
Inserting and Updating 
Data in MongoDB

LESSON

This work is licensed under the Creative Commons 
Attribution-NonCommercial-ShareAlike 3.0 Unported 

License 
(CC BY-NC-SA 3.0)

Google slide deck available here

In this lesson, we’ll recap briefly on some aspects previously covered on updating and 
inserting but with some additional context around how best to structure these 
operations to be performant in terms of the database.

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/19BrnUsVLjZmk-rR3n0EtKHGKszFkaGmA9xY2aCrUlnU/edit?usp=sharing


Inserting and Updating Data

Data insertion and updates 
can be achieved using 
either MQL or the 
Aggregation Framework.

In previous lessons we have introduced the MongoDB Aggregation Framework and 
the MongoDB Query Language (MQL) and we introduced methods of inserting and 
updating data to a MongoDB database. In this lesson, we'll expand on what we 
covered previously to introduce the MongoDB Bulk API. The Bulk API is similar to 
MQL but was designed to allow for situations where large numbers of operations 
could be performed with a lower overhead than using MQL.



MongoDB Bulk API

Simple syntax

Buckets multiple different 
write operations into a 
single call on a single 
collection

Ordered/Unordered

In this lesson, we will also introduce the MongoDB Bulk API as another approach to 
performing multiple different write operations on a single collection using a simple 
syntax.

Firstly to reiterate the syntax for the Bulk API is simple, you create the list to hold the 
operations and you add the operations to the list. The entire list can then be executed 
against the database.

The list of operations in the Bulk API can be seen as an efficient mechanism to bucket 
multiple different write operations into a single call on a single collection to the 
database.

In terms of buckets, you can combine multiple updates, inserts, deletes operations on 
a single collection within a single call to the database using the Bulk API.

The Bulk API allows for ordered or unordered execution of the operations within the 
call.

Ordered bulk API operations are performed serially against the collection.
Unordered bulk API operations are performed in parallel against the collection.



Create Update



MQL Update

insertOne() Insert one document 
into a collection.

insertMany()   Insert an array of 
documents into a collection.

writeConcern Sets the level of 
acknowledgment requested from 
MongoDB for write operations.

ordered For insertMany() 
there is an additional option 
for controlling whether the 
documents are inserted in ordered 
or unordered fashion.

>>> db.cows.insertOne({name: "daisy", milk: 8}, {writeConcern: 

{w: "majority"}})

{

"acknowledged" : true,

"insertedId" : ObjectId("5f4e0c5b2d4b45b7f11b6d50")

}

>>> db.cows.insertMany([{name: "buttercup", milk: 9}, {name: 

"rose", milk: 7}], {writeConcern: {w: "majority"}, ordered: 

false})

{

"acknowledged" : true,

"insertedIds" : [

ObjectId("5f4e0ce52d4b45b7f11b6d51"),

ObjectId("5f4e0ce52d4b45b7f11b6d52")

]

}

In this section, we’ll explore a little more around the Create and Update (or the C and 
U in CRUD) functions in MQL.

We’ll start with the Create functions of insertOne() and insertMany().
insertOne() inserts one document into a collection.
The main difference is insertMany() takes an array of documents whilst insertOne() 
only takes a single document.

Both functions can take an optional writeConcern parameter. The writeConcern sets 
the level of acknowledgement requested from the MongoDB database for write 
operations.

The insertMany() function can also optionally take an ordered parameter. The ordered 
parameter determines if the documents must be inserted in the order they are present 
in the array, the default is to insert documents ordered in the way they are present in 
the array.

The code example on the slide is an example of firstly using insertOne and then using 
insertMany.



MQL Update

updateOne() Update one document 
into a collection.

updateMany() Update an array of 
documents into a collection.

