
Querying Complex Data in
MongoDB with MQL

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/16rfnVscMzr8PLD9nRDvm-1zDQaYeBRKk1NrJeVj2Wrs/edit?usp=sharing

Using MQL to Query Complex Data

Embedded/Nested Documents

Arrays

Array of Nested Documents

Project fields to return

Query for null or missing fields

We are going to look at using MQL for more complex data in this lesson where the
documents could have embedded or nested documents. This increases the related
complexity of the queries and we’ll work through how you can use MQL to return data
from these types of documents.

Using MQL to Query Complex Data

Embedded/Nested Documents

Arrays

Array of Nested Documents

Project fields to return

Query for null or missing fields

We will also investigate using MQL for more complex queries where the documents
contain arrays and how we can query them.

Using MQL to Query Complex Data

Embedded/Nested Documents

Arrays

Array of Nested Documents

Project fields to return

Query for null or missing fields

We will also explore using MQL for queries where the documents contain an array of
nested documents and how we can query them.

Using MQL to Query Complex Data

Embedded/Nested Documents

Arrays

Array of Nested Documents

Project fields to return

Query for null or missing fields

We will also explore using MQL for queries to use projection to return only the fields
we want.

Projection is also useful as only the fields projected will be returned in the results to
the client, this in cases of larger documents can significantly reduce the amount of
data being sent back to the client. Ideally, we should design queries to return only the
data from the document that they require.

Using MQL to Query Complex Data

Embedded/Nested Documents

Arrays

Array of Nested Documents

Project fields to return

Query for null or missing fields

Finally, we will then explore using MQL for queries for null or for missing fields in
documents.

Embedded/Nested
Documents

Embedding/Nesting Documents

Embedded data exists in a single document

Can be viewed as “denormalized” model

Use dot notation to access data within the nested/embedded document

Provides better read performance, allows for all related data to be request
and retrieved in one database operation.

Provides for the updates on related data to be done in a single atomic write.

Embedding related data within a single document is one of MongoDB’s really powerful
features. A typical example might be having an address sub-document embedded into
a person document which effectively merges all the information we want around the
person and where they live into one document which can be retrieved with one query
(no joins required).

It provides many advantages and we’ll look through some examples on how and why
this mechanism is so powerful during this lesson.

Example: Embedded Data
{

_id: <ObjectId1>,

username: “123xyz”,

contact: {

phone: “123-456-7890”,

email: xyz@example.com

},

access: {

level: 5

group: “dev”

}

}

Embedded sub- document

Embedded sub- document

Here’s an example of embedding two documents within a ‘user’ document. The
‘contact’ and the ‘access’ documents bring related information about the user and
store it alongside in the same document.

mailto:xyz@example.com

Embedding/Nesting Documents
Embedded data exists in a single document

Can be viewed as a “denormalized” model

Use dot notation to access data within the nested/embedded document

Provides better read performance, allows for all related data to be request and retrieved
in one database operation.

Provides for the updates on related data to be done in a single atomic write.

Embedding data into a single document can be viewed as denormalizing the data and
it’s part of the ability of MongoDB to maintain parallel schemas in any collection. This
is also referred to as documents being able to hold many shapes within a single
MongoDB collection.

Embedding/Nesting Documents
Embedded data exists in a single document

Can be viewed as “denormalized” model

Uses dot notation to access data within the nested/embedded document

Provides better read performance, allows for all related data to be request and retrieved
in one database operation.

Provides for the updates on related data to be done in a single atomic write.

We will look at the dot notation syntax within MongoDB which allows for easy access
to data that is stored in a nested or in a embedded format within a document.

“<array>.<index>” is the syntax
for array element access

“<embedded
document>.<field>” is the syntax
for accessing a field within an
embedded document

What is dot notation?
How do I use it?

Dot notation, or using the
“.” character, is used to
access the fields of an
embedded document or
the elements of an array.

Dot notation or using the “.” character allows us to access fields within an embedded
document or within elements of an array.

If you are accessing an array then the syntax would be <array_name>.<index> to
access the element at the index location in the array.

If you are using dot notation to access a field within an embedded document, then the
syntax is <embedded_document>.<field> to access the specific field.

Embedding/Nesting Documents
Embedded data exists in a single document

Can be viewed as “denormalized” model

Use dot notation to access data within the nested/embedded document

Provides better read performance, allows for all related data to be request and retrieved
in one database operation.

Provides for the updates on related data to be done in a single atomic write.

An important rationale behind embedding and/or nesting documents is that by placing
all the related data in one document then it can be requested and retrieved using a
single database operation.

In this document we highlight an example
using a tennis player who competed in both
singles and doubles competitions.

We are able to use document embedding to
keep all the data in a single document.

These details aren’t exactly the same, so we
will introduce the polymorphic pattern which
helps us structure the document to allow
similar but not exactly the same information
to be embedded together in a single
document.

Polymorphic Pattern

● Allows single query for all data
on a sports person

● Adds additional code paths

{

 "_id" : ObjectId("5ad88534e3632e1a35a58d0b"),

 "sport": "tennis",

 "athlete_first_name": "Martina",

 "athlete_surname": "Navratilova",

 "athlete_full_name": "Martina Navratilova",

 "competition_earnings": {value:

NumberDecimal("216226089"), currency:"USD"},

 "number_of_tournaments": 390,

 "number_of_titles": 177,

 "event": [

 + {...}

],

...

}

Embedding Example

In this document we highlight an example using a tennis player who competed in both
singles and doubles competitions.

We are able to use document embedding to keep all the data in a single document.

Beyond embedding as the data isn’t exactly the same, we’ll introduce the polymorphic
pattern which helps us structure the document to allow similar but not exactly the
same information to be embedded together in a single document.

