
Querying Data with the
MongoDB Aggregation
Framework

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/13RojmrfLRe6WLVxQjB9eC1g_kDPeCKpS18DCUawE07g/edit?usp=sharing

$match

We previously covered MQL or the MongoDB Query Language in our lessons. It’s
provides a means of interacting with data in a single collection.

The Aggregation Framework extends what can be down with data beyond the
capabilities of MQL. It provides a framework to perform complex data processing on
the documents through a series of stages.

In this lesson, we’ll explore more about the Aggregation Framework and what it can
provide you in terms of functionality.

Let’s look at the $match stage as this is typically used when querying data and it’s a
good place to start.

Aggregation Framework $match

db.<collection>.aggregate({ $match: { <field>:<value>} })

Match uses filter document

More complex queries are possible with aggregation expressions

db.collection.aggregate({ $match: { $expr: { <expr>: { <field1>: <value1>}
} } })

Use as early as possible in the pipeline, ideally as the first stage. This
will improve the performance of the pipeline

If $match is the first stage in the pipeline, then indexes can be used

We’ve already introduced the $match stage in our last aggregation lesson but let’s
quickly recap the stage here.

It is similar to the MQL find() syntax using a field and a value for comparison
matching.

Aggregation Framework $match

db.<collection>.aggregate({ $match: { <field>:<value>} })

Match uses filter document

More complex queries are possible with aggregation expressions

db.collection.aggregate({ $match: { $expr: { <expr>: { <field1>: <value1>}
} } }).

Use as early as possible in the pipeline, ideally as the first stage. This
will improve the performance of the pipeline.

If first stage in the pipeline, can use indexes

It uses a query filter document to define the expressions that limit the query to the
subset of results you want to return.

The query filter document is a similar to standard JSON and consists of
field-value/key-value expressions.

If you use and empty query filter document {} then like find() it will return all of the
documents in the collection.

Aggregation Framework $match

db.<collection>.aggregate({ $match: { <field>:<value>} })

Match uses filter document

More complex queries are possible with aggregation expressions

db.collection.aggregate({ $match: { $expr: { <expr>: { <field1>: <value1>}
} } })

Use as early as possible in the pipeline, ideally as the first stage. This
will improve the performance of the pipeline

If first stage in the pipeline, can use indexes

The $match stage does not take ‘raw’ aggregation expressions, instead you need to
use the $expr operator for these. This allows the use of all the aggregation
expressions in the filtering criteria for the $match stage.

Aggregation Framework $match

db.<collection>.aggregate({ $match: { <field>:<value>} })

Match uses filter document

More complex queries are possible with aggregation expressions

db.collection.aggregate({ $match: { $expr: { <expr>: { <field1>: <value1>}
} } })

Use as early as possible in the pipeline, ideally as the first stage. This
will improve the performance of the pipeline

If first stage in the pipeline, can use indexes

It is recommended by MongoDB that you use the $match stage as early as possible
in an Aggregation Framework pipeline, ideally as the first stage.

$match will limit the total number of documents being processed by the aggregation
pipeline so the earlier it is used, the more processing it minimizes in the pipeline.

Aggregation Framework $match

db.<collection>.aggregate({ $match: { <field>:<value>} })

Match uses filter document

More complex queries are possible with aggregation expressions

db.collection.aggregate({ $match: { $expr: { <expr>: { <field1>: <value1>}
} } })

Use as early as possible in the pipeline, ideally as the first stage. This
will improve the performance of the pipeline

If first stage in the pipeline, can use indexes

$match will be able to use indexes if it is in the first stage

Quiz

Quiz
Which of the following are true for the $match aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $match uses a filter document to specify the match criteria

B. $match can use ‘raw’ aggregation expressions

C. $match should be placed early in the pipeline

D. Indexes can be used by $match if it is the first stage of the

pipeline

Quiz
Which of the following are true for the $match aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $match uses a filter document to specify the match criteria

B. $match can use ‘raw’ aggregation expressions

C. $match should be placed early in the pipeline

D. Indexes can be used by $match if it is the first stage of the

pipeline

CORRECT: $match uses a filter document to specify the match criteria -
INCORRECT: $match can use ‘raw’ aggregation expressions -
CORRECT: $match should be placed early in the pipeline -
CORRECT: Indexes can be used by $match if it is the first stage of the pipeline -

Quiz
Which of the following are true for the $match aggregation
stage in MongoDB? More than one answer choice can be
correct.

A. $match uses a filter document to specify the

match criteria

B. $match can use ‘raw’ aggregation expressions

C. $match should be placed early in the pipeline

D. Indexes can be used by $match if it is the first

stage of the pipeline

This is correct.
$match uses a
document to
specify the
criteria used for
matching.

CORRECT: $match uses a filter document to specify the criteria used for matching.

Quiz
Which of the following are true for the $match aggregation
stage in MongoDB? More than one answer choice can be
correct.

A. $match uses a filter document to specify the

match criteria

B. $match can use ‘raw’ aggregation expressions

C. $match should be placed early in the pipeline

D. Indexes can be used by $match if it is the first

stage of the pipeline

This incorrect. The
$match stage
cannot use 'raw'
aggregation
expression, it can
however use the
$expr operator
which can itself
use 'raw'
aggregation
expressions.

INCORRECT: The $match stage cannot use 'raw' aggregation expression, it can
however use the $expr operator which can itself use 'raw' aggregation expressions.

Quiz
Which of the following are true for the $match aggregation
stage in MongoDB? More than 1 answer choice can be
correct.

A. $match uses a filter document to specify the

match criteria

B. $match can use ‘raw’ aggregation expressions

C. $match should be placed early in the pipeline

D. Indexes can be used by $match if it is the first

stage of the pipeline

This is correct.
Placing the
$match stage
early in the
pipeline will help
reduce the
processing
required for the
aggregation and
is recommended
practice.

CORRECT: This is correct. Placing the $match stage early in the pipeline will help
reduce the processing required for the aggregation and is recommended practice.

Quiz
Which of the following are true for the $match aggregation
stage in MongoDB? More than one answer choice can be
correct.

A. $match uses a filter document to specify the

match criteria

B. $match can use ‘raw’ aggregation expressions

C. $match should be placed early in the pipeline

D. Indexes can be used by $match if it is the first

stage of the pipeline

This is correct. It
is possible to use
indexes with the
$match stage but
only if it is the first
stage of the
pipeline.

CORRECT: This is correct. It is possible to use indexes with the $match stage but
only if it is the first stage of the pipeline.

$match Stage: Exercise

MongoDB provides a MongoDB Shell that
accesses a MongoDB instance that can be
used to follow these examples using just a
web browser and no additional software.

How to use the MongoDB Web Shell

If you want to follow along with the example for your class or if you want your students
to follow along, MongoDB provides a MongoDB shell that accesses a MongoDB
instance that can be used to follow these examples using just a web browser and no
additional software. https://mws.mongodb.com/

https://mws.mongodb.com/
https://mws.mongodb.com/

Click on this web
page to connect to
the MongoDB Web
Shell instance.

https://mws.mongodb.com/

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Monthly Budget: Example Document

Let’s focus on a monthly budget example and look at one
document:

{ "_id" : 1, "category" : "food",

"budget": 400, "spent": 450 }

Fields of interest

Let’s take a few minutes to explore Aggregation and the $match stage, we’ll walk
through the syntax, create the data and then query the database to get the results.
You can do all these via the MongoDB Web Shell directly in our browser so you’ll only
need a browser to follow along with this exercise. In this exercise, we’ll look at
example using monthly budgets and expenses.

$match Stage: Exercise
Let’s focus on the Aggregation Framework syntax:

db.monthlybudget.aggregate([
{
 $match: {
 $expr: { $gt:
 ["$spent",
 "$budget"] }
 }
}
])

$expr for aggregation
expressions

Let’s look at the syntax we’ll need in the Aggregation Framework with $match to find
such documents.

We can see the use of $expr in the $match stage. This allows the use of aggregation
expressions as we noted $match can’t use these expression in the ‘raw’ and must use
them with the $expr operator.