>>> db.cows.updateOne({name: "daisy", milk: 12},{ $set: {milk: 

8} })

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 

1 }

>>> db.cows.updateMany({}, {$inc: {milk: 1}})

{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 

3 }

>>> db.cows.find({})

{ "_id" : ObjectId("5f4e0c5b2d4b45b7f11b6d50"), "name" : 

"daisy", "milk" : 9 }

{ "_id" : ObjectId("5f4e0ce52d4b45b7f11b6d51"), "name" : 

"buttercup", "milk" : 10 }

{ "_

In this section, we’ll explore a little more around the Create and Update (or the C and 
U in CRUD) functions in MQL.

We’ll start with the Create functions of insertOne() and insertMany().
insertOne() inserts one document into a collection.
The main difference is insertMany() takes an array of documents whilst insertOne() 
only takes a single document.

Both functions can take an optional writeConcern parameter. The writeConcern sets 
the level of acknowledgement requested from the MongoDB database for write 
operations.

The insertMany() function can also optionally take an ordered parameter. The ordered 
parameter determines if the documents must be inserted in the order they are present 
in the array, the default is to insert documents ordered in the way they are present in 
the array.

The code example on the slide is an example of firstly using insertOne and then using 
insertMany.



One or Many Documents?
Performance is better with less operations on the database

Operations can be structured to batch creations or updates

In terms of the performance with regards a database, it is more performant to limit the 
number of operations against it by making fewer if larger operations with the 
xxxMany() create / update functions.

These operations can ideally be structured as batch creations or updates.



One or Many Documents?
Performance is better with less operations on the database.

Operations can be structured to batch creations or updates.

Write Concern

● Requested level of acknowledgment from the database
● Durability of the data across the replica set/sharded cluster

We have mentioned Write Concern in others lessons but we haven’t spoken about it 
in terms of performance. It controls the level of acknowledgement in terms of the write 
operation requested from the database.

Specifically, this is configurable and is the desired number of acknowledges from 
other members in the replica set that they have received and applied that specific 
write operation. After the desired number of members acknowledge the write 
operation, the operation is marked as successful and passed back.

The write concern essentially sets the durability of the data by selecting a higher 
number of nodes than one then once the operation is successful you know that at 
least one and potentially more members have copies of the data so that failures of 
any one node will not lose that data. All write operations will eventually be replicated 
to all members but this aspect is concerned with the window of time from the 
operation but before the data has been durable written across all members of the 
replica set. It seeks to minimise the dangers of data loss in that period.



Ordered or Unordered?

Unordered operations are applied in parallel

Idempotency operations that are unordered offer the best 
balance

The ordering of operations in xxxMany() impacts 
performance

Ordered operations applies sequential processing

Ordering of the insertion and update operations in xxxMany() functions can have a 
performance impact due to how they are processed.

Ordered operations are applied in a sequential order, so A-B-C with each operation 
occurring after the prior has finished.

Unordered operations are applied in parallel so A & B & C can be write to the 
database at the same time. This may have undesired impacts as the operations may 
also be reordered so it is C & B & A so if data may be changed for certain updates in 
a sequence different to that expected.

Idempotent operations can be applied many times without changing the final result 
after they have been applied the first time. These operations will produce the same 
results whether applied once or many time.



Quiz



Quiz

Which of the following are true for inserting and updating data in 
MongoDB? More than one answer choice can be correct.

A. The Bulk API allows different CRUD operations to be 
combined in a single call to the database

B. Ordering of operations does not slow insertions or updates 

C. Write concerns cannot be set with the Bulk API 

D. Unordered operations cannot be idempotent



Quiz

Which of the following are true for inserting and updating data in 
MongoDB? More than one answer choice can be correct.