Patterns are transformations that you can apply to your schema. These
transformations or schema “building blocks” can be used to assist in schema design.
These schema design patterns encapsulate best practices in terms of how to
represent data in MongoDB to support specific requirements. We'll cover a range of
patterns and where they can assist your schema design in a later lesson.

This allows for a single call to the retrieve all the data for a single sports person,
however there is some additional code paths and logic required within your
application to deal with processing this. This approach is recommended as it does
allow for highly performant queries to be made on your database.

{
 "_id" :
ObjectId("5ad88534e3632e1a35a58d0b"),
 "sport": "tennis",
 "athlete_first_name": "Martina",
 "athlete_surname": "Navratilova",
 "athlete_full_name": "Martina
Navratilova",
 "competition_earnings": {value:
NumberDecimal("216226089"),
currency:"USD"},
 "number_of_tournaments": 390,
 "number_of_titles": 177,
 "event": [
 + {...}
]
}

{
 "_id" : ObjectId("5ad88534e3632e1a35a58d0b"),
 "sport": "tennis",
 "athlete_first_name": "Martina",
 "athlete_surname": "Navratilova",
 "athlete_full_name": "Martina Navratilova",
 "competition_earnings": {value: NumberDecimal("216226089"),
currency:"USD"},
 "number_of_tournaments": 390,
 "number_of_titles": 177,
 "event": [{
 "type": "singles",
 "number_of_tournaments": 390,
 "number_of_titles": 167
 },
 {
 "type": "doubles",
 "number_of_tournaments": 233,
 "number_of_titles": 177,
 "partner_full_name": ["Renáta Tomanová",
 "Beatriz Fernández", "Olga Morozova", "Chris
 Evert"]
 }]
}

Let’s look at the embedded document

We can see that the information is similar but that the “doubles” category required an
additional field for the partner to track who they played with.

This is a simplified example and you would likely restructure this schema further but it
serves to highlight embedding.

Querying
Embedded Data:
Exercise

MongoDB provides a MongoDB Shell that
accesses a MongoDB instance that can be
used to follow these examples using just a
web browser and no additional software.

How to use the MongoDB Web Shell

If you want to follow along with the example for your class or if you want your students
to follow along, MongoDB provides a MongoDB shell that accesses a MongoDB
instance that can be used to follow these examples using just a web browser and no
additional software. https://mws.mongodb.com/

https://mws.mongodb.com/
https://mws.mongodb.com/

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Exercise: Embedding Documents

>>> sportsCol = db.getCollection("sports")

>>> db.sportsCol.insertOne({"sport" : "tennis", "athlete_first_name" : "Martina",

"athlete_surname" : "Navratilova", "athlete_full_name" : "Martina Navratilova",

"competition_earnings" : { "value" : NumberDecimal("216226089"), "currency" : "USD" },

"number_of_tournaments" : 390, "number_of_titles" : 177, "event" : [{ "type" : "singles",

"number_of_tournaments" : 390, "number_of_titles" : 167 }, { "type" : "doubles",

"number_of_tournaments" : 233, "number_of_titles" : 177, "partner_full_name" : ["Renáta

Tomanová", "Beatriz Fernández", "Olga Morozova", "Chris Evert"] }] })

…

{

acknowledged : true,

insertedId : ObjectId(5f3a594ae90262aae835efba)

Let’s insert a document with embedded data

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

sportsCol = db.getCollection("sports")

sportsCol.insertOne ({
 "sport": "tennis",
 "athlete_first_name": "Martina",
 "athlete_surname": "Navratilova",
 "athlete_full_name": "Martina Navratilova",
 "competition_earnings": {value: NumberDecimal("216226089"),
currency:"USD"},
 "number_of_tournaments": 390,
 "number_of_titles": 177,
 "event": [{
 "type": "singles",
 "number_of_tournaments": 390,
 "number_of_titles": 167
 },
 {
 "type": "doubles",
 "number_of_tournaments": 233,
 "number_of_titles": 177,

 "partner_full_name": ["Renáta Tomanová", "Beatriz
Fernández", "Olga Morozova", "Chris Evert"]
 }
]
})

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

Let’s use find() and project on embedded data

>>> sportsCol.find({"athlete_full_name": "Martina

Navratilova"},{"event.type": 1})

{ "_id": ObjectId(5f3a594ae90262aae835efba), "event" : [{ "type" :

"singles" }, { "type" : "doubles" }] }

Exercise: Embedding Documents

Now to use the MQL find() to query the data we’ve just added to the database. In this
example, we have used find with a projection to return just some of the embedded
data, specifically the event.type field from the event sub-document.

You can copy it from the slide or from the notes here.

sportsCol.find({"athlete_full_name": "Martina
Navratilova"},{"event.type": 1})

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Exercise: Embedding Documents
We will use updateMany() to update three documents. Using the same window,
change <a> to the embedded field for event types.

Change to the value necessary to find the singles titles.

To shorten the response, we use project to limit it to the event document.

>>> sportsCol.find({"<a>": }, {event: 1})

{ "_id" : ObjectId("5f3a594ae90262aae835efba"), "event" : [{ "type" :

"singles", "number_of_tournaments" : 390, "number_of_titles" : 167 }, {

"type" : "doubles", "number_of_tournaments" : 233, "number_of_titles" :

177, "partner_full_name" : ["Renáta Tomanová", "Beatriz Fernández", "Olga

Morozova", "Chris Evert"] }]

In this exercise and in the same window, you should replace <A> with embedded field
for event types.

You should change to the value necessary to find the singles titles. The
projection is used to limit the results to only the event sub-document.

The result should be similar (the ObjectIds will differ) to the results on the slide.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Embedding/Nesting Documents
Embedded data exists in a single document

Can be viewed as “denormalized” model

Use dot notation to access data within the nested/embedded document

Provides better read performance, allows for all related data to be request and retrieved
in one database operation.