In order to determine which categories had an overspend, we can compare
documents and look for documents where the “spent” field is greater than the
“budget” field. This will answer our question, to find where there were monthly budget
overspends.

[

 {

 $match: {

 $expr: {

 $gt: [

 "$spent",

 "$budget"]

 }

 }

 }

]

$match

monthlybudget

{... _id: 1 ...}

{... _id: 2 ...}

{... _id: 5 ...}

We can see this aggregation stage broken down into the stage $match, the $expr
operator to allow the use of aggregation expressions and the use of the comparison
greater than $gt expression to compare two fields in a given document to check for
budget overspends.

Let’s insert some real data on a budget!

>>> db.monthlybudget.insertMany([{ "_id" : 1, "category" : "food", "budget": 400,

"spent": 450 }, { "_id" : 2, "category" : "drinks", "budget": 100, "spent": 150

}, { "_id" : 3, "category" : "clothes", "budget": 100, "spent": 50 }, { "_id" :

4, "category" : "misc", "budget": 500, "spent": 300 }, { "_id" : 5, "category" :

"travel", "budget": 200, "spent": 650 }])

…

{ "acknowledged" : true, "insertedIds" : [1, 2, 3, 4, 5] }

$match Stage: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen. The result will be the same as we are explicitly
setting the ObjectIds for these documents.

db.monthlybudget.insertMany([{ "_id" : 1, "category" :
"food", "budget": 400, "spent": 450 }, { "_id" : 2,
"category" : "drinks", "budget": 100, "spent": 150 }, {
"_id" : 3, "category" : "clothes", "budget": 100, "spent":
50 }, { "_id" : 4, "category" : "misc", "budget": 500,
"spent": 300 }, { "_id" : 5, "category" : "travel",
"budget": 200, "spent": 650 }])

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Results

db.monthlybudget.aggregate({ $match: { $expr: {
$gt: ["$spent" , "$budget"] } } })

{ "_id" : 1, "category" : "food", "budget" : 400, "spent" : 450 }

{ "_id" : 2, "category" : "drinks", "budget" : 100, "spent" : 150 }

{ "_id" : 5, "category" : "travel", "budget" : 200, "spent" : 650 }

$match Stage: Exercise

Let’s just recap the aggregation pipeline again, we are using $match with $expr to
allow us to use the aggregation expression $gt (greater than). We’re checking for
documents where the value in the “spent” field is greater than the “budget” field
indicating an overspend.

Unlike the MongoDB Query Language we can add more processing at this point by
simply adding more stages to the current pipeline which only have a single stage with
$match.

We have the first result being an overspend of 50 for the category “food”
Then we have another overspend of 50 for the category “drinks”.
Finally, we have an overspend of 450 for the category “travel”.

Find where 500+ was spent and which overspent.

Using the same window, change <a> to the field representing what was spent.

Change to the value necessary to find all people whose age is greater than
500.

$match Stage: Exercise

>>> db.monthlybudget.aggregate({ $match: { $and: [{ $expr: {

$gt: ["$spent" , "$budget"] } }, { <a>: { : 500 } }] }
})

{ "_id" : 5, "category" : "travel", "budget" : 200, "spent" : 650 }

It’s your turn to find documents whose spend is greater than ($gte or $ge) 500, you
will need to change <a> to the operator for greater than or greater than equal and you
will need to change to the field which represents what was spent for the category.

The result in the code block is what you should see if you are successful.

$project

Aggregation Framework $project

db.<collection>.aggregate({ $project: { <specification(s)> }})

Project specification document

Aggregation expressions can reset an existing field or add a new field

db.collection.aggregate({ $project: { $field: <expr> } })

Include or exclude specific fields from the document

db.collection.aggregate({ $project: { $field: <1 or true> } })

We’ve already introduced the $project stage in our last aggregation lesson but let’s
quickly recap the stage here.

This stage allows for the reshaping of a document so fields can be included,
excluded, reset or new fields can be added.

Aggregation Framework $project

db.<collection>.aggregate({ $project: { <specification(s)> }})

Project specification document

Aggregation expressions can reset an existing field or add a new field

db.collection.aggregate({ $project: { $field: <expr> } })

Include or exclude specific fields from the document

db.collection.aggregate({ $project: { $field: <1 or true> } })

The $project specification document can specify the inclusion or the exclusion of
fields, the suppression of the _id field, the addition of new fields, and the resetting of
values for existing fields.

Aggregation Framework $project

db.<collection>.aggregate({ $project: { <specification(s)> }})

Project specification document

Aggregation expressions can reset an existing field or add a new field

db.collection.aggregate({ $project: { $field: <expr> } })

Include or exclude specific fields from the document

db.collection.aggregate({ $project: { $field: <1 or true> } })

The $project can make use of aggregation expression, specifically these can be used
to reset the value of an existing field in the document or to add a new field to the
document.

Aggregation Framework $project

db.<collection>.aggregate({ $project: { <specification(s)> }})

Project specification document

Aggregation expressions can reset an existing field or add a new field

db.collection.aggregate({ $project: { $field: <expr> } })

Include or exclude specific fields from the document

db.collection.aggregate({ $project: { $field: <1 or true> } })

It is possible to include or to exclude specific fields from the document as it passes
through the $project stage. To include a field you can specify 1 or true, whilst to
exclude a field you can specify 0 or false.

Click on this web
page to connect to
the MongoDB Web
Shell instance.

https://mws.mongodb.com/

For the next exercise, we will walk through an example that can be done in the
MongoDB Web Shell. To get started go to this link on your browser
https://mws.mongodb.com/.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

https://mws.mongodb.com/

Budget Item: Example Document

Let’s focus on the budget item example and look at one document:

{ "_id" : 1, "category" : "travel", "expense":

"airplane", "spent": 250, "budget": 200,

details: { "airline": "United", "flight_type":

"return", "seat_class": "economy"} }

Fields of
interest

Let’s take a few minutes to explore the $project stage with a hands-on session, we’ll
walk through the syntax, create the data and then query the database to get the
results. We’ll do all these via the MongoDB Web Shell directly in our browser so you’ll
only need a browser to follow along with this exercise. This builds on what we did for
our previous session with the $match stage in this lesson.

Let’s firstly look at a sample document for an single budget item example to see what
data is contained that will help us create a query to find where we spend more money
than budgeted for the item.

The two fields that are immediately useful to support this query, are budget and spent.
It is clear looking at the document for the “travel” category, that it had an overspent.
We’ll reuse our earlier $match condition to find all of the documents in the collection
that had an overspent.

We’ll then add a new $project condition to pull out a sub-set of the information we
want to keep.

$project Stage: Exercise

Let’s focus on the Aggregation Framework syntax:

db.budgetitem.aggregate([{ $match: { $and: [{ $expr: { $gt: [

"$spent" , "$budget"] } }, { spent: { $gte: 250 } }, {

"details": { $exists: true } }] } }, { $project: { _id: 0,

"expense": 1, "airline": "$details.airline", "flight_class":

"$details.seat_class", "flight_type": "$details.flight_type",

overspend: { $subtract: ["$spent" , "$budget"] } } }])

This example builds on our earlier example to include the $match stage with some
additional logic and adds a new $project stage. We’ll look at each stage in more detail
to better understand what the pipeline is doing.

$project Stage: Exercise
Let’s focus on the Aggregation Framework syntax:

db.budgetitem.aggregate([{

$match: { $and: [{ $expr: {

$gt: ["$spent" , "$budget"] } },

{ spent: { $gte: 250 } }, {

"details": { $exists: true } }] }

}, { $project: { … } }])

$match
stage
expanded
from prior
example

Building on our earlier example we again are interested in the documents where there
is an overspent. This $match uses a $and to ensure all of the conditions within it are
true. Specifically, there are three conditions. The first condition is that we spent more
than we budgeted which is captured by the $gt operator. The next condition within the
$and tracks only documents where the spend field has 250 or more (let’s focus on the
big ticket expenses). The third and final condition within the $and uses the $exists
operator to only return documents which have a details sub-document.