A. The Bulk API allows different CRUD operations to be 
combined in a single call to the database

B. Ordering of operations does not slow insertions or updates 

C. Write concerns cannot be set with the Bulk API 

D. Unordered operations cannot be idempotent

CORRECT: The Bulk API allows different CRUD operations to be combined in a 
single call to the database - This is correct, updates, deletes, and inserts can all be 
combined into a single Bulk operation that operates on the same collection and is 
made in a single call to the database.
INCORRECT: Ordering of operations does not slow insertions or updates - The 
ordering does slow down operations when compared to unordered operations. 
Ordered operations are processed sequentially whilst unordered are processed in 
parallel, hence these can be faster to the inherent parallelisation.
INCORRECT: Write concerns cannot be set with the Bulk API - write concerns can be 
set with the Bulk API.
INCORRECT: Unordered operations cannot be idempotent - any operation whether 
ordered or unordered can be idempotent, not every operation is idempotent but the 
ordering does not impact this.



Quiz
Which of the following are true for inserting and updating 
data in MongoDB? More than one answer choice can be 
correct.

A. The Bulk API allows different CRUD operations to be 
combined in a single call to the database

B. Ordering of operations does not slow insertions or 
updates 

C. Write concerns cannot be set with the Bulk API 

D. Unordered operations cannot be idempotent

This is correct. Updates, 
deletes, and inserts can all be 
combined into a single Bulk 
operation that operates on 
the same collection and is 
made in a single call to the 
database.

CORRECT: The Bulk API allows different CRUD operations to be combined in a 
single call to the database - This is correct, updates, deletes, and inserts can all be 
combined into a single Bulk operation that operates on the same collection and is 
made in a single call to the database.



Quiz
Which of the following are true for inserting and updating 
data in MongoDB? More than one answer choice can be 
correct.

A. The Bulk API allows different CRUD operations to be 
combined in a single call to the database

B. Ordering of operations does not slow insertions or 
updates 

C. Write concerns cannot be set with the Bulk API 

D. Unordered operations cannot be idempotent

This is incorrect. The ordering 
does slow down operations 
when compared to 
unordered operations. 
Ordered operations are 
processed sequentially whilst 
unordered are processed in 
parallel.

INCORRECT: Ordering of operations does not slow insertions or updates - This is 
incorrect. The ordering does slow down operations when compared to unordered 
operations. Ordered operations are processed sequentially whilst unordered are 
processed in parallel.

Note: Parallel processed operations are faster due to the inherent parallelisation.



Quiz
Which of the following are true for inserting and updating 
data in MongoDB? More than one answer choice can be 
correct.

A. The Bulk API allows different CRUD operations to be 
combined in a single call to the database

B. Ordering of operations does not slow insertions or 
updates 

C. Write concerns cannot be set with the Bulk API 

D. Unordered operations cannot be idempotent

This is incorrect. Write 
concerns can be set with the 
Bulk API.

INCORRECT: Write concerns cannot be set with the Bulk API - This is incorrect. Write 
concerns can be set with the Bulk API.



Quiz
Which of the following are true for inserting and updating 
data in MongoDB? More than one answer choice can be 
correct.

A. The Bulk API allows different CRUD operations to be 
combined in a single call to the database

B. Ordering of operations does not slow insertions or 
updates 

C. Write concerns cannot be set with the Bulk API 

D. Unordered operations cannot be idempotent

This is incorrect. Any 
operation whether ordered or 
unordered can be 
idempotent, not every 
operation is idempotent but 
the ordering does not impact 
this.

INCORRECT: Unordered operations cannot be idempotent - This is incorrect. Any 
operation whether ordered or unordered can be idempotent, not every operation is 
idempotent but the ordering does not impact this.



Idempotency

Idempotency is the term used to describe where a given operation will result in the 
same output when given the same input, whether it is run once or run many times.

Let's look at idempotency and the CRUD operations in MongoDB to see how to view 
the various type of operations in the database from a idempotent viewpoint.



Idempotency of CRUD operations

Operation Is it idempotent?

find Always!

insert

update

delete

Let's start by looking at the CRUD operations with find().

A find operation will be idempotent as it returns the data at that point without changing 
it. Whether you find a document once or several times the document returned will be 
the same (assumption: we’re working on the assumption for this example the 
document hasn’t been changed by another process during this period).



