
The Document Model and
MongoDB

LESSON

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0

Unported License
(CC BY-NC-SA 3.0)

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1zW_0GOcVMFd8Zo75s8xgWhn1ZUVbIZ8_XwMBQbfYsXk/edit?usp=sharing

Key Features

API query or
query language

Object
mapping

Flexible
schema

Distributed and
resilient

Querying through an API or query language: Document databases have an API or
query language that allows developers to execute the CRUD operations on the
database. Developers have the ability to query for documents based on unique
identifiers or “field values.”

Distributed and resilient: Document databases are distributed, which allows for
horizontal scaling (typically cheaper than vertical scaling) which distributes the data
across multiple machines rather than making one machine bigger as the data
increases. This system also allows for data to achieve high availability and resiliency
as the data lives in replica sets which creates redundancy, so if one machine fails the
secondary machine will take over and keep the data alive. This system is also
referred to as sharding.

Object mapping: Documents easily map to objects, the most frequently used data
structure in the most popular programming languages. This allows developers to
rapidly develop their applications as it is an intuitive process.

Flexible schema: Document databases have a flexible schema, meaning that not all
documents in a collection need to have the same fields. Note that some document
databases support schema validation, so the schema can be both mandatory or
defined.

{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Sean",

 "age": 29,

 "Status": "A"

}

The Document Model:
Structure and Syntax

To the left is an example of a
document representing a user
details including user_id, age,
and a status category.

In order to better understand a document, let’s take an example in MongoDB. This
document represents a user, their id in the system, their age, and their status. You
can also note the “_id” field which holds the ObjectID for the document. The _id is
used as a primary key; its value must be unique in the collection, it is immutable, and
may be of any type other than an array. In this example, it uses a number but typically
these will be automatically generated ObjectIDs. An ObjectID is a small, likely unique,
fast to generate, and ordered 12 byte value. An ObjectID’s 12 bytes consist of a
4-byte timestamp value, representing the ObjectID creation time, measured in
seconds since the Unix epoch, a 5-byte random value, and a 3-byte incrementing
counter, initialized to a random value.

{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Sean",

 "age": 29,

 "Status": "A"

}

The Document Model:
Structure and Syntax

A document in MongoDB
uses the JavaScript Object
Notation (JSON) format.

This format uses curly brackets
to mark the start and the end of
the document.

In order to better understand a document, let’s take an example in MongoDB. This
document represents a user, their id in the system, their age, and their status. You
can also note the “_id” field which is holds the ObjectID for the document. The _id is
used as a primary key; its value must be unique in the collection, it is immutable, and
may be of any type other than an array. In this example, it uses an number but
typically these will be automatically generated ObjectIDs. An ObjectID is a small, likely
unique, fast to generate, and ordered 12 byte value. An ObjectID 12 bytes consist of a
4-byte timestamp value, representing the ObjectId creation time, measured in
seconds since the Unix epoch, a 5-byte random value, and a 3-byte incrementing
counter, initialized to a random value.

{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Sean",

 "age": 29,

 "Status": "A"

}

The Document Model:
Structure and Syntax

MongoDB refers to keys
as fields.

The field-value pairs in a
document are separated by
colons (:).

In order to better understand a document, let’s take an example in MongoDB. This
document represents a user, their id in the system, their age, and their status. You
can also note the “_id” field which is holds the ObjectID for the document. The _id is
used as a primary key; its value must be unique in the collection, it is immutable, and
may be of any type other than an array. In this example, it uses an number but
typically these will be automatically generated ObjectIDs. An ObjectID is a small, likely
unique, fast to generate, and ordered 12 byte value. An ObjectID 12 bytes consist of a
4-byte timestamp value, representing the ObjectId creation time, measured in
seconds since the Unix epoch, a 5-byte random value, and a 3-byte incrementing
counter, initialized to a random value.

{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Sean",

 "age": 29,

 "Status": "A"

}

The Document Model:
Structure and Syntax

Each field must be enclosed
within quotation marks.
String values are often
quoted as good practice.

Each field in a MongoDB document must be enclosed within quotation marks. String
values are often quoted as good practice.

{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Sean",

 "age": 29,

 "Status": "A"

}

The Document Model:
Structure and Syntax

Each field-value pair is
separated within the
document by commas.

Each of the field-value pairs in the document are separated by a comma from the next
record. The final field-value pair doesn’t require a comma as the final curly brace
indicates the end of the document.

Quiz

Quiz

A document stores data in MongoDB as? There is one answer
choice that is correct.