Restating this $match, we want documents where there is an overspend, where the
spend is greater than 250, and where there is a details sub-document.

The documents which pass all of these criteria are then sent to the $project stage that
we’ll look at next.
We can see the use of $expr in the $match stage. This allows the use of aggregation
expressions as we noted $match can’t use these expression in the ‘raw’ and must use
them with the $expr operator.

In order to determine which categories had an overspend, we can compare
documents and look for documents where the “spent” field is greater than the
“budget” field. This will answer our question, to find where there were monthly budget
overspends.

$project Stage: Exercise

Let’s focus on the Aggregation Framework syntax:

db.budgetitem.aggregate([{ $match: { … }, { $project: { _id:

0, "expense": 1, "airline": "$details.airline",

"flight_class": "$details.seat_class", "flight_type":

"$details.flight_type", overspend: { $subtract: ["$spent" ,

"$budget"] } } }])

Focusing now on the $project stage, we can highlight a few aspects. We can see that
the _id field is explicitly excluded and the expense field is explicitly included. We can
also see how to promote fields from an embedded field to the top level of the output
document. The last item to note is how we can create a new field, in this case the
“overspend” field. This is created by subtracting the budget from the spent amount
which will give the specific figure for the overspent.

[{ $match: { $and: [

 { $expr: { $gt: ["$spent" ,
"$budget"] } },

 { spent: { $gte: 250 } },

 { "details": { $exists: true
} }] } },

{ $project: {

 _id: 0, "expense": 1, "airline":

 "$details.airline",

 "flight_class":
"$details.seat_class",

 "flight_type":
"$details.flight_type",

 overspend: { $subtract: [
"$spent" , "$budget"] } } }]

$match

budgetitem

{... _id: 1 ...}

{... _id: 2 ...}

Let’s look at how this would work when we combine then. Firstly focusing on the
$match stage, we can see that we will only return two documents that meet the
criteria specified in the match.

It’s worth noting at this point, these documents have not been modified in any way as
we can see by their _id field still being present.

[{ $match: { $and: [

 { $expr: { $gt: ["$spent" ,
"$budget"] } },

 { spent: { $gte: 250 } },

 { "details": { $exists: true
} }] } },

{ $project: {

 _id: 0, "expense": 1, "airline":

 "$details.airline",

 "flight_class":
"$details.seat_class",

 "flight_type":
"$details.flight_type",

 overspend: { $subtract: [
"$spent" , "$budget"] } } }]

$match

budgetitem

{... _id: 1 ...}

{... _id: 2 ...}

{expense:

airline:

flight_class:

flight_type:

overspend:
}{ },

$project

⬟

expense:

airline:

flight_class:

flight_type:

overspend:

▼

Let’s now look at the $project stage, we can see the _id field has been excluded. We
have included the expense field and promoted the fields airline, seat_class, and
flight_type from the details sub-document to the top-level of the document. Finally, we
have added a new field, overspend, which contains the exact amount of the
overspend for this expense item.

Let’s insert some real data on budget items!

>>> db.budgetitem.insertMany([{ "_id" : 1, "category" : "travel", "expense":

"airplane", "spent": 250, "budget": 200, details: { "airline": "United",

"flight_type": "return", "seat_class": "economy"}}, { "_id" : 2, "category" :

"travel", "expense": "airplane", "spent": 450, "budget": 200, details: { "airline":

"United", "flight_type": "return", "seat_class": "first"}}, { "_id" : 3, "category" :

"travel", "expense": "train", "spent": 50, "budget": 75}, { "_id" : 4, "category" :

"travel", "expense": "bus", "spent": 25, "budget": 25}])

…

{ "acknowledged" : true, "insertedIds" : [1, 2, 3, 4] }

$project Stage: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen. The result will be the same as we are explicitly
setting the ObjectIds for these documents.

db.budgetitem.insertMany([{ "_id" : 1, "category" : "travel",
"expense": "airplane", "spent": 250, "budget": 200, details: {
"airline": "United", "flight_type": "return", "seat_class":
"economy"}}, { "_id" : 2, "category" : "travel", "expense":
"airplane", "spent": 450, "budget": 200, details: { "airline":
"United", "flight_type": "return", "seat_class": "first"}}, {
"_id" : 3, "category" : "travel", "expense": "train", "spent":
50, "budget": 75}, { "_id" : 4, "category" : "travel",
"expense": "bus", "spent": 25, "budget": 25}])

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Example

db.budgetitem.aggregate([{ $match: { $and: [{ $expr: { $gt: ["$spent" ,

"$budget"] } }, { spent: { $gte: 250 } }, { "details": { $exists: true } }] }

}, { $project: { _id: 0, "expense": 1, "airline": "$details.airline",

"flight_class": "$details.seat_class", "flight_type": "$details.flight_type",

overspend: { $subtract: ["$spent" , "$budget"] } } }])

{ "expense" : "airplane", "airline" : "United", "flight_class" : "economy",

"overspend" : 50 }

{ "expense" : "airplane", "airline" : "United", "flight_class" : "first",

"overspend" : 250 }

$project Stage: Exercise

Let’s just recap the aggregation pipeline again, we are using $match with $expr to
allow us to use the aggregation expression $gt (greater than). We’re checking for
documents where the value in the “spent” field is greater than the “budget” field
indicating an overspend. We’re also filtering out documents where the spent on the
item is less than 250 and finally we are only looking for documents with a details
sub-document. The $and operator means all three of these conditions must be true
for a document to be passed to the next stage of the aggregation.

In the second stage of the pipeline we use $project to filter out fields, to promote
several fields from the sub-document to the top of the document hierarchy, we also
include the expense field as well as adding a new field which includes the calculation
of the specific amount overspent for the budget item.

Next we will find the docs with no sub-docs and the overspend. Using the same
window, change <a> to the boolean to false to select only documents without the
“details” embedded document. Change to the operator necessary to calculate
the difference between the spent and the budget fields.

>>> db.budgetitem.aggregate([{ $match: { "details": { $exists: <a> } } },

{ $project: { _id: 0, "expense": 1, overspend: { : ["$spent" ,

"$budget"] } } }])

{ "expense" : "train", "overspend" : -25 }

{ "expense" : "bus", "overspend" : 0 }

$project Stage: Exercise

It’s your turn to find documents which do not have an embedded “details”
sub-document and where the expense and the overspend between the ‘spent’ and the
‘budget’ fields is included in the output document. This means you will need to change
<a> to the boolean so it selects only documents without the “details” field. You will
also need to change to the operator necessary to calculate the overspend. This is
done through subtraction.

The result in the code block is what you should see if you are successful.

db.budgetitem.aggregate([{ $match: { "details": { $exists:
false } } }, { $project: { _id: 0, "expense": 1, overspend: {
$subtract: ["$spent" , "$budget"] } } }])

Quiz

Quiz

Which of the following are true for the $project aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $project uses a document to specify criteria

B. $project can include and exclude fields to be outputted

C. $project can use array indexes

D. $project cannot promote fields from embedded arrays or
sub-documents

Quiz

Which of the following are true for the $project aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $project uses a document to specify criteria

B. $project can include and exclude fields to be outputted

C. $project can use array indexes

D. $project cannot promote fields from embedded arrays or
sub-documents

CORRECT: $project uses a document to specify criteria - This is correct. $project
uses a document to hold the specification criteria used for the stage.
CORRECT: $project can include and exclude fields to be outputted - This is correct.
The $project stages can exclude and include fields in the outputted document.
INCORRECT: $project can use array indexes - This is incorrect. The $project works
on the documents passed to it, this could be an entire collection or a subset but it is
unable to map these back to array indexes..
INCORRECT: $project cannot promote fields from embedded arrays or
sub-documents - This is incorrect. The $project stage can promote fields to the top
level of the document by adding a new field by using field paths to set the embedded
field as the value for the new field.

Quiz
Which of the following are true for the $project
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $project uses a document to specify
criteria

B. $project can include and exclude fields to
be outputted

C. $project can use array indexes

D. $project cannot promote fields from
embedded arrays or sub-documents

This is correct. $project
uses a document to hold
the specification criteria
used for the stage.

