
Deleting Data in MongoDB

LESSON

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported

License
(CC BY-NC-SA 3.0)

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1SUuvsPBjzcxPnPJlzaUjdXNTHA0CkBobN0shralGBN4/edit?usp=sharing

Approaches to Deleting Data in MongoDB

● Delete an individual document or subset
of documents

● Delete all of the documents in a
collection
○ By finding and deleting each or by

dropping the collection
● Age the data out using Time To Live (TTL)

indexes

Let's look at the approaches for deleting data and within these aspects we will cover
the recommendations and best practices for deletion of data in MongoDB

There are a variety of ways to delete data in MongoDB whether you are deleting an
individual document or a subset of documents.

There are various performance impacts from the different methods so in this lesson,
we’ll first introduce the various approaches and discuss the impacts for each.

Recalling from our earlier lesson on "Inserting and updating data in MongoDB” that if
you delete data that is indexed you will also have to update the index(es).

Approaches to Deleting Data in MongoDB

● Delete an individual document or subset
of documents

● Delete all of the documents in a
collection
○ By finding and deleting each or by

dropping the collection
● Age the data out using Time To Live (TTL)

indexes

There are two approaches to deleting all of the documents in a collection, either you
find and delete every document and then if required you manually delete each
associated index for that collection. Alternatively, you can drop the collection which
also implicitly deletes the associated indexes.

In terms of performance, it is vastly more performant to perform a drop with the
associated indexes drops than to individually delete each document which triggers an
update to the index and which then should be deleted if not required. Even if all the
indexes are deleted prior to the deletion of all documents, the _id index will still
present as it is unique and cannot be deleted in this fashion, as it will still be present it
will then also still need to be updated to reflect each document deletion.

Approaches to Deleting Data in MongoDB

● Delete an individual document or subset
of documents

● Delete all of the documents in a
collection
○ By finding and deleting each or by

dropping the collection
● Age the data out using Time To Live (TTL)

indexes

Another approach to deleting data in MongoDB is to use Time To Live (TTL) indexes
which can be used to expire data on a specific date or after a specific amount of time.

Deleting
Documents and
Collections

Let’s first look a little more deeply at deleting individual documents or groups of
documents and then we’ll look at deleting entire collections.

MQL Delete

deleteOne() Deletes
one document from
a collection.

deleteMany() Deletes many
documents from
a collection.

writeConcern Sets the level of
acknowledgment requested
from MongoDB for write
operations.

>>> db.cows.deleteOne({milk: 9})

{ "acknowledged" : true, "deletedCount" : 1 }

>>> db.cows.deleteMany({}, {writeConcern: {w:

"majority"}})

{ "acknowledged" : true, "deletedCount" : 2 }

In terms of the D/Delete in CRUD, both functions take a filter document which
specifies which documents to be delete, if the filter document is empty the first
document in the collection is updated. These functions also take a second document
as an argument which contains the various options that can be configured.

Let’s again use the data on cows that we have entered and test the deleteOne and
deleteMany() functions. We can see in the deletedCount field for both functions how
many documents they deleted for the respective operation.

MQL Delete
Specifically the db.collection.deleteOne() and
db.collection.deleteMany() methods but also db.collection.drop().

To delete all documents from a collection, pass an empty filter document {} to
the db.collection.deleteMany() method.

Additional methods include db.collection.findOneAndDelete() and
db.collection.findAndModify(), both offer a sort option. Deletes are also possible
via the db.collection.bulkWrite() method.

We covered the deleteOne and deleteMany methods, these will be used and sufficient
for the majority of use. However, if you need to delete all of the documents in a
collection then you should look at db.collection.drop(). It has a further advantage that
it removes all of the associated indexes related to that collection as well as the
documents.

MQL Delete
Specifically the db.collection.deleteOne() and
db.collection.deleteMany() methods but also db.collection.drop().

To delete all documents from a collection, pass an empty filter document {} to
the db.collection.deleteMany() method.

Additional methods include db.collection.findOneAndDelete() and
db.collection.findAndModify(), both offer a sort option. Deletes are also possible
via the db.collection.bulkWrite() method.

It is possible to delete all the documents by simply passing an empty filter document
{}, however as mentioned it may be more performant to use drop the collection rather
than delete all the documents.

MQL Delete
Specifically the db.collection.deleteOne() and
db.collection.deleteMany() methods but also db.collection.drop().

To delete all documents from a collection, pass an empty filter document {} to
the db.collection.deleteMany() method.

Additional methods include db.collection.findOneAndDelete() and
db.collection.findAndModify(), both offer a sort option. Deletes are also possible
via the db.collection.bulkWrite() method.

In cases where you want to delete the documents in a sorted order you can use
findOneAndDelete() or findAndModify().

It is also possible to delete documents using the bulkWrite() method, the function
takes an array of bulkWrite operations where you can control the order of execution if
necessary.

The bulk API allows for mixing operations which returns a single result. An example
might be a daily processing job where a set of insert, update, and deletions should
occur and in that sequence.