A. Columns

B. Field-value pairs

C. Objects

Quiz

A document stores data in MongoDB as? There is one answer
choice that is correct.

A. Columns

B. Field-Value pairs

C. Objects

INCORRECT: Columns - Columns are stored in column oriented or wide column
non-relational databases, not in Document databases such as MongoDB.
CORRECT: Field-Value pairs - MongoDB stores field-value pairs where the value can
be one of several data types including a sub-object.
INCORRECT: Objects - MongoDB does not store data as object, rather it is stored as
a field-value pair within a object.

Quiz

A document stores data in MongoDB as? There is one answer
choice that is correct.

A. Columns

B. Field-Value pairs

C. Objects

Columns are stored in
column oriented or wide
column non-relational
databases, not in
Document databases
such as MongoDB

INCORRECT: Columns - Columns are stored in column oriented or wide column
non-relational databases, not in Document databases such as MongoDB.

Quiz

A document stores data in MongoDB as? There is one answer
choice that is correct.

A. Columns

B. Field-Value pairs

C. Objects

MongoDB stores
field-value pairs where
the value can be one of
several data types
including a sub-object

CORRECT: Field-Value pairs - MongoDB stores field-value pairs where the value can
be one of several data types including a sub-object.

Quiz

A document stores data in MongoDB as? There is one answer
choice that is correct.

A. Columns

B. Field-Value pairs

C. Objects

MongoDB does not store
data as an object, rather
it is stored as a
field-value pair within a
object

INCORRECT: Objects - MongoDB does not store data as object, rather it is stored as
a field-value pair within a object.

JSON and BSON

A document typically stores information
about one object and any of its related
metadata.

Documents store data in field-value pairs.
The values can be a variety of types and
structures, including strings, numbers, dates,
arrays, or objects.

Documents can be stored in formats like
BSON, JSON, and XML.

How is data stored?

BSON is short for Binary
JSON and is a
binary-encoded serialization
of JSON-like documents.

The specification contains
extensions that allow for
representations of data types
that are not part of the JSON
spec.

What is BSON?

Traversable
Quickly traverses across documents
and fields within documents

Efficient
Encoding/decoding data quickly in
order to improve throughput and
computation

Lightweight
Limits or removes any unnecessary
bloat to keep data storage size
optimal

JSON is just how we tend to present documents, but it actually has very little to do
with how they are stored/processed within MongoDB.

BSON, or binary JSON, is actually how data is stored within the database and it is
also how data is transmitted across the network.

It is a very lightweight format which keeps the smallest data size possible, it was
designed to be easily traversable, and as a binary format it is highly computational
and efficient in terms of encoding/decoding.

What is BSON?
Bridges the gap between binary representation and JSON format

Optimized for:
● Speed
● Space
● Flexibility

Highly performant

Internal storage format for MongoDB and is used for transmitting
data over the network

JSON is human readable but space and speed inefficient. Binary JSON, or BSON,
was developed to address these shortcomings.

BSON is optimized for speed and space to facilitate both efficient storage but also
transmission across the network.

BSON is highly performant due to the design to facilitate the traversal of data which
enables fast retrieval as well.

The key point to note is that BSON is the underlying storage format that data is
written to using MongoDB.

17

Okay, but what really is a BSON document?
> { “hello” : “world” }

\x16\x00\x00\x00 // total document size 22 bytes

\x02hello\x00 // field type = string, field name = hello

\x06\x00\x00\x00world\x00 // string size = 6 bytes, field value = world

\x00 // type = end of object

Let’s look at the traditional “Hello World” example, firstly we have it represented in
JSON and then as encoded in BSON below.

See: http://bsonspec.org/faq.html

See: http://bsonspec.org/faq.html
See: http://bsonspec.org/faq.html

http://bsonspec.org/faq.html

Okay, but what really is a BSON document?
> { “hello” : “world” }

\x16\x00\x00\x00 // total document size 22 bytes

\x02hello\x00 // field type = string, field name = hello

\x06\x00\x00\x00world\x00 // string size = 6 bytes, field value = world

\x00 // type = end of object

Here’s a example of the JSON {“hello”:”world”} highlighted by the green box.

See: http://bsonspec.org/faq.html

http://bsonspec.org/faq.html

Okay, but what really is a BSON document?
> { “hello” : “world” }

\x16\x00\x00\x00 // total document size 22 bytes

\x02hello\x00 // field type = string, field name = hello

\x06\x00\x00\x00world\x00 // string size = 6 bytes, field value = world

\x00 // type = end of object

Here is the BSON representation of “Hello World” when it is encoded. The document
size is the first item, then the type of the field (a string), then the field name (hello),
and the length of the field string. This is followed by the field value and then the
indicator that it is the end of the object.