CORRECT: $project uses a document to specify criteria - This is correct. $project
uses a document to hold the specification criteria used for the stage.

Quiz
Which of the following are true for the $project
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $project uses a document to specify
criteria

B. $project can include and exclude fields to
be outputted

C. $project can use array indexes

D. $project cannot promote fields from
embedded arrays or sub-documents

This is correct. $project
uses a document to hold
the specification criteria
used for the stage.

CORRECT: $project can include and exclude fields to be outputted - This is correct.
The $project stages can exclude and include fields in the outputted document.

Quiz
Which of the following are true for the $project
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $project uses a document to specify
criteria

B. $project can include and exclude fields to
be outputted

C. $project can use array indexes

D. $project cannot promote fields from
embedded arrays or sub-documents

This is incorrect. The
$project works on the
documents passed to it,
this could be an entire
collection or a subset but
it is unable to map these
back to array indexes.

INCORRECT: $project can use indexes - This is incorrect. The $project works on the
documents passed to it, this could be an entire collection or a subset but it is unable
to map these back to array indexes.

Quiz
Which of the following are true for the $project
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $project uses a document to specify
criteria

B. $project can include and exclude fields to
be outputted

C. $project can use array indexes

D. $project cannot promote fields from
embedded arrays or sub-documents

This is incorrect. The
$project stage can
promote fields to the top
level of the document by
adding a new field by
using field paths to set
the embedded field as the
value for the new field.

INCORRECT: $project cannot promote fields from embedded arrays or
sub-documents - This is incorrect. The $project stage can promote fields to the top
level of the document by adding a new field by using field paths to set the embedded
field as the value for the new field.

$unwind

Let’s look at the $unwind stage as this can be useful when querying data and
particularly for restructuring it.

Aggregation Framework $unwind

Deconstruct an array field outputting a document for each element

Specify a field path to indicate the array to be deconstructed or specify
a document operator

Unwind nested arrays

Control output document if there are empty or null arrays

 Let’s firstly introduce the purpose of the $unwind stage. It deconstructs an array field
to output a document for each element in that array. This means that each output
document represents one of the array field values and each value will have its own
document.

Aggregation Framework $unwind

Deconstruct an array field outputting a document for each element

Specify a field path to indicate the array to be deconstructed or specify
a document operator

Unwind nested arrays

Control output document if there are empty or null arrays

The $unwind stage can take either a field path or a document operator when
specifying the array to unwind.

Aggregation Framework $unwind

Deconstruct an array field outputting a document for each element

Specify a field path to indicate the array to be deconstructed or specify
a document operator

Unwind nested arrays

Control output document if there are empty or null arrays

$unwind can be used to unwind embedded arrays. We’ll look at an example of this
shortly.

Aggregation Framework $unwind

Deconstruct an array field outputting a document for each element

Specify a field path to indicate the array to be deconstructed or specify
a document operator

Unwind nested arrays

Control output document if there are empty or null arrays

The control of which documents are output can be controlled if there are empty or null
arrays in input documents. This can be useful to error out or to continue depending on
the context for the aggregation pipeline.

Click on this web
page to connect to
the MongoDB Web
Shell instance.

https://mws.mongodb.com/

For the next exercise, we will walk through an example that can be done in the
MongoDB Web Shell. To get started go to this link on your browser
https://mws.mongodb.com/.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

https://mws.mongodb.com/

$unwind
example
using sales
data

sales

Let’s take a few minutes to explore the $unwind stage with a hands-on session, we’ll
walk through the syntax, create the data and then query the database to get the
results. We’ll do all these via the MongoDB Web Shell directly in our browser so you’ll
only need a browser to follow along with this exercise. This builds on what we did for
our previous session with the $match stage in this lesson.

Let’s imagine our aggregation pipeline as literally stages in a pipe and for this
example we can think of it as three interconnected but separate pipes.

sales
[

 { $unwind: "$items" },

 { $unwind: "$items.tags" },

 { $group: {

 _id: "$items.tags",

 totalSalesAmount: { $sum: {

 $multiply:

 ["$items.price",

 "$items.quantity"] } } }

 }

]

sales

Let’s imagine our aggregation pipeline as literally stages in a pipe and for this
example we can think of it as three interconnected but separate pipes.

sales
[

 { $unwind: "$items" },

 { $unwind: "$items.tags" },

 { $group: {

 _id: "$items.tags",

 totalSalesAmount: { $sum: {

 $multiply:

 ["$items.price",

 "$items.quantity"] } } }

 }

]

$unwind

{... id: 1 ...}

{... id: 1 ...}

{... id: 2 ...}

{... id: 2 ...}

The first unwind will break out each item from the array of items. This will create four
documents.

sales
[

 { $unwind: "$items" },

 { $unwind: "$items.tags" },

 { $group: {

 _id: "$items.tags",

 totalSalesAmount: { $sum: {

 $multiply:

 ["$items.price",

 "$items.quantity"] } } }

 }

]

$unwind
{... id: 1 ...}

{... id: 1 ...}

{... id: 2 ...}

{... id: 2 ...}

$unwind

{... id: 2 ...}

{... id: 2 ...}

{... id: 2 ...}

{... id: 2 ...}

sales

$unwind

{... id: 1 ...}

{... id: 1 ...}

{... id: 2 ...}

{... id: 2 ...}

$unwind

{... id: 2 ...}

{... id: 2 ...}

{... id: 2 ...}

{... id: 2 ...}

The second $unwind will break out each of the tags into their own individual
document, in this example it will create 10 documents from the input 4 documents.

sales
[

 { $unwind: "$items" },

 { $unwind: "$items.tags" },

 { $group: {

 _id: "$items.tags",

 totalSalesAmount: { $sum: {

 $multiply:

 ["$items.price",

 "$items.quantity"] } } }

 }

]

$unwind

{... id: 1 ...}

{... id: 1 ...}

{... id: 2 ...}

{... id: 2 ...}

$unwind

{... id: 2 ...}

{... id: 2 ...}

{... id: 2 ...}

{... id: 2 ...}

$group

In the final stage we’ll group the document to have two fields, an _id that represents a
tag and a totalSalesAmount which calculates how many sales there were for that
specific item. We calculate this as we had the number sold and the price per item but
the total sales figure wasn’t stored so we calculate it and store it now.

$unwind Stage: Exercise

Let’s focus on the sales example and look at one
document:

{ _id: "1", "items" : [{ "name" : "pens", "tags"

: ["writing", "office", "school", "stationary"],

"price" : NumberDecimal("12.00"), "quantity" :

NumberInt("5")},{ "name" : "envelopes", "tags" [

"stationary", "office"], "price" :

NumberDecimal("1.95"), "quantity" : NumberInt("8")

}]

}

Nested
arrays

Let’s firstly look at a sample document for a single sales example to see what data is
contained that will help us create a query to find where we total sales amount per
each tag. In this document, we can see that “items” is an array holding documents, for
each of the “items” documents.

We can further see they each possess a further array ‘tags’ which holds the tags
related to that item. This is a great example schema to show how $unwind can be
really useful in processing and restructuring documents.

$unwind Stage: Exercise

Let’s focus on the Aggregation Framework syntax:

db.sales.aggregate([

 { $unwind: "$items" },

 { $unwind: "$items.tags" },

 { $group: { _id: "$items.tags", totalSalesAmount: { $sum: {

$multiply: ["$items.price", "$items.quantity"] } } } }])

There are three stages in this aggregation example, two of the $unwind stages are
used to extract an array elements from within another array (an array within an array).
The $group stage is used to group the documents by tag and then using the $sum
and $multiple operators to calculate the total sales for each item with that tag.