Provides for the updates on related data to be done in a single atomic write.

In addition to the advantage for retrieving (read) documents storing related data
together allows for updates to be equally done with a single atomic write.

Quiz

Quiz

Which of the following are true for dot notation in MQL?

A. Allows embedded documents to be accessed and
updated

B. Allows for aggregation expressions to be used in MQL

C. Allows for array element access

Quiz

Which of the following are true for dot
notation in MQL?

A. Allows embedded documents to
be accessed and updated

B. Allows for aggregation
expressions to be used in MQL

C. Allows for array element access

This is correct. Dot
notation supports
accessing and updating
your data.

CORRECT: Allows embedded documents to be accessed and updated - dot notation
supports accessing and updating your data

Quiz

Which of the following are true for dot
notation in MQL?

A. Allows embedded documents to
be accessed and updated

B. Allows for aggregation
expressions to be used in MQL

C. Allows for array element access

This incorrect. While dot
notation can be used in
aggregations, it is not the
reason why aggregation
expression can be used in
MQL.

INCORRECT: Allows for aggregation expressions to be used in MQL - This is
incorrect. While dot notation can be used in aggregations, it is not the reason why
aggregation expression can be used in MQL.

Quiz

Which of the following are true for dot
notation in MQL?

A. Allows embedded documents to
be accessed and updated

B. Allows for aggregation
expressions to be used in MQL

C. Allows for array element access

This is correct. Dot
notation allows for array
element access in a
reasonable easy to
understand and familiar
format to developers.

CORRECT: Allows for array element access - This is correct. Dot notation allows for
array element access in a reasonable easy to understand and familiar format to
developers.

Arrays

Arrays

Query to match the entire array

Query to match for a specific element in the array

Query such that either a single array element meets these condition
or any combination of array elements meets the conditions

Query for an element by the array index position

Query to match arrays of a given size

MQL can be used to query by matching for the entire array.
Let’s move to inserting some data and then querying arrays to see how we can
retrieve data from arrays using MQL.

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For the next exercise and the following after it, we can use the MongoDB Web Shell
to query in real time.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Let’s insert some data with arrays!

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { item: "journal", qty: 25, tags: ["blank", "red"], dim_cm: [14, 21] },

 { item: "notebook", qty: 50, tags: ["red", "blank"], dim_cm: [14, 21] },

 { item: "paper", qty: 100, tags: ["red", "blank", "plain"], dim_cm: [14, 21] },

 { item: "planner", qty: 75, tags: ["blank", "red"], dim_cm: [22.85, 30] },

 { item: "postcard", qty: 45, tags: ["blue"], dim_cm: [10, 15.25] }

]);

…

{

acknowledged : true,

insertedId : ObjectId(5f3b939f63a92a8719c01239)

}

Querying Arrays: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

db.inventory.drop()
db.inventory.insertMany([
 { item: "journal", qty: 25, tags: ["blank", "red"], dim_cm:
[14, 21] },
 { item: "notebook", qty: 50, tags: ["red", "blank"], dim_cm:
[14, 21] },
 { item: "paper", qty: 100, tags: ["red", "blank", "plain"],
dim_cm: [14, 21] },
 { item: "planner", qty: 75, tags: ["blank", "red"], dim_cm:
[22.85, 30] },
 { item: "postcard", qty: 45, tags: ["blue"], dim_cm: [10,
15.25] }
]);

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Find a complete exact array for the “tags” field.

>>> db.inventory.find({ tags: ["red", "blank"] })

{ "_id" : ObjectId("5f3b939f63a92a8719c01236"), "item" : "notebook",

"qty" : 50, "tags" : ["red", "blank"], "dim_cm" : [14, 21] }

Using the same window, change <A> to blank and to red in the query below to search
the field tags for an array with those elements and in that specific order.

How many documents are returned?

Querying Arrays: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here

db.inventory.find({ tags: ["red", "blank"] })

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Arrays

Query to match the entire array

Query to match for a specific element in the array

Query such that either a single array element meets these condition
or any combination of array elements meets the conditions

Query for an element by the array index position

Query to match arrays of a given size

In querying complex data and array data, sometimes we will want to search for a
specific element in an array and we can do that using MQL.

Let’s look at an example.

Querying Arrays to Match: Exercise

>>> db.inventory.find({ tags: "red" })

{ "_id" : ObjectId("5f3b939f63a92a8719c01235"), "item" : "journal", "qty" : 25,

"tags" : ["blank", "red"], "dim_cm" : [14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01236"), "item" : "notebook", "qty" : 50,

"tags" : ["red", "blank"], "dim_cm" : [14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01237"), "item" : "paper", "qty" : 100, "tags"

: ["red", "blank", "plain"], "dim_cm" : [14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01238"), "item" : "planner", "qty" : 75,

"tags" : ["blank", "red"], "dim_cm" : [22.85, 30] }

Let’s match a specific element in the array

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here. In this example, let’s query the array
to see if it contains the element “red”.

db.inventory.find({ tags: "red" })

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Arrays

Query to match the entire array

Query to match for a specific element in the array

Query such that either a single array element meets these condition
or any combination of array elements meets the conditions

Query for an element by the array index position

Query to match arrays of a given size

We can also use MQL to create more complex query where a single array element
meets a condition or set of conditions which we can use operators to define.