See: http://bsonspec.org/faq.html

http://bsonspec.org/faq.html

INTUITIVE

Interesting,
what data types
are supported?

Type
64-bit binary floating point
UTF-8 string
Embedded document
Array

Binary data
Undefined (value) — Deprecated
ObjectId
Boolean "false"
Boolean "true"

UTC datetime
Regular expression
DBPointer — Deprecated
JavaScript code
Symbol. — Deprecated
JavaScript code w/ scope — Deprecated
32-bit integer
Timestamp
64-bit integer

128-bit decimal floating point
Min key
Max key

Representation
"\x01" e_name double
"\x02" e_name string
"\x03" e_name document
"\x04" e_name document
"\x05" e_name binary
"\x06" e_name
"\x07" e_name (byte*12)
"\x08" e_name "\x00"
"\x08" e_name "\x01"
"\x09" e_name int64
"\x0A" e_name
"\x0B" e_name cstring cstring
"\x0C" e_name string (byte*12)
"\x0D" e_name string
"\x0E" e_name string
"\x0F" e_name code_w_s
"\x10" e_name int32
"\x11" e_name uint64
"\x12" e_name int64
"\x13" e_name decimal128
"\xFF" e_name
"\x7F" e_name

BSON offers a number of additional data types beyond JSON, examples include the
decimal128 for floating point decimal.

JSON is short for
JavaScript Object
Notation.

For more specification on JSON visit
https://www.json.org/

What is JSON?

Familiarity
Based on two data structures: the
ordered list and the object of name-
value pairs. Very well known to all
programmers.

Text format
Encoding/decoding data in text to
allow for data interchange.

Human-readable
Designed to be easy to read and write.

JSON, uses text encoding, making it human readable, but is slower to parse
computations when compared to BSON. Based on two data structures, the ordered
list and the object of name-value pairs. JSON is very well known to all programmers.
The syntax of JSON is very well known and intuitive to most developers, it follows
similar patterns to other popular programming languages.
It uses curly brackets to mark the start and the end of the document.
MongoDB refers to keys as fields. The field-value pairs in a document are separated
by colons (:).
Each field must be enclosed within quotation marks. String values are often quoted as
good practice.
Each field-value pair is separated within the document by commas.

JSON: Object
{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Eoin",

 "age": 29,

 "Status": "A"

}

whitespace

whitespace

whitespace

string

value

object
{

,

}

:

https://www.json.org/

The JSON specification website has a number of very helpful syntax/railway diagrams
that we will explore over the next few slides to better understand JSON.

The first concept to understand is that of the object which is the main container and
we can see how to interpret the syntax diagram by applying the start and the end
brackets from our example JSON document.

JSON: Field Value Pair Separator
{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Eoin",

 "age": 29,

 "Status": "A"

}

https://www.json.org/

whitespace

whitespace

whitespace

string

value

object
{

,

}

:

We can see that the syntax diagram also clearly highlights that *all* field value pairs
must be separated by colons. We can again reference our example document and
apply it to the syntax diagram to verify this.

JSON: Values
{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Eoin",

 "age": 29,

 "Status": "A"

}

https://www.json.org/

value
whitespace whitespacestring

number

object

array

true

false

null

The value syntax diagram for JSON highlights the range of possible types for the
value. We highlight the string and the number types that correspond to examples
highlighted in our sample document.

JSON: Quoting Strings
{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Eoin",

 "age": 29,

 "Status": "A"

}

https://www.json.org/

value
whitespace whitespacestring

number

object

array

true

false

null

An good practice for string values in JSON is to quote the values within them to allow
for multi-word space separated text. This allows a sentence, or indeed paragraphs, to
be stored in the string value rather than just a single word or letter.

JSON: More values

JSON allows for
values to represent
other objects
(sub-object), arrays,
boolean values, or the
null value.

https://www.json.org/

value
whitespace whitespacestring

number

object

array

true

false

null

In the syntax diagram we further see that we could have a sub-object
(sub-document), an array, the boolean true or the boolean false, as well as null as
valid values for the value side of the field value (key value) pair.

JSON

Text encoding

Human readable

Slower parsing

Basic data types

Not as efficient

BSON

Binary encoding

Machine readable

Fast parsing

Advanced data types

Efficient

Let’s compare JSON and BSON broadly. The efficiency and fast parsing aspects of
BSON are key in understanding why it is the storage format used. It is clear as to why
JSON is used as the presentation format in the MongoSh, MongoDB Compass, or
Atlas’s Data Explorer.