Idempotency of CRUD operations

Operation Is it idempotent?

find Always!

insert

update

delete

Operation Is it idempotent?

find Always!

insert If we handle "_id" correctly, yes!

update

delete

Let's look at insertion operations next.

Insertion operations are typically idempotent is the _id is used to ensure the 
uniqueness of the document. MongoDB provides the ObjectID that is typically used 
for the _id but any unique value is also a candidate. If an insert occurs and the 
operation was then done again, it will trigger a duplicate key error which allows us to 
handle the “_id” in code and ignore the error as essential the document exists in the 
collection already. There may be other errors which we would need to handle but for 
the case of idempotency we’ll limit to the focus to this aspect.



Idempotency of CRUD operations

Operation Is it idempotent?

find Always!

insert

update

delete

Operation Is it idempotent?

find Always!

insert If we handle "_id" correctly, yes!

update Sometimes…!

delete

Let's now focus on update operations.

Update operations may be problematic when considered in terms of idempotency. 
This is because some update operators are idempotent whilst others are not. A good 
example of these is that the $set operator is idempotent as setting a value repeatedly 
to the same value is idempotent. However, considering the $inc operator which 
increments the value on each call/operation so each time it is called the value is 
increased which is clearly not idempotent.

It is possible to break an $inc operation into two operations where firstly a pending or 
similar token is added to the document and in the second operation both the token 
and the $inc operation are updated. This is possible in MongoDB as all individual 
update operations are atomic.



Idempotency of CRUD operations

Operation Is it idempotent?

find Always!

insert

update

delete

Operation Is it idempotent?

find Always!

insert If we handle "_id" correctly, yes!

update Sometimes…!

delete Always!

Let's look at deletion operations as the final set of CRUD operations in terms of 
idempotency.

A delete operation will always be idempotent as you can always delete a document 
and you can repeatedly delete it but once the first operation is applied (it gets deleted) 
then it won’t have any further impact on the state of the data in the collection.



Why the Bulk API 
Over MQL ?

In the next slides, we'll try to answer the question "Why the Bulk API over MQL?". 
This will help understand how and when the Bulk API should be used.



Why use the Bulk API over xxxMany?

Both Bulk API and xxxMany only operate on a single collection.

Bulk allows inserts, deletes and updates to be included in one 
operation.

Bulk API by default uses ordered operations and the default write 
concern, these are configurable.

The same issues as mentioned earlier around ordering and write 
concerns should be noted.

Both the Bulk API and the xxxMany() functions only operate on a single collection. As 
the Bulk API is then like the other MQL CRUD functions which only work against a 
single collection, the question arises why would you use the Bulk API over the 
equvialent xxxMany functions? 

The Bulk API allows you to include several different types of CRUD functions (inserts, 
deletes, and updates) in a single Bulk operation and apply these against the 
database.

This allows you to combine many different types of write operations into a single call, 
which will limited to a single collection is already reducing the processing impact as 
each of the different types would require a single MQL call for just that type.

The Bulk API defaults to using ordered operations and the default write concern, both 
of these are configurable.

The same issues as mentioned earlier around ordering and write concerns should be 
noted. 

For example and as noted earlier in the lesson, you can use unordered operations but 
you may need to consider that data may be changed out of sequence so if this is an 
issue then considering ordered operation or idempotency or both may be required.

Additionally, the same issues around write concerns and the durability of the data 



across many nodes as a bottleneck to receiving the successful acknowledgement of 
the write should also be considered if configuring a different write concern.



Bulk API Example

Let’s look at using the Bulk API to perform multiple CRUD operations in one call to the 
database

Let’s look at the Bulk API with the MongoDB Web Shell, visit 
https://mws.mongodb.com/?version=4.4 in your browser.

https://mws.mongodb.com/?version=4.4


● Realistic but fake 
data

● Data on animals and 
their productivity

● Show how the 
different query 
approaches work 
with the data

Bulk API Example

Firstly, we’re going to create some realistic but fake data to explore using the Bulk API 
in MongoDB.