Let’s match on conditions for the array

>>> db.inventory.find({ dim_cm: { $gt: 15, $lt: 20 } })

{ "_id" : ObjectId("5f3b939f63a92a8719c01235"), "item" : "journal", "qty" : 25,

"tags" : ["blank", "red"], "dim_cm" : [14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01236"), "item" : "notebook", "qty" :

50, "tags" : ["red", "blank"], "dim_cm" : [14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01237"), "item" : "paper", "qty" : 100,

"tags" : ["red", "blank", "plain"], "dim_cm" : [14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01239"), "item" : "postcard", "qty" :

45, "tags" : ["blue"], "dim_cm" : [10, 15.25] }

Querying Arrays with Conditions: Exercise

Now to use the MQL find() to query the data we’ve just added to the database using
the conditionals. You can copy it from the slide or from the notes here.
db.inventory.find({ dim_cm: { $gt: 15, $lt: 20 } })

In this query conditions, it is important to note than element can match one or both of
the conditions in the find. An element can be greater than 15, or an element can be
less than 20, or an element can match both.

To only find array elements that match both, we can use $elemMatch:

db.inventory.find({ dim_cm: { $elemMatch: { $gt: 15, $lt: 20 }
} })
{ "_id" : ObjectId("5f3b939f63a92a8719c01239"), "item" :
"postcard", "qty" : 45, "tags" : ["blue"], "dim_cm" : [10,
15.25] }

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Find results with a qty field where <50 and >20

Using the same window, change <A> to blank and to red in the query below to
search the field tags for an array with those elements and in that specific order.

How many documents are returned?

>>> db.inventory.find({ qty: { $lt: <A>, : 50] })

{ "_id" : ObjectId("5f3b939f63a92a8719c01235"), "item" :

"journal", "qty" : 25, "tags" : ["blank", "red"], "dim_cm" :

[14, 21] }

{ "_id" : ObjectId("5f3b939f63a92a8719c01239"), "item" :

"postcard", "qty" : 45, "tags" : ["blue"], "dim_cm" : [10,

15.25] }

Querying Arrays with Conditions: Exercise

Now again let’s use the MQL find() to query the data we’ve just added to the
database. Specifically, we want to only return the documents where the field ‘qty’ have
a value greater than 20 and less than 50. You can copy it from the slide or from the
notes here.

db.inventory.find({ qty: { $lt: 50, $gt: 20 } })

2 documents are returned that match this criteria.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Arrays

Query to match the entire array

Query to match for a specific element in the array

Query such that either a single array element meets these condition
or any combination of array elements meets the conditions

Query for an element by the array index position

Query to match arrays of a given size

Let’s match by array index position

>>> db.inventory.find({ dim_cm.1: { $gt: 25 } })

{ "_id" : ObjectId("5f3b939f63a92a8719c01238"), "item" : "planner", "qty" :

75, "tags" : ["blank", "red"], "dim_cm" : [22.85, 30] }

>>> db.inventory.find({ dim_cm.0: { $lt: 14 } })

{ "_id" : ObjectId("5f3b939f63a92a8719c01239"), "item" : "postcard", "qty"

: 45, "tags" : ["blue"], "dim_cm" : [10, 15.25] }

Querying Arrays by Index Position: Exercise

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Arrays

Query to match the entire array

Query to match for a specific element in the array

Query such that either a single array element meets these condition
or any combination of array elements meets the conditions

Query for an element by the array index position

Query to match arrays of a given size

Let’s match by the size/length of the array

>>> db.inventory.find({ "tags": { $size: 3 } })

{ "_id" : ObjectId("5f3b939f63a92a8719c01237"), "item" :

"paper", "qty" : 100, "tags" : ["red", "blank", "plain"],

"dim_cm" : [14, 21] }

Querying Arrays by Size: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here

db.inventory.find({ "tags": { $size: 3 } })

In this result, we see that there was only one document with a “tags” array that had
three elements.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Find docs where the tags array has 1 element

Using the same window, change <A> to 1 in the query below to search the field tags
for an array with one element. The results should be the same as shown below.

>>> db.inventory.find({ "tags": { $size: <A> })

{ "_id" : ObjectId("5f3b939f63a92a8719c01239"), "item" :

"postcard", "qty" : 45, "tags" : ["blue"], "dim_cm" : [

10, 15.25] }

Querying Arrays with One Element: Exercise

Now again let’s use the MQL find() to query the data we’ve just added to the
database. Specifically, we want to only return the documents where the field ‘tags’
array has only one element.

db.inventory.find({ "tags": { $size: 1 } })

Only one document is returned that match this criteria.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Quiz

Quiz

Which of the following are true for querying arrays in
MQL?

A. Allows for only the entire array to be matched

B. Allows only single query conditions against the array

C. Allows for querying by the array index position

D. Allows of matching of arrays of a given size

Quiz

Which of the following are true for querying arrays in
MQL?

A. Allows for only the entire array to be matched

B. Allows only single query conditions against an array

C. Allows for querying by the array index position

D. Allows of matching of arrays of a given size

INCORRECT: Allows for only the entire array to be matched - MQL allows for a query
to match part of the array or arrays with specific elements present
INCORRECT: Allows only single query conditions against array - MQL allows for
multiple query conditions in a query
CORRECT: Allows for querying by the array index position - This is true, MQL allows
you to specify an array index position and will only query that array position of that
field for all the documents
CORRECT: Allows of matching of arrays of a given size - The $size operator can be
used to find arrays of a specific length

Quiz

Which of the following are true for
querying arrays in MQL?

A. Allows for only the entire array to be
matched

B. Allows only single query conditions
against the array

C. Allows for querying by the array
index position

D. Allows of matching of arrays of a
given size

This incorrect. MQL allows
for a query to match part
of the array or arrays with
specific elements present.

INCORRECT: Allows for only the entire array to be matched - MQL allows for a query
to match part of the array or arrays with specific elements present

Quiz

Which of the following are true for querying arrays in MQL?

A. Allows for only entire array to be matched

B. Allows only single query conditions against array

C. Allows for querying by the array index position

D. Allows of matching of arrays of a given size

This incorrect. MQL allows
for multiple query
conditions in a query.