JSON uses text encoding, whilst BSON is binary encoded.
JSON is human readable, whilst BSON is not and is only machine readable.
JSON is slower to parse computational when compared to BSON.
BSON has a richer set of data types than JSON has to represent data.
JSON is just not as efficient as BSON as JSON isn’t a binary format which is more
efficient in terms of computational processing.

Quiz

Quiz

Which of the following are true for MongoDB documents using
JSON? More than one answer choice can be correct.

A. Start and end with curly braces

B. Represents a value as a number, a string, an object, booleans,
null, or an array

C. Separate a field/key from a value by a comma

Quiz

Which of the following are true for MongoDB documents using
JSON? More than one answer choice can be correct.

A. Start and end with curly braces

B. Represents a value as a number, a string, an object, booleans,
null, or an array

C. Separate a field/key from a value by a comma

CORRECT: Start and end with curly braces - As highlighted in the JSON specification,
all JSON documents must start and end with curly brackets.
CORRECT: Represents a value as a number, a string, an object, booleans, null, or an
array - A JSON document value can hold any of these data types per the JSON
specification.
INCORRECT: Separate a field/key from a value by a comma - A field/key is separated
by a colon “:” rather than a comma “,” from the corresponding value. Commas are
used to separate field-value pairs.

Quiz

Which of the following are true for MongoDB documents using
JSON? More than one answer choice can be correct.

A. Start and end with curly braces

B. Represents a value as a number, a string,
an object, booleans, null, or an array

C. Separate a field/key from a value by a
comma

As highlighted in the
JSON specification, all
JSON documents must
start and end with curly
brackets

CORRECT: Start and end with curly braces - As highlighted in the JSON specification,
all JSON documents must start and end with curly brackets.

Quiz

Which of the following are true for MongoDB documents using
JSON? More than one answer choice can be correct.

A. Start and end with curly braces

B. Represents a value as a number, a string,
an object, booleans, null, or an array

C. Separate a field/key from a value by a
comma

A JSON document value
can hold any of these
data types per the JSON
specification

CORRECT: Represents a value as a number, a string, an object, booleans, null, or an
array - A JSON document value can hold any of these data types per the JSON
specification.

Quiz

Which of the following are true for MongoDB documents using
JSON? More than one answer choice can be correct.

A. Start and end with curly braces

B. Represents a value as a number, a string,
an object, booleans, null, or an array

C. Separate a field/key from a value by a
comma

A field/key is separated
by a colon “:” rather than
a comma “,” from the
corresponding value.
Commas are used to
separate field-value pairs

INCORRECT: Separate a field/key from a value by a comma - A field/key is separated
by a colon “:” rather than a comma “,” from the corresponding value. Commas are
used to separate field-value pairs.

Collections in the
Document Model

Document

A way to organize and store data
as a set of field-value pairs in

MongoDB.

Collection

An organized store of documents
in MongoDB, usually with
common fields between

documents

Another way data is stored in MongoDB’s document model is through collections. A
collection is a group of documents. Collections typically store documents that have
similar contents. In MongoDB, these usually have common fields between documents
but this is not a requirement unless you are using schema validation to enforce
specific common fields.
A document is a way to organize and store data as a set of field-value pairs in
MongoDB.
A collection is an organized store of documents in MongoDB, these usually have
common fields between documents but this is not a requirement unless you are using
schema validation to enforce specific common fields.

MongoDB does not
enforce a single schema
on a collection.
Documents can have
common fields, but they
are not required to by
default.

{

 "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Daniel",

 "age": 25,

 "Status": "A",

 "Country": "USA"

}

Example

{

 "_id": ObjectId(

 "5f4f7fef2d4b45b7f11b6d7a"),

 "user_id": "Sean",

 "age": 29,

 "Status": "A"

}

Two documents in the same collection but with different fields

MongoDB collections do not by default enforce a single schema on a collection so
whilst documents can have common fields, they are not required to have the same
fields. There is no issue having two documents where the first document has a
“country” field and the second document does not have the “country” field.

Collections and Schema Validation

The document model used by MongoDB can enforce a schema if
required, the recommended approach is to do so using JSON
Schema.

JSON Schema

● Allows a prescribed document structure to be configured

on a per collection basis.

● Can tune schema validation according to use case.

● Can be used by any query to inspect document structure

and content.