This data includes details on the role, the department, the salary for a given 
employee, in this example we will have one document per fiscal year. .

We'll use this data to highlight some examples of how you can use the Bulk API.



Let s̓ clean up any existing data to avoid confusion

>>> use test

>>> db.salaries.drop()

Let’s first drop any previous version of the collection that might exist in our database.
This is in order to avoid confusion we’ll clean any existing data so that everything 
starts from the same state. 

We drop the collection (db.salaries.drop())  to simplify this example as existing data 
may change the number of documents that could be returned and it’s easier for this 
example to start fresh.

use test;
db.salaries.drop()



Let s̓ insert data that weʼll use for this example

>>> db.salaries.insertMany([{ "_id" : 1, employee: "Ant", dept: "A", salary: 

100000, fiscal_year: 2017 }, { "_id" : 2, employee: "Bee", dept: "A", salary: 

120000, fiscal_year: 2017 }, { "_id" : 3, employee: "Cat", dept: "Z", salary: 

115000, fiscal_year: 2017 }, { "_id" : 4, employee: "Ant", dept: "A", salary: 

115000, fiscal_year: 2018 }, { "_id" : 5, employee: "Bee", dept: "Z", salary: 

145000, fiscal_year: 2018 }, { "_id" : 6, employee: "Cat", dept: "Z", salary: 

135000, fiscal_year: 2018 }, { "_id" : 7, employee: "Gecko", dept: "A", salary: 

100000, fiscal_year: 2018 }, { "_id" : 8, employee: "Ant", dept: "A", salary: 

125000, fiscal_year: 2019 }, { "_id" : 9, employee: "Bee", dept: "Z", salary: 

160000, fiscal_year: 2019 }, { "_id" : 10, employee: "Cat", dept: "Z", salary: 

150000, fiscal_year: 2019 }])

{ "acknowledged" : true, "insertedIds" : [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] }

Let’s add ten sample documents which we’ll use for this example:

db.salaries.drop()
db.salaries.insertMany([{ "_id" : 1, employee: "Ant", dept: 
"A", salary: 100000, fiscal_year: 2017 }, { "_id" : 2, 
employee: "Bee", dept: "A", salary: 120000, fiscal_year: 2017 
}, { "_id" : 3, employee: "Cat", dept: "Z", salary: 115000, 
fiscal_year: 2017 }, { "_id" : 4, employee: "Ant", dept: "A", 
salary: 115000, fiscal_year: 2018 }, { "_id" : 5, employee: 
"Bee", dept: "Z", salary: 145000, fiscal_year: 2018 }, { "_id" 
: 6, employee: "Cat", dept: "Z", salary: 135000, fiscal_year: 
2018 }, { "_id" : 7, employee: "Gecko", dept: "A", salary: 
100000, fiscal_year: 2018 }, { "_id" : 8, employee: "Ant", 
dept: "A", salary: 125000, fiscal_year: 2019 }, { "_id" : 9, 
employee: "Bee", dept: "Z", salary: 160000, fiscal_year: 2019 
}, { "_id" : 10, employee: "Cat", dept: "Z", salary: 150000, 
fiscal_year: 2019 }]);



Let s̓ use the Bulk API to perform the operations

>>> var bulk = db.salaries.initializeOrderedBulkOp();

Let’s just run through an example of how we can update many documents at once 
with the Bulk API, in this example we’ll also add a document that we will later update. 
This is the main reason to use the ordered bulk operations so that we can be certain 
the document has been inserted before we begin any update operations.