Let’s insert some real data on sales!

db.sales.insertMany([

 { _id: "1", "items" : [{ "name" : "pens", "tags" : ["writing", "office",

"school", "stationary"], "price" : NumberDecimal("12.00"), "quantity" :

NumberInt("5") }, { "name" : "envelopes", "tags" : ["stationary", "office"],

"price" : NumberDecimal("1.95"), "quantity" : NumberInt("8") }] },

 { _id: "2", "items" : [{ "name" : "laptop", "tags" : ["office", "electronics"

], "price" : NumberDecimal("800.00"), "quantity" : NumberInt("1") }, { "name" :

"notepad", "tags" : ["stationary", "school"], "price" : NumberDecimal("14.95"),

"quantity" : NumberInt("3") }] }])

…

{ "acknowledged" : true, "insertedIds" : [1, 2] }

$unwind Stage: Exercise

We’ll add two sample documents into a new ‘sales’ collection but have the same
structure with the field items holding an array, each item in that array being a
document and within those documents there being a second array associated to the
‘tags’ field.

Example

db.sales.aggregate([{ $unwind: "$items" }, { $unwind: "$items.tags" }, {

$group: { _id: "$items.tags", totalSalesAmount: { $sum: { $multiply: [

"$items.price", "$items.quantity"] } } } }])

{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") }

{ "_id" : "office", "totalSalesAmount" : NumberDecimal("875.60") }

{ "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") }

{ "_id" : "stationary", "totalSalesAmount" : NumberDecimal("120.45") }

{ "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") }

$unwind Stage: Exercise

Let’s recap on the aggregation pipeline, it uses three stages. The first two stages
$unwind all of the items in firstly in the $item array and then in the tags nested array.
The third and final stage groups the items according to their tag and calculates the
total sales amount for that tag.

We can see five documents being returned. another array (an array within an array).
The $group stage is used group the documents by tag and then using the $sum and
$multiple operators to calculate the total sales for each item with that tag.

Find the docs with the ‘office’ tag

Using the same window, change <a> to the operator for equal to and change to the
field in the document which holds the tags information.

>>> db.sales.aggregate([{ $unwind: "$items" }, { $unwind: "$items.tags" }, {

$match: { $expr: { <a>: ["", "office"] } } }])

{ "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" :

NumberDecimal("12.00"), "quantity" : 5 } }

{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" :

NumberDecimal("1.95"), "quantity" : 8 } }

{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" :

NumberDecimal("800.00"), "quantity" : 1 } }

$unwind Stage: Exercise

It’s your turn to find documents where the tags match the category “office”. In this
pipeline you will need to add the equal operator and also the field for the tags of the
items, a hint is that this is an embedded field in the output document of the second
unwind stage.

The result in the code block is what you should see if you are successful.

db.sales.aggregate([{ $unwind: "$items" }, { $unwind:
"$items.tags" }, { $match: { $expr: { $eq: ["$items.tags",
"office"] } } }])

Quiz

Quiz

Which of the following are true for the $unwind aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $unwind uses field paths to identify the array to be unwound

B. $unwind can be used multiple times for embedded arrays

C. $unwind can use indexes

D. $unwind cannot be used when the arrays contain empty or null
entries

Quiz

Which of the following are true for the $unwind aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $unwind uses field paths to identify the array to be unwound

B. $unwind can be used multiple times for embedded arrays

C. $unwind can use indexes

D. $unwind cannot be used when the arrays contain empty or null
entries

CORRECT: $unwind uses field paths to identify the array to be unwound- This is
correct. Field paths are used directly or with document operators to specify the array
to be unwound by the $unwind stage.
CORRECT: $unwind can be used multiple times for embedded arrays - This is
correct. You can use a number of stages of $unwind sequentially to unwind deeply
nested arrays.
INCORRECT: $unwind can use indexes - This is incorrect. It is not possible to use
$unwind with indexes. The focus of this stage is data manipulation or data
restructuring rather than data querying.
The $unwind stage is focused on the stream of documents and pull aparting the array
elements into individual documents.
INCORRECT: $unwind cannot be used when the arrays contain empty or null entries -
This is incorrect. The preserveNullAndEmptyArrays flag can be used to process
arrays with null or empty entries.

Quiz
Which of the following are true for the $unwind
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $unwind uses field paths to identify the array
to be unwound

B. $unwind can be used multiple times for
embedded arrays

C. $unwind can use indexes

D. $unwind cannot be used when the arrays
contain empty or null entries

This is correct. $project uses
a document to hold the
specification criteria used for
the stageField paths are
used directly or with
document operators to
specify the array to be
unwound by the $unwind
stage.

CORRECT: $unwind uses field paths to identify the array to be unwound- This is
correct. Field paths are used directly or with document operators to specify the array
to be unwound by the $unwind stage.

Quiz
Which of the following are true for the $unwind
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $unwind uses field paths to identify the array
to be unwound

B. $unwind can be used multiple times for
embedded arrays

C. $unwind can use indexes

D. $unwind cannot be used when the arrays
contain empty or null entries

This is correct. You can use a
number of stages of $unwind
sequentially to unwind
deeply nested arrays.

CORRECT: $unwind can be used multiple times for embedded arrays - This is
correct. You can use a number of stages of $unwind sequentially to unwind deeply
nested arrays.

Quiz
Which of the following are true for the $unwind
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $unwind uses field paths to identify the array
to be unwound

B. $unwind can be used multiple times for
embedded arrays

C. $unwind can use indexes

D. $unwind cannot be used when the arrays
contain empty or null entries

This incorrect. It is not
possible to use $unwind with
indexes. The focus of this
stage is data manipulation
or data restructuring rather
than data querying.

INCORRECT: $unwind can use indexes - This is incorrect. It is not possible to use
$unwind with indexes. The focus of this stage is data manipulation or data
restructuring rather than data querying.

The $unwind stage is focused on the stream of documents and pull aparting the array
elements into individual documents.

Quiz
Which of the following are true for the $unwind
aggregation stage in MongoDB? More than one
answer choice can be correct.

A. $unwind uses field paths to identify the array
to be unwound

B. $unwind can be used multiple times for
embedded arrays

C. $unwind can use indexes

D. $unwind cannot be used when the arrays
contain empty or null entries

This incorrect. The
preserveNullAndEmptyArrays
flag can be used to process
arrays with null or empty
entries.

INCORRECT: $unwind cannot be used when the arrays contain empty or null entries -
This is incorrect. The preserveNullAndEmptyArrays flag can be used to process
arrays with null or empty entries.

$facet

Let’s look at the $facet stage as this can be useful when querying data and
particularly for running multiple pipelines with a single aggregation.

Aggregation Framework $facet

Run multiple aggregation pipelines in one stage

All the pipelines act on the same set of input documents

Each sub-pipeline returns a field in the output document

The results of each sub-pipeline are saved as an array of
documents

$facet allows for multiple aggregation pipelines to be run within a single stage on the
same set of input documents. Each of the sub-pipelines has its own field in the output
document where the results from it are saved as an array of documents.

Aggregation Framework $facet

Run multiple aggregations pipelines in one stage

All the pipelines act on the same set of input documents

Each sub-pipeline returns a field in the output document

The results of each sub-pipeline are saved as an array of
documents

Each of the pipelines defined within the $facet stage operate on the same set of input
documents. This allows for the documents to be classified across several dimensions
within this one stage.

Aggregation Framework $facet

Run multiple aggregations pipelines in one stage

All the pipelines act on the same set of input documents

Each sub-pipeline returns a field in the output document

The results of each sub-pipeline are saved as an array of
documents

The output of each sub-pipeline is returned as a single field within the output
document. These fields can be used in later stages after the $facet stage.

Aggregation Framework $facet

Run multiple aggregations pipelines in one stage

All the pipelines act on the same set of input documents

Each sub-pipeline returns a field in the output document

The results of each sub-pipeline are saved as an array of
documents

The results of each sub-pipeline are saved as an array of documents.

Click on this web
page to connect to
the MongoDB Web
Shell instance.

https://mws.mongodb.com/

For the next exercise, we will walk through an example that can be done in the
MongoDB Web Shell. To get started go to this link on your browser
https://mws.mongodb.com/.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

https://mws.mongodb.com/

$facet
example
using sales
data

inventory

$facet

Let’s take a few minutes to explore the $facet stage with a hands-on session, we’ll
walk through the syntax, create the data and then query the database to get the
results. We’ll do all these via the MongoDB Web Shell directly in our browser so you’ll
only need a browser to follow along with this exercise.