INCORRECT: Allows only single query conditions against the array - This is incorrect.
MQL allows for multiple query conditions in a query

Quiz

Which of the following are true for
querying arrays in MQL?

A. Allows for only entire array to be
matched

B. Allows only single query conditions
against array

C. Allows for querying by the array
index position

D. Allows of matching of arrays of a
given size

This is correct. MQL
allows you to specify an
array index position and
will only query that array
position of that field for
all the documents.

CORRECT: Allows for querying by the array index position - This is correct. MQL
allows you to specify an array index position and will only query that array position of
that field for all the documents

Quiz

Which of the following are true for
querying arrays in MQL?

A. Allows for only entire array to be
matched

B. Allows only single query conditions
against array

C. Allows for querying by the array
index position

D. Allows matching of arrays of a given
size

This is correct. The $size
operator can be used to
find arrays of a specific
length.

CORRECT: Allows of matching of arrays of a given size - This is correct. The $size
operator can be used to find arrays of a specific length

Array of Nested
Documents

Array of Nested Documents
In MongoDB we can have arrays which consist of elements that are in of themselves
documents.

Field ordering within query criteria can be important:

Equality matching with field A: value X and field B: value Y will only return that
exact sequence of field-value pairs.

It will not find an array with field B: value Y and then field A: value X.

In MongoDB, you can have arrays which themselves hold documents.

In these cases, the field ordering of the query criteria become important.
Specifically, taking equality matching then where field A: value X with field B: value Y
being the search criteria then only documents with this exact sequence of field-value
pairs will be returned by the query.

That search criteria would not return documents matching the inverse criteria, where
field B: value Y is followed by field A: value X for example. This is important when to
be aware of when creating your query criteria to ensure all the data is returned.

We’ll look at an example where we have a product document with a field, instock,
where each document within the array represents the stock for that specific
warehouse (of which there are multiple).

In designing queries for nested documents within arrays we need to consider the field
ordering for certain matching such as equality to ensure we design our query to return
all of what we expect it to return in terms of documents.

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For the next exercise and the following after it, we can use the MongoDB Web Shell
to perform the actions.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Let’s insert some nested documents in an array!

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { item: "journal", instock: [{ warehouse: "A", qty: 5 }, { warehouse: "C", qty: 15 }] },

 { item: "notebook", instock: [{ warehouse: "C", qty: 5 }] },

 { item: "paper", instock: [{ warehouse: "A", qty: 60 }, { warehouse: "B", qty: 15 }] },

 { item: "planner", instock: [{ warehouse: "A", qty: 40 }, { warehouse: "B", qty: 5 }] },

 { item: "postcard", instock: [{ warehouse: "B", qty: 15 }, { warehouse: "C", qty: 35 }] }

]);

…

{

acknowledged : true,

insertedId : ObjectId(5f3b939f63a92a8719c01239)

}

Querying an Array of Nested Documents: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

db.inventory.drop()
db.inventory.insertMany([
 { item: "journal", instock: [{ warehouse: "A", qty: 5
}, { warehouse: "C", qty: 15 }] },
 { item: "notebook", instock: [{ warehouse: "C", qty: 5
}] },
 { item: "paper", instock: [{ warehouse: "A", qty: 60
}, { warehouse: "B", qty: 15 }] },
 { item: "planner", instock: [{ warehouse: "A", qty: 40
}, { warehouse: "B", qty: 5 }] },
 { item: "postcard", instock: [{ warehouse: "B", qty:
15 }, { warehouse: "C", qty: 35 }] }
]);

See: https://docs.mongodb.com/manual/tutorial/query-array-of-documents/

https://docs.mongodb.com/manual/tutorial/query-array-of-documents/

Let’s query the nested documents

>>> db.inventory.find({ "instock": { warehouse: "A", qty: 5 } })

{ "_id" : ObjectId("5f3bc03563a92a8719c0123a"), "item" : "journal", "instock" : [{

"warehouse" : "A", "qty" : 5 }, { "warehouse" : "C", "qty" : 15 }] }

>>> db.inventory.find({ 'instock.qty': { $lte: 5 } })

{ "_id" : ObjectId("5f3bc03563a92a8719c0123a"), "item" : "journal", "instock" : [{

"warehouse" : "A", "qty" : 5 }, { "warehouse" : "C", "qty" : 15 }] }

{ "_id" : ObjectId("5f3bc03563a92a8719c0123b"), "item" : "notebook", "instock" : [{

"warehouse" : "C", "qty" : 5 }] }

{ "_id" : ObjectId("5f3bc03563a92a8719c0123d"), "item" : "planner", "instock" : [{

"warehouse" : "A", "qty" : 40 }, { "warehouse" : "B", "qty" : 5 }] }

Querying an Array of Nested Documents: Exercise

Now to use the MQL find() to query the nested data we’ve just added to the database.
You can copy it from the slide or from the notes here

db.inventory.find({ "instock": { warehouse: "A", qty: 5 }
})

In this query we are only for an array within the array field ‘instock’ that has the field
warehouse with a value of “A” and a field qty with a value of 5 (and in that ordering of
fields) in a nested document.

db.inventory.find({ 'instock.qty': { $lte: 5 } })

This query looks across all the ‘qty’ fields in each nested document within the ‘instock’
array for those with a quantity of less than or equal to 5.