MQL Drop

drop() Deletes a collection or
a view on a collection.
Recommended approach when
deleting all complete documents
in a collection.

writeConcern Sets the level
of acknowledgment requested
from MongoDB for write
operations.

>>> db.cows.deleteOne({milk: 9})

{ "acknowledged" : true, "deletedCount" : 1 }

>>> db.cows.deleteMany({}, {writeConcern: {w:

"majority"}})

{ "acknowledged" : true, "deletedCount" : 2 }

It is also possible to use the db.<collection>.drop() command to drop either a
collection or a view on a collection.

The drop() command can take an optional writeConcern setting.

drop() will delete all of the associated indexes for the specific collection.
The number of documents and the number of associated indexes will determine how
long the operation will take. The drop operation will take an exclusive lock on the
collection for the duration of the operation.

Drop is recommended when you want to delete all of the documents in a collection as
it also handles removing the indexes. There is a significant performance difference
between dropping the collection and it’s documents versus individual deleting each
and updating each index as a document is deleted. This is why it best practice to
chose drop for these scenarios..

Quiz

Quiz

Which of the following are true for deleting data in MongoDB?
More than one answer choice can be correct.

A. Deleting documents has no impact on indexes

B. Document deletes can be automated with indexes in
MongoDB

C. Dropping a collection does not delete the associated indexes

D. Bulk API allows multiple CRUD operations on a collection to
be combined into a single call to the database

Quiz

Which of the following are true for deleting data in MongoDB?
More than one answer choice can be correct.

A. Deleting documents has no impact on indexes

B. Document deletes can be automated with indexes in
MongoDB

C. Dropping a collection does not delete the associated indexes

D. Bulk API allows multiple CRUD operations on a collection to
be combined into a single call to the database

INCORRECT: Deleting documents has no impact on indexes - This is not correct, if
you delete a document or many documents then the corresponding entries in the
index or indexes for the collection must also be updated.
CORRECT: Document deletes can be automated with indexes in MongoDB - This is
correct, it can be automated in terms of expiring data using MongoDB Time To Live
(TTL) indexes.
INCORRECT: Dropping a collection does not delete the associated indexes - This is
incorrect, dropping a collection deletes all of the documents and all of the associated
indexes for that specific collection.
CORRECT: Bulk API allows multiple CRUD operations on a collection to be combined
into a single call to the database - This is correct, the Bulk API allows many different
CRUD operations to be combined into one call to the database, further these
operations can be ordered or unordered in terms of their execution.

Quiz
Which of the following are true for deleting data in
MongoDB? More than one answer choice can be correct.

A. Deleting documents has no impact on indexes

B. Document deletes can be automated with indexes in
MongoDB

C. Dropping a collection does not delete the associated
indexes

D. Bulk API allows multiple CRUD operations on a
collection to be combined into a single call to the
database

This is incorrect. If you delete a
document or many documents
then the corresponding entries in
the index or indexes for the
collection must also be updated.

INCORRECT: Deleting documents has no impact on indexes - This is not correct, if
you delete a document or many documents then the corresponding entries in the
index or indexes for the collection must also be updated.

Quiz
Which of the following are true for deleting data in
MongoDB? More than one answer choice can be correct.

A. Deleting documents has no impact on indexes

B. Document deletes can be automated with indexes in
MongoDB

C. Dropping a collection does not delete the associated
indexes

D. Bulk API allows multiple CRUD operations on a
collection to be combined into a single call to the
database

This is correct. It can be
automated in terms of expiring
data using MongoDB Time To
Live (TTL) indexes.

CORRECT: Document deletes can be automated with indexes in MongoDB - This is
correct. It can be automated in terms of expiring data using MongoDB Time To Live
(TTL) indexes.

Quiz
Which of the following are true for deleting data in
MongoDB? More than one answer choice can be correct.

A. Deleting documents has no impact on indexes

B. Document deletes can be automated with indexes in
MongoDB

C. Dropping a collection does not delete the associated
indexes

D. Bulk API allows multiple CRUD operations on a
collection to be combined into a single call to the
database

This is incorrect. Dropping a
collection deletes all of the
documents and all of the
associated indexes for that
specific collection.

INCORRECT: Dropping a collection does not delete the associated indexes - This is
incorrect. Dropping a collection deletes all of the documents and all of the associated
indexes for that specific collection.

Quiz
Which of the following are true for deleting data in
MongoDB? More than one answer choice can be correct.

A. Deleting documents has no impact on indexes

B. Document deletes can be automated with indexes in
MongoDB

C. Dropping a collection does not delete the associated
indexes

D. Bulk API allows multiple CRUD operations on a
collection to be combined into a single call to the
database

This is correct. The Bulk API
allows many different CRUD
operations to be combined into
one call to the database, further
these operations can be ordered
or unordered in terms of their
execution.

CORRECT: Bulk API allows multiple CRUD operations on a collection to be combined
into a single call to the database - This is correct. The Bulk API allows many different
CRUD operations to be combined into one call to the database, further these
operations can be ordered or unordered in terms of their execution.

Deleting Using
TTL Indexes

Let’s look at using TTL indexes to delete documents in collections, we’ll look at both
kinds of TTLs, firstly those that expire on a specific date and then you will look at
those that expire after a specific period of time.