Looking at the $facet stage, we input the documents from the inventory collection and
then perform a number of sub-pipelines on those documents. Each of the sub-stages
within $facet will return a single field with the results of that stage stored in it as an
array.

inventory

$facet

[

 { $facet: { "categorizedByManufacturer": [{

$sortByCount: "$manufacturer" }],

"categorizedByTags": [{ $unwind: "$tags" },{

$sortByCount: "$tags" }],

"categorizedByPrice": [{ $match: { price: {

$exists: 1 } } }, { $bucket: { groupBy:

"$price", boundaries: [0, 15, 20, 25, 30],

default: "Other", output: { "count": { $sum:

1 }, "titles":{ $push: "$title" }}}}],

"categorizedByQuantity(Auto)": [{

$bucketAuto: {groupBy: "$quantity", buckets:

3 }}]

 } }

]

inventory

$facet

Looking at the $facet stage, we input the documents from the inventory collection and
then perform a number of sub-pipelines on those documents. Each of the sub-stages
within $facet will return a single field with the results of that stage stored in it as an
array.

inventory

$facet

[

 { $facet: {

"categorizedByManufacturer": [{

$sortByCount: "$manufacturer" }],

"categorizedByTags": [{ $unwind: "$tags"

},{ $sortByCount: "$tags" }],

"categorizedByPrice": [{ $match: {

price: { $exists: 1 } } }, { $bucket: {

groupBy: "$price", boundaries: [0, 15,

20, 25, 30], default: "Other", output: {

"count": { $sum: 1 }, "titles":{ $push:

"$title" }}}}],

"categorizedByQuantity(Auto)": [{

$bucketAuto: {groupBy: "$quantity",

buckets: 3 }}]

 } }

]

{…

categorizedByManufacturer: [],

categorizedByTags:[],

categorizedByPrice: [],

categorizedByQuantity(Auto): [],

…}

inventory

$facet

Looking a little deeper into the $facet sub-stages, we can see the four stages which
can be used to explore different aspects of the data. The pipeline in this example is
looking at tags, price, manufacturer details and how many are in stock. Each of the
sub-stages within $facet will return a single field with the results of that stage stored in
it as an array.

$facet Stage: Exercise
Let’s focus on the inventory example and look at one document:

{

 "_id" : 1, "title" : "Jinhao Fountain Pen",

 "manufacturer": "Jinhao",

 "quantity": NumberInt("5"),

 "tags": ["writing", "office", "school",

 "stationary"],

 "price" : NumberDecimal("15.00")

}

Let’s firstly look at a sample document for a single inventory example to see what
data is contained that will help us create the aggregation for the document.

We can see that it might be interesting to look at the inventory items by who made
them (manufacturer), by how many of them we have in stock (quantity), and by their
price.

We can further see they each possess a further array ‘tags’ which holds the tags
related to that item. We can again use $unwind to help explore these tags and further
combine it to determine how many items we have in each ‘tag’ category.

$facet Stage: Exercise

Let’s focus on the Aggregation Framework syntax:

db.inventory.aggregate([{ $facet: { "categorizedByManufacturer": [{

$sortByCount: "$manufacturer" }], "categorizedByTags": [{ $unwind:

"$tags" },{ $sortByCount: "$tags" }], "categorizedByPrice": [{

$match: { price: { $exists: 1 } } }, { $bucket: { groupBy: "$price",

boundaries: [0, 15, 20, 25, 30], default: "Other", output: {

"count": { $sum: 1 }, "titles":{ $push: "$title" }}}}],

"categorizedByQuantity(Auto)": [{ $bucketAuto: {groupBy: "$quantity",

buckets: 3 }}] } }])

Drilling into the aggregation framework $facet stage here, we can see it is essentially
calling four different sub-pipelines within the $facet stage.

Let’s insert some real data on inventory

db.inventory.insertMany([{"_id" : 1, "title" : "Jinhao Fountain Pen",

"manufacturer": "Jinhao", "quantity": NumberInt("5"), "tags": ["writing",

"office", "school", "stationary"], "price" : NumberDecimal("15.00") }, {"_id"

: 2, "title" : "Pilot MR Zig Zag Fountain Pen", "manufacturer": "Pilot",

"quantity": NumberInt("10"), "tags": ["writing", "office", "school",

"stationary"], "price" : NumberDecimal("20.00")}, {"_id" : 3, "title" :

"Pilot MR2 Tiger Fountain Pen", "manufacturer": "Pilot", "quantity":

NumberInt("5"), "tags": ["writing", "office", "school", "stationary"],

"price" : NumberDecimal("25.00")}])

…

{ "acknowledged" : true, "insertedIds" : [1, 2, 3] }

$facet Stage: Exercise

We’ll add three sample documents into a new inventory collection and we’ll use these
to show how $facet works.

Copy and paste into the Web Shell:
db.inventory.insertMany([{"_id" : 1, "title" : "Jinhao
Fountain Pen", "manufacturer": "Jinhao", "quantity":
NumberInt("5"), "tags": ["writing", "office", "school",
"stationary"], "price" : NumberDecimal("15.00") }, {"_id" : 2,
"title" : "Pilot MR Zig Zag Fountain Pen", "manufacturer":
"Pilot", "quantity": NumberInt("10"), "tags": ["writing",
"office", "school", "stationary"], "price" :
NumberDecimal("20.00")}, {"_id" : 3, "title" : "Pilot MR2 Tiger
Fountain Pen", "manufacturer": "Pilot", "quantity":
NumberInt("5"), "tags": ["writing", "office", "school",
"stationary"], "price" : NumberDecimal("25.00")}])

Results:

{ "categorizedByManufacturer" : [{ "_id" : "Pilot", "count" : 2 }, {

"_id" : "Jinhao", "count" : 1 }], "categorizedByTags" : [{ "_id" :

"office", "count" : 3 }, { "_id" : "stationary", "count" : 3 }, {

"_id" : "writing", "count" : 3 }, { "_id" : "school", "count" : 3 }],

"categorizedByPrice" : [{ "_id" : 15, "count" : 1, "titles" : [

"Jinhao Fountain Pen"] }, { "_id" : 20, "count" : 1, "titles" : [

"Pilot MR Zig Zag Fountain Pen"] }, { "_id" : 25, "count" : 1,

"titles" : ["Pilot MR2 Tiger Fountain Pen"] }],

"categorizedByQuantity(Auto)" : [{ "_id" : { "min" : 5, "max" : 10 },

"count" : 2 }, { "_id" : { "min" : 10, "max" : 10 }, "count" : 1 }] }

$facet Stage: Exercise

Here is the output of the $facet we can see each of the four fields from the
sub-pipelines creating arrays with the results of that specific sub-pipeline.

The small number of input documents (3) gives a taste of what the results of $facet
might be for a much larger inventory collection of tens or hundreds of documents.

Quiz

Quiz

Which of the following are true for the $facet aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $facet allows for multiple sub-pipelines to be run in the stage

B. Each sub-pipeline adds a field with an array holding its output

C. $facet can use indexes

D. An output field from $facet can be used as an input field within
the same $facet stage

Quiz

Which of the following are true for the $facet aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $facet allows for multiple sub-pipelines to be run in the stage

B. Each sub-pipeline adds a field with an array holding its output

C. $facet can use indexes

D. An output field from $facet can be used as an input field within
the same $facet stage

CORRECT: $facet allows for multiple sub-pipelines to be run in the stage - This is
correct. The $facet stage allows for one or more sub-pipelines to be run within the
stage.
CORRECT: Each sub-pipeline adds a field with an array holding its output- This is
correct. Each of the sub-pipeline stages in a $facet stage will provide one field in the
output document with its output stored as an array.
INCORRECT: $facet can use indexes. This is incorrect. Additionally, even if a $match
stage is used as the first stage in a pipeline this aggregation will not be able to use
indexes. A $facet stage will force the aggregation pipeline it is present in to use a
collection scan (COLSCAN).
INCORRECT: An output field from $facet can be used as an input field within the
same $facet stage. This is incorrect. It is possible to use the output field from a $facet
sub-pipeline as an input to a second later $facet stage in the overall aggregation
pipeline. It is not possible to use an output field as an input field within the same
$facet stage.