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Let’s query with several conditionals

>>> db.inventory.find({ "instock": { $elemMatch: { qty: { $gt: 10, $lte: 20 } } } })

{ "_id" : ObjectId("5f3bc03563a92a8719c0123a"), "item" : "journal", "instock" : [{

"warehouse" : "A", "qty" : 5 }, { "warehouse" : "C", "qty" : 15 }] }

{ "_id" : ObjectId("5f3bc03563a92a8719c0123c"), "item" : "paper", "instock" : [{

"warehouse" : "A", "qty" : 60 }, { "warehouse" : "B", "qty" : 15 }] }

{ "_id" : ObjectId("5f3bc03563a92a8719c0123e"), "item" : "postcard", "instock" : [{

"warehouse" : "B", "qty" : 15 }, { "warehouse" : "C", "qty" : 35 }] }

Querying an Array of Nested Documents: Exercise

Now to use the MQL find() to query the nested data we’ve just added to the database.
You can copy it from the slide or from the notes here

db.inventory.find({ "instock": { warehouse: "A", qty: 5 }
})

In this query we are only for an array within the array field ‘instock’ that has the field
warehouse with a value of “A” and a field qty with a value of 5 (and in that ordering of
fields) in a nested document.

db.inventory.find({ 'instock.qty': { $lte: 5 } })

This query looks across all the ‘qty’ fields in each nested document within the ‘instock’
array for those with a quantity of less than or equal to 5.

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Find docs with a complex conditional

Using the same window, change <A> to 5, to the less than or equal operator, and
<C> to the field which represents which warehouse the inventory is stored in. The results
should be the same as shown below.

>>> db.inventory.find({ "instock": { $elemMatch: { qty: { $gte:

<A>, : 20 }, "<C>": "A" } } })

{ "_id" : ObjectId("5f50c9962d4b45b7f11b6d89"), "item" :

"journal", "instock" : [{ "warehouse" : "A", "qty" : 5 }, {

"warehouse" : "C", "qty" : 15 }] }

Querying an Array of Nested Documents: Exercise

Now again let’s use the MQL find() to query the data we’ve just added to the
database. Specifically, we want to only return the documents where the quantity of the
item in warehouse “a” is 5 or greater and less than or equal to 20.

db.inventory.find({ "instock": { $elemMatch: { qty: {
$gte: 5, $lte: 20 }, "warehouse": "A" } } })

Only one document is returned that match this criteria.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Quiz

Quiz

Which of the following are true for arrays with nested
documents in MQL?

A. Allows $elemMatch to query on two conditions with
both being required for the query in a single nested
document

B. Does not allow the use of the dot notation to access
nested documents within arrays

Quiz

Which of the following are true for arrays with nested
documents in MQL?

A. Allows $elemMatch to query on two conditions with
both being required for the query in a single nested
document

B. Does not allow the use of the dot notation to access
nested documents within arrays

CORRECT: Allows $elemMatch to query on two conditions with both being required
for the query in a single nested document - This is correct and the recommended
approach
INCORRECT: Does not allow the use of the dot notation to access nested documents
within arrays - Dot notation can be used to access fields in nested documents in
arrays

Quiz

Which of the following are true for arrays
with nested documents in MQL?

A. Allows $elemMatch to query on two
conditions with both being required
for the query in a single nested
document

B. Does not allow the use of the dot
notation to access nested
documents within arrays

This is correct. This is also
the recommended
approach when querying
arrays with nested
documents in MQL.

CORRECT: Allows $elemMatch to query on two conditions with both being required
for the query in a single nested document - This is correct and the recommended
approach

Quiz

Which of the following are true for arrays
with nested documents in MQL?

A. Allows $elemMatch to query on two
conditions with both being required
for the query in a single nested
document

B. Does not allow the use of the dot
notation to access nested
documents within arrays

This incorrect. Dot
notation can be used to
access fields in nested
documents in arrays.

INCORRECT: Does not allow the use of the dot notation to access nested documents
within arrays - This is incorrect. Dot notation can be used to access fields in nested
documents in arrays.

Project Fields to
Return

Project Fields to Return
A projection can help use restrict or explicitly specify which fields should be returned
from the query.

Without a projection in a query, all documents matching the query are returned.

A projection can explicitly include several fields by setting the field to 1 in the projection
document or explicitly exclude fields by setting the field to 0.

Dot notation can be used with projection on nested documents or arrays.

A projection can help use restrict or explicitly specify which fields should be returned
from the query.

If the projection document is empty, then all fields for all of the documents matching
the query are returned.

A projection can explicitly include or exclude fields (1/0).

Dot notation works in conjunction with projection, within the projection document you
can use dot notation to return nested documents and array or indeed fields/position
elements within these.

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For the next exercise, we can use the MongoDB Web Shell to perform the actions.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Let’s insert some nested documents in an array!

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { item: "journal", status: "A", size: { h: 14, w: 21, uom: "cm" }, instock: [{
warehouse: "A", qty: 5 }] },

 { item: "notebook", status: "A", size: { h: 8.5, w: 11, uom: "in" }, instock: [{
warehouse: "C", qty: 5 }] },

 { item: "paper", status: "D", size: { h: 8.5, w: 11, uom: "in" }, instock: [{
warehouse: "A", qty: 60 }] },

 { item: "planner", status: "D", size: { h: 22.85, w: 30, uom: "cm" }, instock: [{
warehouse: "A", qty: 40 }] },

 { item: "postcard", status: "A", size: { h: 10, w: 15.25, uom: "cm" }, instock: [{
warehouse: "B", qty: 15 }, { warehouse: "C", qty: 35 }] }

]);

…

Projection: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

db.inventory.insertMany([
 { item: "journal", status: "A", size: { h: 14, w: 21,
uom: "cm" }, instock: [{ warehouse: "A", qty: 5 }] },
 { item: "notebook", status: "A", size: { h: 8.5, w: 11,
uom: "in" }, instock: [{ warehouse: "C", qty: 5 }] },
 { item: "paper", status: "D", size: { h: 8.5, w: 11,
uom: "in" }, instock: [{ warehouse: "A", qty: 60 }] },
 { item: "planner", status: "D", size: { h: 22.85, w: 30,
uom: "cm" }, instock: [{ warehouse: "A", qty: 40 }] },
 { item: "postcard", status: "A", size: { h: 10, w:
15.25, uom: "cm" }, instock: [{ warehouse: "B", qty: 15
}, { warehouse: "C", qty: 35 }] }
]);