Firstly, let's create the list that will hold all of the bulk operations. We'll use the 
initializeOrderedBulkOp as we want these operations to be processed sequentially on 
the database.
Here is the code block:

var bulk = db.salaries.initializeOrderedBulkOp();



Let s̓ use the Bulk API to perform the operations

>>> var bulk = db.salaries.initializeOrderedBulkOp();

>>> bulk.insert( { "_id" : 11, employee: "Frog", dept: "A", salary: 

125000, fiscal_year: 2019 } );

>>> bulk.find( { dept: "A", fiscal_year: 2019 } ).update( { $set: { 

"dept": "Z", "previous_dept": { "dept": "A", "fiscal_year": 2019 } } 

}, { multi: true } );

For the next step, we will add a new document with bulk.insert.

Then we will add a find and update with the multi: true option to change all of the 
documents from dept A to dept Z for the fiscal year 2019, for our records we are 
adding a previous_dept sub-document to track this change. 

Here is the code block:

var bulk = db.salaries.initializeOrderedBulkOp();
bulk.insert( { "_id" : 11, employee: "Frog", dept: "A", salary: 
125000, fiscal_year: 2019 } );
bulk.find( { dept: "A", fiscal_year: 2019 } ).update( { $set: { 
"dept": "Z", "previous_dept": { "dept": "A", "fiscal_year": 
2019 } } }, { multi: true } );



Let s̓ use the Bulk API to perform the operations

>>> var bulk = db.salaries.initializeOrderedBulkOp();

>>> bulk.insert( { "_id" : 11, employee: "Frog", dept: "A", salary: 

125000, fiscal_year: 2019 } );

>>> bulk.find( { dept: "A", fiscal_year: 2019 } ).update( { $set: { 

"dept": "Z", "previous_dept": { "dept": "A", "fiscal_year": 2019 } } 

}, { multi: true } );

>>> bulk.execute();

>>> db.salaries.find();

Let's recap quickly, we have created the bulk variable which holds our list of two 
operations. The first is an insertion operation and the second is a find and update. 
Let's now execute these operations and see the results of the operations.

The bulk execute command will perform the operations on the database.

After this we can use a find operation on the collection to view these changes.
Here is the code block:

var bulk = db.salaries.initializeOrderedBulkOp();
bulk.insert( { "_id" : 11, employee: "Frog", dept: "A", salary: 
125000, fiscal_year: 2019 } );
bulk.find( { dept: "A", fiscal_year: 2019 } ).update( { $set: { 
"dept": "Z", "previous_dept": { "dept": "A", "fiscal_year": 
2019 } } }, { multi: true } );
bulk.execute();
db.salaries.find();



MongoDB provides a MongoDB Shell that 
accesses a MongoDB instance that can be 
used to follow these examples using just a 
web browser and no additional software.

How to use the MongoDB Web Shell 

For this next part, we will walk through an example to be done in real time.  If you 
want to follow along with the example for your class or if you want your students to 
follow along, MongoDB provides a MongoDB shell that accesses a MongoDB 
instance that can be used to follow these examples using just a web browser and no 
additional software. https://mws.mongodb.com/ 

https://mws.mongodb.com/
https://mws.mongodb.com/


MongoDB Web Shell

Click on this web 
page to connect to 
the MongoDB Web 
Shell instance.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the 
commands in the following example if you want to follow along.



Your Turn!
Using the a Mongo Web Shell window, change <a> to the unordered bulk 
operation function and then change <b> to the function that will remove all of 
the documents where the field “employee” equals “Frog”.

>>> var bulk = db.salaries.<a>();

>>> bulk.find( { employee: "Cat" } ).update( { $set: { "dept": 

"C", "previous_dept": { "dept": "Z" } } }, { multi: true } );

>>> bulk.find( { employee: "Frog" } ).<b> ();

>>> bulk.execute();

>>> db.salaries.find();

Using the same MongoDB Web Shell window, change <a> to the unordered bulk 
operation function and then change <b> to the function that will remove all of the 
documents where the field “employee” equals “Frog”.