Quiz
Which of the following are true for the $facet aggregation
stage in MongoDB? More than 1 answer choice can be correct.

A. $facet allows for multiple sub-pipelines to be run in the
stage

B. Each sub-pipeline adds a field with an array holding its
output

C. $facet can use indexes

D. An output field from $facet can be used as an input
field within the same $facet stage

This is correct. The
$facet stage allows
for one or more
sub-pipelines to be
run within the stage.

CORRECT: $facet allows for multiple sub-pipelines to be run in the stage - This is
correct. The $facet stage allows for one or more sub-pipelines to be run within the
stage.

Quiz
Which of the following are true for the $facet
aggregation stage in MongoDB? More than one answer
choice can be correct.

A. $facet allows for multiple sub-pipelines to be run
in the stage

B. Each sub-pipeline adds a field with an array
holding its output

C. $facet can use indexes

D. An output field from $facet can be used as an
input field within the same $facet stage

This is correct. Each
of the sub-pipeline
stages in a $facet
stage will provide
one field in the
output document
with its output
stored as an array.

CORRECT: Each sub-pipeline adds a field with an array holding its output- This is
correct. Each of the sub-pipeline stages in a $facet stage will provide one field in the
output document with its output stored as an array.

Quiz
Which of the following are true for the $facet
aggregation stage in MongoDB? More than 1 answer
choice can be correct.

A. $facet allows for multiple sub-pipelines to be run
in the stage

B. Each sub-pipeline adds a field with an array
holding its output

C. $facet can use indexes

D. An output field from $facet can be used as an
input field within the same $facet stage

This is incorrect.
Additionally, even
when a $match
stage is used as the
first stage it will not
be able to use
indexes. Using a
$facet stage only
allows a collection
scan (COLSCAN).

INCORRECT: $facet can use indexes. This is incorrect. Additionally, even when a
$match stage is used as the first stage it will not be able to use indexes. Using a
$facet stage only allows a collection scan (COLSCAN).

Quiz
Which of the following are true for the $facet
aggregation stage in MongoDB? More than 1 answer
choice can be correct.

A. $facet allows for multiple sub-pipelines to be run
in the stage

B. Each sub-pipeline adds a field with an array
holding its output

C. $facet can use indexes

D. An output field from $facet can be used as an
input field within the same $facet stage

This is incorrect. It is
possible to use the
output field from a
$facet sub-pipeline as
an input to a second
later $facet stage in
the overall
aggregation pipeline.

INCORRECT: An output field from $facet can be used as an input field within the
same $facet stage. This is incorrect. It is possible to use the output field from a $facet
sub-pipeline as an input to a second later $facet stage in the overall aggregation
pipeline.

$merge

Aggregation Framework $merge

Writes the results of a pipeline to a collection, must be the last
stage

Can output to the same collection as being inputted, can be
sharded

Creates a new collection if it does not already exist

Fine grained control of what happens to the documents in terms
of updating, merging, deleting if there are existing documents

Let’s firstly introduce the purpose of the $merge stage. It is similar to the $out stage
as it also must be the final stage in a pipeline.

Aggregation Framework $merge

Writes the results of a pipeline to a collection, must be the last
stage

Can output to the same collection as being inputted, can be
sharded

Creates a new collection if it does not already exist

Fine grained control of what happens to the documents in terms
of updating, merging, deleting if there are existing documents

This stage allows for the results of an aggregation pipeline to be written to a
collection. It can output to a sharded collection. It can also output to the same
collection which is used as the input to the aggregation pipeline.

Aggregation Framework $merge

Writes the results of a pipeline to a collection, must be the last
stage

Can output to the same collection as being inputted, can be
sharded

Creates a new collection if it does not already exist

Fine grained control of what happens to the documents in terms
of updating, merging, deleting if there are existing documents

If the collection doesn’t already exist, it will create it.

Aggregation Framework $merge

Writes the results of a pipeline to a collection, must be the last
stage

Can output to the same collection as being inputted, can be
sharded

Creates a new collection if it does not already exist

Fine grained control of what happens to the documents in terms
of updating, merging, deleting if there are existing documents

It can be thought as of similar to the $out stage but with more fine grained controls on
how that output is performed.

Fine Grained
Control with
$merge

whenMatched controls how the
$merge will occur where fields exist
in both the result document and
input document when matched on
the _id field

whenNotMatched controls how the
$merge will occur where the fields
are merged to the result document
where there is no match for the _id
field in the input document

$merge is much more flexible when compared to the $out stage and offers more fine
grained controls. The whenMatched option is a good example. It sets the behaviour of
$merge when fields exist in both the result document and input document when
matched on the _id field

The whenNotMatched option sets the behaviour of $merge when the fields do not
exist in both the result document and input document when matched on the _id field.

$merge whenMatched

replace: Replaces the complete document
with the version created by the $merge
stage

keepExisting: Keeps the existing
document where the _id matches

merge: Similar to $mergeObjects , adds
new fields and replaces old fields with the
version created in the $merge stage

fail: Stops and fails the aggregation
operation, any earlier changes kept

pipeline: Runs a further aggregation
pipeline on the documents

The $merge stage whenMatched option has five distinct options that can be used.

Firstly “replace” which replaces the complete document with the version created by
the $merge stage.

Next is “keepExisting,” which keeps the existing document where the _id matches

Thirdly is “merge” and this is similar to $mergeObjects. It adds new fields and
replaces old fields with the version created in the $merge stage.

Fourthly, is “fail” which stops and fails the aggregation operation, any earlier changes
to documents in the output collection will be kept.

Finally, there is “pipeline” which runs a further aggregation pipeline on the documents.

$merge
whenNotMatched

insert: Inserts the document
into the output collection

discard: Discards the document
and continues the aggregation
stage

fail: Stops and fails the
aggregation operation, any
earlier changes kept

The $merge stage whenNotMatched option has three distinct options that can be
used.

Firstly “insert,” this inserts the document into the output collection.

Secondly, there is “discard” and this option discards the document and continues the
aggregation stage.

Finally, there is “fail” which stops and fails the aggregation operation, any earlier
changes kept.

Click on this web
page to connect to
the MongoDB Web
Shell instance.

https://mws.mongodb.com/

For the next exercise, we will walk through an example that can be done in the
MongoDB Web Shell. To get started go to this link on your browser
https://mws.mongodb.com/.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

https://mws.mongodb.com/

$merge
example
using sales
data

$merge

Let’s take a few minutes to explore the $merge stage with a hands-on session, we’ll
walk through the syntax, create the data and then query the database to get the
results. We’ll do all these via the MongoDB Web Shell directly in our browser so you’ll
only need a browser to follow along with this exercise.

$merge

Writes the documents from
the pipeline to a collection
which can be sharded. It can
replace existing documents
or update documents
unlike $out.

$merge

$merge

Let’s just recap on the $merge stage, it writes the documents from the pipeline to a
collection which can be sharded. It can replace existing documents or update
documents unlike $out.

$merge Stage: Exercise

First, let’s focus on the salary example and look at one document:

{

 "_id" : 1, employee: "Ant",

 dept: "A", salary: 100000,

 fiscal_year: 2018

}

Let’s firstly look at a sample document for a single salary example to see what data is
contained that will help us create the aggregation for the document.

We can see that the employee’s name, department, salary, and year that the salary
refers to are included in the salary document. This means that each employee will
have one document for their salary per fiscal year.

$merge Stage: Exercise

Now, let’s focus on the Aggregation Framework syntax:

db.salaries.aggregate([

 { $group: { _id: { fiscal_year: "$fiscal_year", dept:

"$dept" }, salaries: { $sum: "$salary" } } },

 { $merge : { into: { db: "reporting", coll: "budgets"

}, on: "_id", whenMatched: "replace", whenNotMatched:

"insert" } }

])

Let’s look at an example aggregation using the salary documents, firstly grouping
them to get the information of how much salaries were spent per department per
fiscal year using $group. We then feed the output of that stage into $merge,
specifically into the “budgets” collection in the “reporting” database. The $merge stage
will insert documents when the _id (a composite of fiscal year and department) is not
present already, if the _id is present it will replace the existing document with the
corresponding document in the pipeline.