See: https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/

https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/

Let’s query using an implicit AND and OR

>>> db.inventory.find({ status: "A" }, { _id: 0, item: 1, "instock.qty": 1 })

{ "item" : "journal", "instock" : [{ "qty" : 5 }] }

{ "item" : "notebook", "instock" : [{ "qty" : 5 }] }

{ "item" : "postcard", "instock" : [{ "qty" : 15 }, { "qty" : 35 }] }

>>> db.inventory.find({ status: "A" }, { _id:0, item: 1, "size.uom": 1 })

{ "item" : "journal", "size" : { "uom" : "cm" } }

{ "item" : "notebook", "size" : { "uom" : "in" } }

{ "item" : "postcard", "size" : { "uom" : "cm" } }

Projection: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here. The first query will return all the
documents with a status of ‘a’ however with the projection we will only see the item
and instock.qty fields in the results returned.

The second query also looks for documents with a status field of ‘a’ and only returns
the item and ‘size.uom’ (unit of measurement) fields in the results.

db.inventory.find({ status: "A" }, { _id: 0, item: 1,
"instock.qty": 1 })

In this query we are only querying for documents with a status of “A” and only
returning two fields the item and the instock.qty field. The zero for _id means we are
explicitly requesting the document with the ObjectID field.

db.inventory.find({ status: "A" }, { _id:0, item: 1,
"size.uom": 1 })

In this query we are only querying for documents with a status of “A” and only
returning two fields the item and the size.uom field. The zero for _id means we are
explicitly requesting the document with the ObjectID field.

Quiz

Quiz

Which of the following are true for projections in MQL?

A. Cannot have an empty projection document

B. Cannot be used with dot notation

C. Can be used for auditing

D. Can set multiple fields for projection

Quiz

Which of the following are true for projections in MQL?

A. Cannot have an empty projection document

B. Cannot be used with dot notation

C. Can be used for auditing

D. Can set multiple fields for projection

INCORRECT: Cannot have an empty projection document - Incorrect, an empty
document simply returns all the fields in the document
INCORRECT: Cannot be used with dot notation - Incorrect, dot notation is usable with
projections
INCORRECT: Can be used for auditing - Incorrect, there are auditing features in
MongoDB Enterprise but this is not an audit feature
CORRECT: Can set multiple fields for projection - Correct

Quiz

Which of the following are true for
projections in MQL?

A. Cannot have an empty projection
document

B. Cannot be used with dot notation

C. Can be used for auditing

D. Can set multiple fields for projection

This incorrect. An empty
document simply returns
all the fields in the
document.

INCORRECT: Cannot have an empty projection document - Incorrect, an empty
document simply returns all the fields in the document

Quiz

Which of the following are true for
projections in MQL?

A. Cannot have an empty
projection document

B. Cannot be used with dot
notation

C. Can be used for auditing

D. Can set multiple fields for
projection

This incorrect. Dot
notation is usable with
projections.

INCORRECT: Cannot be used with dot notation - Incorrect, dot notation is usable with
projections

Quiz

Which of the following are true for
projections in MQL?

A. Cannot have an empty
projection document

B. Cannot be used with dot
notation

C. Can be used for auditing

D. Can set multiple fields for
projection

This incorrect. There are
auditing features in
MongoDB Enterprise but
the querying of arrays in
MQL is not an audit
feature.

INCORRECT: Can be used for auditing - This is incorrect. There are auditing features
in MongoDB Enterprise but the querying of arrays in MQL is not an audit feature

Quiz

Which of the following are true for
projections in MQL?

A. Cannot have an empty
projection document

B. Cannot be used with dot
notation

C. Can be used for auditing

D. Can set multiple fields for
projection

This is correct. It is
possible to use multiple
fields for a projection.

CORRECT: Can set multiple fields for projection - This is correct. It is possible to use
multiple fields for a projection.

Query for Null or
Missing Fields

Query for null or missing fields

In MongoDB, different query operators treat the null field
differently.

There are a number of approaches to querying:

Equality Filter

Existence Check

Type Check

MongoDB can query for null or missing fields, however you should be aware that
different query operators treat the null field differently so care is needed when
designing queries or schemas which use it.

Specifically, we’ll look at how the equality filter, the existence check, and the type
check deal with the null field.

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

For the next exercise, we can use the MongoDB Web Shell to perform the actions.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Let’s insert some data with null fields!

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { _id: 1, item: null },

 { _id: 2 }

])

…

{

acknowledged : true,

insertedIds" : [1, 2]

}

Query for Null Fields: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

db.inventory.insertMany([
 { _id: 1, item: null },
 { _id: 2 }
])

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Let’s query the null with the various approaches

>>> db.inventory.find({ item: null })

{ "_id" : 1, "item" : null }

{ "_id" : 2 }

>>> db.inventory.find({ item : { $exists: false } })

{ "_id" : 2 }

>>> db.inventory.find({ item : { $type: 10 } })

{ "_id" : 1, "item" : null }

Query for Null Fields: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here

The first query will use the equality filter to check for null fields:

db.inventory.find({ item: null })

In this query we are only checking the documents to see if either they contain the item
field whose value is null or that do not contain the item field at all.