The result in the code block is what will create an unordered bulk operation that will 
find and update all of the documents with employee equal to “Cat” and change the 
department to “Z”. It should also remove all the documents with the employee equal 
to “Frog”.

var bulk = db.salaries.initializeUnorderedBulkOp();
bulk.find( { employee: "Cat" } ).update( { $set: { "dept": "C", 
"previous_dept": { "dept": "Z" } } }, { multi: true } );
bulk.find( { employee: "Frog" } ).remove();
bulk.execute();
db.salaries.find();



The Results
{ "_id" : 1, "employee" : "Ant", "dept" : "A", "salary" : 100000, "fiscal_year" : 2017 }

{ "_id" : 2, "employee" : "Bee", "dept" : "A", "salary" : 120000, "fiscal_year" : 2017 }

{ "_id" : 3, "employee" : "Cat", "dept" : "C", "salary" : 115000, "fiscal_year" : 2017, 

"previous_dept" : { "dept" : "Z" } }

{ "_id" : 4, "employee" : "Ant", "dept" : "A", "salary" : 115000, "fiscal_year" : 2018 }

{ "_id" : 5, "employee" : "Bee", "dept" : "Z", "salary" : 145000, "fiscal_year" : 2018 }

{ "_id" : 6, "employee" : "Cat", "dept" : "C", "salary" : 135000, "fiscal_year" : 2018, 

"previous_dept" : { "dept" : "Z" } }

{ "_id" : 7, "employee" : "Gecko", "dept" : "A", "salary" : 100000, "fiscal_year" : 2018 }

{ "_id" : 8, "employee" : "Ant", "dept" : "Z", "salary" : 125000, "fiscal_year" : 2019, 

"previous_dept" : { "dept" : "A", "fiscal_year" : 2019 } }

{ "_id" : 9, "employee" : "Bee", "dept" : "Z", "salary" : 160000, "fiscal_year" : 2019 }

{ "_id" : 10, "employee" : "Cat", "dept" : "C", "salary" : 150000, "fiscal_year" : 2019, 

"previous_dept" : { "dept" : "Z" } }

Here are the results from the Bulk API example you have just run, we can see the 
updates made ot all the "Cat" employee documents and that there are no documents 
with "Frog" in the employee field remaining.



Impact on 
Indexes

Let’s recap a few points from our earlier lesson on indexing in terms of the impact of 
insertions and updates of data and what this entails for indexes and performance.



Inserting and Updating Costs for Indexes

What is the performance impact of inserts or updates on indexes?

When does an index entry get modified?

● Data is inserted (applies to all indexes).

● Data is deleted (applies to all indexes).

● Data is updated in such a way that its indexed field changes.

Each write to a collection will have X corresponding writes where the 
index entry/entries are then also modified.

What is the performance impact of inserts or updates on indexes? An index gets 
modified every time a field that is an index key is modified. This means it will also 
need a write operation.

When does an index entry get modified? 

An index is modified any time a document:
● Is inserted (applies to all indexes)
● Is deleted (applies to all indexes)
● Is updated in such a way that its indexed field changes

Each write operation (insert/delete/update to indexed field) will result in X 
corresponding writes needing to be made to ensure each of the applicable index 
entries are also updated to reflect the change.

In the case of a collection with four indexes where a new document is inserted then 
five write operations will occur, the new document will be written to the collection and 
each of the four indexes will also be modified to include index entries for the new 
document.



Quiz



Quiz

Which of the following are true for inserting and updating data in 
MongoDB? More than one answer choice can be correct.

A. Updating or inserting data has no impact on indexes

B. Updates only impact an index when an indexed field is 
changed

C. Updates and insertions are alway idempotent operations 

D. Updates to documents in MongoDB are atomic operations



Quiz

Which of the following are true for inserting and updating data in 
MongoDB? More than one answer choice can be correct.

