestamp >= 2
3. Walk tree L to R until timestamp not <= 4 (3 nodes) check each if 'anonymous'
4. Return only 2 of the three nodes visited (2 and 4)

4, Anonymous

2, Anonymous 5, Martha

3, Sam1, Anonymous

Index in the Correct Order
Query: {timestamp:{$gte:2, $lte:4}, username:"anonymous"}
Index: { username: 1, timestamp: 1 }

1. Exact Match at start filters down the tree to walk (Just Anonymous).
2. Find first Anonymous where timestamp >= 2
3. Walk tree whilst Anonymous & timestamp <= 4
4. Visits only 2 index nodes in total (2 and 4)

Martha, 5

Anonymous, 2 Sam, 3

Anonymous, 4Anonymous, 1

If we reorder the index to be username and then timestamp, we can improve the
performance of the index to service the query.

We find the first ‘anonymous’ index record where the timestamp is greater than or
equal to 2. We then walk the tree for username being ‘anonymous’ and where the
timestamp is less than or equal to 4. This means we’ll only need to visit two index
nodes, 2 and 4.

Add rating to the query and sort before range
Query: { timestamp:{$gte:2, $lte:4}, username:"anonymous" }.sort({ rating: 1})
Index: { username: 1, rating: 1, timestamp: 1 }

Martha, 5, 5

Anonymous, 3, 1 Sam, 2, 3

Anonymous, 5, 2Anonymous, 2, 4

1. Exact Match at start filters down the tree to walk (Just Anonymous).
2. Find first Anonymous where timestamp >= 2
3. Walk tree whilst Anonymous & timestamp <= 4
4. Visits only 2 index nodes in total (2 and 4)

If we change the query as we also want to sort the results, we can use the index to
actually perform the sort. The index should then be username, then rating and then
timestamp. This allows the index to sort the query results rather than needing to do
this separately with the complete results of the query.

We find the first ‘anonymous’ index record where the timestamp is greater than or
equal to 2. We then walk the tree for username being ‘anonymous’ and where the
timestamp is less than or equal to 4. This means we’ll only need to visit two index
nodes where the timestamp values are 2 and 4.

Indexing Commands Summary

Action Command

Create an Index db.<coll>.createIndex()

To create, view, analyze our indexes for space and for how they are interpreted as
well as to remove an index we can use these commands.

To create an index use the command db.<coll>.createIndex()

Indexing Commands Summary

Action Command

Create an index db.<coll>.createIndex()

List all the indexes db.<coll>.getIndexes()

To list the indexes of a collection use the command db.<coll>.getIndexes()

Indexing Commands Summary

Action Command

Create an index db.<coll>.createIndex()

List all the indexes db.<coll>.getIndexes()

See how much space they take up db.<coll>.stats().indexSizes

To see how much space the indexes of a collection use then use the command
db.<coll>.stats().indexSizes

Indexing Commands Summary

Action Command

Create an index db.<coll>.createIndex()

List all the indexes db.<coll>.getIndexes()

See how much space they take up db.<coll>.stats().indexSizes

See how they are used db.<coll>.find().explain()

To see how the indexes of a collection are being used then use the command
db.<coll>.find().explain()

Indexing Commands Summary

Action Command

Create an index db.<coll>.createIndex()

List all the indexes db.<coll>.getIndexes()

See how much space they take up db.<coll>.stats().indexSizes

See how they are used db.<coll>.find().explain()

Remove an index db.<coll>.dropIndex()

To drop an index then use the command db.<coll>.dropIndex()

Quiz

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The _________ command creates an index

B. The _________ command removes an index

C. The _________ command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

Fill in the blanks for each of these questions on indexing.
The first is:

A. The ___________ command creates an index

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The _________ command removes an index

C. The _________ command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

The createIndex() command creates an index.

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The _________ command removes an index

C. The _________ command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

The second question is:
A. The ___________ command removes an index

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The dropIndex() command removes an index

C. The _________ command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

The dropIndex() command removes an index.

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The dropIndex() command removes an index

C. The _________ command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

The third question is:
A. The ___________ command can be used to show how the query planner

interprets the query and the indexes able to service it.

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The dropIndex() command removes an index

C. The explain() command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

The explain() command can be used to show how the query planner interprets the
query and the possible indexes to service it.

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The dropIndex() command removes an index

C. The explain() command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The ___________ Sort Range rule of thumb is helpful in
ordering the fields of an index for better performance

The fourth question is:
A. The ___________ Sort Range rule of thumb is helpful in ordering the fields of

an index for better performance

Quiz

Fill in the blank for each of these questions from what we have just
learnt.

A. The createIndex()command creates an index

B. The dropIndex() command removes an index

C. The explain() command can be used to show how the query
planner interprets the query and the indexes able to service it

D. The Equality Sort Range rule of thumb is helpful in ordering the
fields of an index for better performance

The Equality Sort Range rule of thumb is helpful in ordering the fields of an index for
better performance.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