The second query will use the existence check by using the $exists operator to find
documents where the ‘item’ field does not exist. In the case of the query, we can see
that where null is set, then it also exists so it won’t be returned by this query.
The third query uses a BSON type check via the $type operator where we look for 10
which is BSON Type for Null.

db.inventory.find({ item : { $exists: false } })

In this query we are only checking to find documents that contain the field ‘ item’ and
which are also of the BSON Type NULL.

db.inventory.find({ item : { $type: 10 } }

This query is only looking for documents where the item field’s value is null,
specifically where the value is equal to the BSON Type Null (type 10 in the BSON
standard).

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Equality Filters on Null

Equality filter matches

● When field value is
null, or

● When documents do
not contain the field

>>> db.inventory.find({ item: null })

{ item: null }

In this query, we will use the equality filter to match documents

db.inventory.find({ item: null })

In this query we are only checking the documents to see if either they contain the item
field whose value is null or that do not contain the item field at all.

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Existence Checks on Null

Existence check
matches

● Only documents
which do or do not
contain the specified
field

>>> db.inventory.find
({ item : { $exists: false }

})

{ item:
{ $exists:
false } }

In this query, we focus on using an existence check on null

db.inventory.find({ item : { $exists: false } })

In this query we are only checking to find documents that do not contain the item
field or if set to true which explicitly contained the field.

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Type checks on null

Type Check matches

● Only documents where
the specified field
matches the BSON
Type, Null.

● This is type 10 in the
BSON
specification/standard.

See: https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

>>> db.inventory.find
({ item: { $type: 10 } })

{ item: {
$type: 10 }

}

db.inventory.find({ item : { $type: 10 } })

This query is only looking for documents where the item field’s value is null.

Specifically where the value is equal to the BSON Type Null (type 10 in the BSON
standard).

https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Let’s insert some more data to further explore null

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { item: "journal", qty: 25, tags: ["blank", "red"], dim_cm: [14, 21], colour: "red"},

 { item: "notebook", qty: 50, tags: ["red", "blank"], dim_cm: [14, 21], colour: "red" },

 { item: "postcard", qty: 45, tags: ["blue"], dim_cm: [10, 15.25], colour: null }

]);

…

{

acknowledged : true,

insertedId : ObjectId(5f3b939f63a92a8719c01239)

}

Query for Null Fields: Exercise

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

db.inventory.drop()
db.inventory.insertMany([
 { item: "journal", qty: 25, tags: ["blank", "red"],
dim_cm: [14, 21], colour: "red"},
 { item: "notebook", qty: 50, tags: ["red", "blank"],
dim_cm: [14, 21], colour: "red" },
 { item: "postcard", qty: 45, tags: ["blue"], dim_cm: [
10, 15.25], colour: null }
]);

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Find docs with a complex conditional

Using the same window, change <A> to the not comparison operator and to the
BSON Type Null. The results should be the same as shown below.

>>> db.inventory.find({ colour : { <A>: { $type: } } })

{ "_id" : ObjectId("5f50eb6f2d4b45b7f11b6d91"), "item" : "journal", "qty" :

25, "tags" : ["blank", "red"], "dim_cm" : [14, 21], "colour" : "red" }

{ "_id" : ObjectId("5f50eb6f2d4b45b7f11b6d92"), "item" : "notebook", "qty" :

50, "tags" : ["red", "blank"], "dim_cm" : [14, 21], "colour" : "red" }

Query for Null Fields: Exercise

Now again let’s use the MQL find() to query the data we’ve just added to the
database. Specifically, we want to only return the documents which have non-null
values in the field ‘colour’.

db.inventory.find({ colour : { $not: { $type: 10 } } })

Two documents are returned that match this criteria.

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Quiz

Quiz

Which of the following are valid approaches to querying
null fields in MongoDB documents?

A. Equality filters

B. Existence checks

C. Type checks

D. Object checks

Quiz

Which of the following are valid approaches to querying
null fields in MongoDB documents?

A. Equality filters

B. Existence checks

C. Type checks

D. Object checks

CORRECT: Equality filters - Equality filters allow for checking if the field is null or for
documents which do not have the field
CORRECT: Existence checks - Existence checks ensure that the field is either
present or not depending on the boolean parameter passed to the check
CORRECT: Type checks - Checks to ensure the type of the field matches the
specified BSON type.
INCORRECT: Object checks - There are no object checks in MongoDB, documents
can be checked by schema validation, however there is no functionality for document
or object checking outside of this within the database.

Quiz

Which of the following are valid approaches to querying
null fields in MongoDB documents?

A. Equality filters

B. Existence checks

C. Type checks

D. Object checks

This is correct. Equality
filters allow for checking if
the field is null or for
documents which do not
have the field.

CORRECT: Equality filters - equality filters allow for checking if the field is null or for
documents which do not have the field

Quiz

Which of the following are valid approaches to querying
null fields in MongoDB documents?

A. Equality filters

B. Existence checks

C. Type checks

D. Object checks

This is correct. Existence
checks ensure that the
field is either present or
not depending on the
boolean parameter
passed to the check.

CORRECT: Existence checks - This is correct. Existence checks ensure that the field
is either present or not depending on the boolean parameter passed to the check

Quiz

Which of the following are valid approaches to querying
null fields in MongoDB documents?

A. Equality filters

B. Existence checks

C. Type checks

D. Object checks

This is correct. It is a valid
approach to use a type
check to ensure the type
of the field matches the
specified BSON type.

CORRECT: Type checks - This is correct. It is a valid approach to use a type check to
ensure the type of the field matches the specified BSON type.

Quiz

Which of the following are valid approaches to querying
null fields in MongoDB documents?

A. Equality filters

B. Existence checks

C. Type checks

D. Object checks

This incorrect. There are no
object checks in MongoDB,
documents can be checked by
schema validation, however
there is no functionality for
document or object checking
outside of this within the
database.

INCORRECT: Object checks - This is incorrect. There are no object checks in
MongoDB, documents can be checked by schema validation however there is no
functionality for document or object checking outside of this within the database.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