A. Updating or inserting data has no impact on indexes

B. Updates only impact an index when an indexed field is 
changed

C. Updates and insertions are alway idempotent operations 

D. Updates to documents in MongoDB are atomic operations

INCORRECT: Updating or inserting data has no impact on indexes - Any update 
which modifies an indexed field or insertion of a new document will impact indexes 
requiring modification to the applicable index entries.
CORRECT: Updates only impact an index when an indexed field is changed - 
Changes to unindexed fields do not cause an impact to the existing index entries.
INCORRECT: Updates and insertions are alway idempotent operations - Insertion are 
idempotent operations, however not all updates are idempotent operations. We 
covered the example of the $inc operator which is not idempotent versus the $set 
operator, there are several other operators which are not idempotent, please refer to 
the MongoDB update operator documentation page for specifics.
CORRECT: Updates to documents in MongoDB are atomic operations - a write 
operation on a single document is atomic, so updates at the level of a document are 
atomic.



Quiz
Which of the following are true for inserting and 
updating data in MongoDB? More than one answer 
choice can be correct.

A. Updating or inserting data has no impact 
on indexes

B. Updates only impact an index when an 
indexed field is changed

C. Updates and insertions are alway 
idempotent operations 

D. Updates to documents in MongoDB are 
atomic operations

This is incorrect. Any 
update which modifies an 
indexed field or insertion 
of a new document will 
impact indexes requiring 
modification to the 
applicable index entries.

INCORRECT: Updating or inserting data has no impact on indexes - Any update 
which modifies an indexed field or insertion of a new document will impact indexes 
requiring modification to the applicable index entries.



Quiz
Which of the following are true for inserting and 
updating data in MongoDB? More than one answer 
choice can be correct.

A. Updating or inserting data has no impact 
on indexes

B. Updates only impact an index when an 
indexed field is changed

C. Updates and insertions are alway 
idempotent operations 

D. Updates to documents in MongoDB are 
atomic operations

This is correct. Changes to 
unindexed fields do not 
cause an impact to the 
existing index entries.

CORRECT: Updates only impact an index when an indexed field is changed - This is 
correct. Changes to unindexed fields do not cause an impact to the existing index 
entries.



Quiz
Which of the following are true for inserting and 
updating data in MongoDB? More than one answer 
choice can be correct.

A. Updating or inserting data has no impact 
on indexes

B. Updates only impact an index when an 
indexed field is changed

C. Updates and insertions are alway 
idempotent operations 

D. Updates to documents in MongoDB are 
atomic operations

This is incorrect. Insertion 
are idempotent 
operations, however, not 
all updates (specifically 
the update operators) are 
idempotent operations.

INCORRECT: Updates and insertions are alway idempotent operations - This is 
incorrect. Insertion are idempotent operations, however not all updates (specifically 
the update operators) are idempotent operations. 

Note: We covered the example of the $inc operator which is not idempotent versus 
the $set operator, there are several other operators which are not idempotent, please 
refer to the MongoDB update operator documentation page for specifics.



Quiz
Which of the following are true for inserting and 
updating data in MongoDB? More than one answer 
choice can be correct.

A. Updating or inserting data has no impact 
on indexes

B. Updates only impact an index when an 
indexed field is changed

C. Updates and insertions are alway 
idempotent operations 

D. Updates to documents in MongoDB are 
atomic operations

This is correct. A write 
operation on a single 
document is atomic, so 
updates at the level of a 
document are atomic.

CORRECT: Updates to documents in MongoDB are atomic operations - This is 
correct. A write operation on a single document is atomic, so updates at the level of a 
document are atomic.



Continue Learning! GitHub Student 
Developer Pack

Sign up for the MongoDB Student Pack to 
receive $50 in Atlas credits and free 
certification!

MongoDB University has free self-paced 
courses and labs ranging from beginner 
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to 
learn about MongoDB and non-relational databases, and they are all free! Check out 
MongoDB’s University page to find free courses that go into more depth about 
everything MongoDB and non-relational. For students and educators alike, MongoDB 
for Academia is here to offer support in many forms. Check out our educator 
resources and join the Educator Community. Students can receive $50 in Atlas credits 
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