MongoDB can enforce a schema if required, the recommended approach is to do so
using JSON Schema. This allows a prescribed document structure to be configured
on a per collection basis.

Document validation allows restrictions to be made when new content is added, it
allows for the presence, the type, and the values to be validated as part of this
process as well.

Schema validation in MongoDB has tunable controls. Administrators have the
flexibility to tune schema validation according to use case – for example, if a
document fails to comply with the defined structure, it can either be rejected, or still
written to the collection while logging a warning message. Structure can be imposed
on just a subset of fields – for example, requiring a valid customer name and address,
while others fields can be freeform, such as the social media handle and cellphone
number. And, validation can be turned off entirely, allowing complete schema flexibility

The schema definition can be used by any query to inspect document structure and
content. For example, DBAs can identify all documents that do not conform to a
prescribed schema.

This avoids having to implement this validation logic in your application or in
middleware.

Data modeling is critical to setting up any database to meet the needs of an

application, but in a document based non-relational database, such as MongoDB,
there is great flexibility on how to model the data. How do you know which way to
store your data?

We will cover some best practices when it comes to modeling data in MongoDB.

Quiz

Quiz

A collection in MongoDB stores? There is one answer choice that is
correct.

A. Objects

B. Documents

C. Records

Quiz

A collection in MongoDB stores? There is one answer choice that is
correct.

A. Objects

B. Documents

C. Records

INCORRECT: Objects - MongoDB collections store documents rather than objects or
record.
CORRECT: Documents - A MongoDB collection holds all the documents for that
specific collection.
INCORRECT: Records - A relational database stores records in a table, this is not
how MongoDB collections store data.

Quiz

A collection in MongoDB stores? There is one answer choice that is
correct.

A. Objects

B. Documents

C. Records

MongoDB collections
store Documents rather
than objects or records.

INCORRECT: Objects - MongoDB collections store Documents rather than objects or
records.

Quiz

A collection in MongoDB stores? There is one answer choice that is
correct.

A. Objects

B. Documents

C. Records

A MongoDB collection
holds all the documents
for that specific
collection.

CORRECT: Documents - A MongoDB collection holds all the documents for that
specific collection.

Quiz

A collection in MongoDB stores? There is one answer choice that is
correct.

A. Objects

B. Documents

C. Records

A relational database
stores records in a table,
this is not how MongoDB
collections store data.

INCORRECT: Records - A relational database stores records in a table, this is not
how MongoDB collections stores data.

Quiz

Which of the following are true for MongoDB documents? More
than one answer choice can be correct.

A. Fields are enclosed with quotation marks

B. Documents are represented as JSON

C. Documents are represented as BSON

Quiz

Which of the following are true for MongoDB Documents? More
than one answer choice can be correct.

A. Fields are enclosed with quotation marks

B. Documents are represented as JSON

C. Documents are represented as BSON

CORRECT: Field are enclosed with quotation marks - each field must be enclosed
with quotation marks per the JSON specification, which we’ll cover immediately after
this quiz.
CORRECT: Documents are represented as JSON - Documents are represented in
MongoDB as JSON to simplify their readability, however they are stored as BSON.
We’ll explore JSON and then BSON in the next lessons.
INCORRECT: Documents are represented as BSON - Documents are represented as
JSON however they are stored as BSON.

Quiz

Which of the following are true for MongoDB Documents? More
than one answer choice can be correct.

A. Fields are enclosed with quotation marks

B. Documents are represented as JSON

C. Documents are represented as BSON

It is true that fields
should be enclosed with
quotation marks.

CORRECT: Field are enclosed with quotation marks - This is correct. Each field must
be enclosed with quotation marks per the JSON specification, which we’ll cover
immediately after this quiz.

Quiz

Which of the following are true for MongoDB Documents?: More
than one answer choice can be correct.

A. Fields are enclosed with quotation marks

B. Documents are represented as JSON

C. Documents are represented as BSON

It is true that documents
are be represented using
JSON.

CORRECT: Documents are represented as JSON - Documents are represented in
MongoDB as JSON to simplify their readability, however they are stored as BSON.
We’ll explore JSON and then BSON in the next lessons.

Quiz

Which of the following are true for MongoDB Documents? More
than one answer choice can be correct.

A. Fields are enclosed with quotation marks

B. Documents are represented as JSON

C. Documents are represented as BSON

It is not true that
documents are
represented using JSON.
They are, however, stored
using BSON.

INCORRECT: Documents are represented as BSON - Documents are represented as
JSON however they are stored as BSON.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