The resulting collection gives a high level overview per year per department on each
department’s total salary expenditure.

Let’s insert some real data on salaries!

db.salaries.insertMany([{ "_id" : 1, employee: "Ant", dept: "A", salary: 100000,

fiscal_year: 2017 }, { "_id" : 2, employee: "Bee", dept: "A", salary: 120000,

fiscal_year: 2017 }, { "_id" : 3, employee: "Cat", dept: "Z", salary: 115000,

fiscal_year: 2017 }, { "_id" : 4, employee: "Ant", dept: "A", salary: 115000,

fiscal_year: 2018 }, { "_id" : 5, employee: "Bee", dept: "Z", salary: 145000,

fiscal_year: 2018 }, { "_id" : 6, employee: "Cat", dept: "Z", salary: 135000,

fiscal_year: 2018 }, { "_id" : 7, employee: "Gecko", dept: "A", salary: 100000,

fiscal_year: 2018 }, { "_id" : 8, employee: "Ant", dept: "A", salary: 125000,

fiscal_year: 2019 }, { "_id" : 9, employee: "Bee", dept: "Z", salary: 160000,

fiscal_year: 2019 }, { "_id" : 10, employee: "Cat", dept: "Z", salary: 150000,

fiscal_year: 2019 }])

…

{ "acknowledged" : true, "insertedIds" : [1,2,3,4,5,6,7,8,9,10] }

$merge Stage: Exercise

For this example, we’ll add 10 documents across a number of employees and
departments as well as years to give a more realistic example for the data.

Here’s the code to use to insert this data:

db.salaries.insertMany([{ "_id" : 1, employee: "Ant", dept:
"A", salary: 100000, fiscal_year: 2017 }, { "_id" : 2,
employee: "Bee", dept: "A", salary: 120000, fiscal_year: 2017
}, { "_id" : 3, employee: "Cat", dept: "Z", salary: 115000,
fiscal_year: 2017 }, { "_id" : 4, employee: "Ant", dept: "A",
salary: 115000, fiscal_year: 2018 }, { "_id" : 5, employee:
"Bee", dept: "Z", salary: 145000, fiscal_year: 2018 }, { "_id"
: 6, employee: "Cat", dept: "Z", salary: 135000, fiscal_year:
2018 }, { "_id" : 7, employee: "Gecko", dept: "A", salary:
100000, fiscal_year: 2018 }, { "_id" : 8, employee: "Ant",
dept: "A", salary: 125000, fiscal_year: 2019 }, { "_id" : 9,
employee: "Bee", dept: "Z", salary: 160000, fiscal_year: 2019
}, { "_id" : 10, employee: "Cat", dept: "Z", salary: 150000,
fiscal_year: 2019 }])

Results:

Let’s look at the results of using our pipeline with $group and $merge as a new

collection, budgets:

{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }

{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 125000 }

{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 310000 }

{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }

{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }

{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }

$merge Stage: Exercise

Here is the resulting output from the aggregation pipeline ($group and $merge) which
created a new collection reporting in the database, budgets.

We can see an interesting pattern where the department ‘A’ over the three years had
their total salaries decreased and the opposite happened with department ‘Z’ where
over the same period the salaries increased.

This aggregation pipeline is a good example of how the MongoDB Aggregation
Framework can be used to create a collection which can be used in reports or
potentially visualised with another, for example MongoDB Charts.

Find where 50+ was spent and was below budget. Using the same window,
change <a> and to the options for matching and for not matching fields.
Change <c> to the option where the aggregation will stop on not finding a match
between _id fields.

>>> db.salaries.aggregate([{ $group: { _id: { fiscal_year:

"$fiscal_year", dept: "$dept" }, max_salary: { $max: "$salary" } }

}, { $merge : { into: { db: "reporting", coll: "budgets" }, on:

"_id", <a>: "replace", : <c> } }])

{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "max_salary" : 120000

}

$merge Stage: Exercise

In this example, we’ll look to find the maximum salary for the department but we’ll
reuse the same output db and collection. In this exercise, you should change <a> and
 to the options for matching and for not matching fields respectively. The value for
<c> should be set the value that stops an aggregation where there is no match found
between the _id fields. In this case, as we’ve already run the previous aggregation
this aggregation will find matches.

The result in the code block is what you should see if you are successful.

db.salaries.aggregate([
 { $group: { _id: { fiscal_year: "$fiscal_year", dept:
"$dept" }, max_salary: { $max: "$salary" } } },
 { $merge : { into: { db: "reporting", coll: "budgets" }, on:
"_id", whenMatched: "replace", whenNotMatched: "fail" } }
])

Quiz

Quiz

Which of the following are true for the $merge aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $merge allows for the results to be written to a collection in
the same database

B. $merge will only overwrite the existing documents in a
collection

C. $merge cannot create a new collection

D. $merge must be the last stage in an aggregation pipeline

Quiz

Which of the following are true for the $merge aggregation stage in
MongoDB? More than one answer choice can be correct.

A. $merge allows for the results to be written to a collection in
the same database

B. $merge will only overwrite the existing documents in a
collection

C. $merge cannot create a new collection

D. $merge must be the last stage in an aggregation pipeline

INCORRECT: $merge allows for the results to be written to a collection in the same
database - This is incorrect. $merge can write to a collection in a different database.
INCORRECT: $merge will only overwrite the existing documents in a collection - This
is incorrect. It can ignore existing documents in a collection only adding new
documents for instance.
INCORRECT: $merge cannot create a new collection - This is incorrect. $merge can
create a new collection or use an existing collection.
CORRECT: $merge must be the last stage in an aggregation pipeline - This is correct.
$merge must be the last stage in an aggregation pipeline.

Quiz
Which of the following are true for the $merge aggregation
stage in MongoDB? More than one answer choice can be
correct.

A. $merge allows for the results to be written to a
collection in the same database

B. $merge will only overwrite the existing
documents in a collection

C. $merge cannot create a new collection

D. $merge must be the last stage in an
aggregation pipeline

This is incorrect.
$merge can write to
a collection in a
different database.

INCORRECT: $merge allows for the results to be written to a collection in the same
database - This is incorrect. $merge can write to a collection in a different database.

Quiz
Which of the following are true for the $merge aggregation
stage in MongoDB? More than one answer choice can be
correct.

A. $merge allows for the results to be written to a
collection in the same database

B. $merge will only overwrite the existing
documents in a collection

C. $merge cannot create a new collection

D. $merge must be the last stage in an
aggregation pipeline

This is incorrect. It
can ignore existing
documents in a
collection only
adding new
documents for
instance.

INCORRECT: $merge will only overwrite the existing documents in a collection - This
is incorrect. It can ignore existing documents in a collection only adding new
documents for instance.

Quiz
Which of the following are true for the $merge aggregation
stage in MongoDB? More than 1 answer choice can be
correct.

A. $merge allows for the results to be written to a
collection in the same database

B. $merge will only overwrite the existing
documents in a collection

C. $merge cannot create a new collection

D. $merge must be the last stage in an
aggregation pipeline

This is incorrect.
$merge can create a
new collection or use
an existing
collection.

INCORRECT: $merge cannot create a new collection - This is incorrect. $merge can
create a new collection or use an existing collection.

Quiz
Which of the following are true for the $merge aggregation
stage in MongoDB? More than one answer choice can be
correct.

A. $merge allows for the results to be written to a
collection in the same database

B. $merge will overwrite the existing documents
in a collection

C. $merge cannot create a new collection

D. $merge must be the last stage in an
aggregation pipeline

This is correct.
$merge must be the
last stage in an
aggregation
pipeline.

CORRECT: $merge must be the last stage in an aggregation pipeline - This is correct.
$merge must be the last stage in an aggregation pipeline.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