Time to Live Index
Single field index, only documents with this field will be deleted.

After a certain periodof time or at a specific clock time.

A background task that removes expired documents runs every
60 seconds.

In a replica set, deletion occurs on the primary and the deletion
operations are replicated to the secondaries.

Expired documents may expire before the background task runs
and before the time MongoDB actually removes the document.

TTL indexes are special single field indexes, a document can only be deleted from the
collection by a TTL index if it has the specific single field otherwise it will be ignored.

Time to Live Index
Single field index, only documents with this field will be deleted.

After a certain period of time or at a specific clock time.

A background task that removes expired documents runs every
60 seconds.

In a replica set, deletion occurs on the primary and the deletion
operations are replicated to the secondaries.

Expired documents may expire before the background task runs
and before the time MongoDB actually removes the document.

TTL indexes have two types of expiration of data, either they can delete the
documents after a set period of time or they can be deleted at a specific clock time.
The set period of time is set within the index whilst the specific clock time is specified
in the document in the field used by the TTL index.

Time to Live Index
Single field index, only documents with this field will be deleted.

After a certain period of time or at a specific clock time.

A background task that removes expired documents runs every
60 seconds.

In a replica set, deletion occurs on the primary and the deletion
operations are replicated to the secondaries.

Expired documents may expire before the background task runs
and before the time MongoDB actually removes the document.

Documents are not immediately expired / deleted by a TTL index, rather the database
runs a background task every 60 seconds and at that point it will delete the expired
documents. This means the deletion time is approximate rather than exact when
using TTL indexes.

Time to Live Index
Single field index, only documents with this field will be deleted.

After a certain period of time or at a specific clock time.

A background task that removes expired documents runs every
60 seconds.

In a replica set, deletion occurs on the primary and the deletion
operations are replicated to the secondaries.

Expired documents may expire before the background task runs
and before the time MongoDB actually removes the document.

In terms of TTL indexes, these perform the operations on the primary with those
operations being replicated by the oplog to the secondaries.

Time to Live Index
Single field index, only documents with this field will be deleted.

After a certain period of time or at a specific clock time.

A background task that removes expired documents runs every
60 seconds.

In a replica set, deletion occurs on the primary and the deletion
operations are replicated to the secondaries.

Expired documents may expire before the background task runs
and before the time MongoDB actually removes the document.

As noted earlier there can be a difference between when the document is actually
removed and when the document is configured to be removed as there can be a gap
between the background task running and the time configured in the TTL for the
documents removal.

Example: TTL
Index

Let’s look at using a TTL index to expire documents. Let's take an example of
coupons for e-commerce and use this with our TTL indexes to show how these can
be expired with the index.

You can perform this example either with the MongoDB Web Shell, visit
https://mws.mongodb.com/?version=4.4 in your browser or with a local MongoDB
Shell connected to a MongoDB deployment, whether running on your laptop or in the
Cloud (maybe on MongoDB's Atlas platform).

https://mws.mongodb.com/?version=4.4

EXAMPLE

TTL Index
>>> use test

>>> db.coupons.drop()

Firstly, let's add drop the coupons collection to make sure we start with a fresh empty
collection.
We drop the collection (db.coupons.drop()) to simplify this example as existing data
may change the number of documents that could be returned and it’s easier for this
example to start fresh.
Here is the code block:

use test;
db.coupons.drop();

EXAMPLE

Inserting Data
>>> use test

>>> db.coupons.drop()

>>> db.coupons.insertMany([{"_id": 1, "coupon": "10% off apples",

"coupon_value": 10, "discounted_product":"apples","expireAt": new

Date('January 01, 2021 14:00:00')}, {"_id": 2, "coupon": "10% off",

"coupon_value": 10, "expireAt": new Date('December 01, 2021

14:00:00')}])

{ "acknowledged" : true, "insertedIds" : [1, 2] }

Now that we've dropped any old data, let’s add two documents, these represent
coupons/discounts which have an expiry date.
Here is the code block:

use test;
db.coupons.drop();
db.coupons.insertMany([{"_id": 1, "coupon": "10% off apples",
"coupon_value": 10, "discounted_product":"apples","expireAt":
new Date('January 01, 2021 14:00:00')}, {"_id": 2, "coupon":
"10% off", "coupon_value": 10, "expireAt": new Date('December
01, 2021 14:00:00')}]);

EXAMPLE

Creating the TTL Index
>>> db.coupons.createIndex({ "expireAt": 1 }, { expireAfterSeconds:

0 })

{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

}

Let’s now create a TTL index on the coupons, specifically on the “expireAt” field. If you
note the field “expireAfterSeconds” as being 0/zero then we can identify that the TTL
index we are adding will expire on the Date field that has been set in the document in
the “expireAt” field.

In this example, we’ve deliberately set the first document to have a date in the past for
the “expireAt” field. This means it will be expired on the next run of the TTL
background thread. So let’s move to the next slide to see this.
Here is the code block:

use test;
db.coupons.drop();
db.coupons.insertMany([{"_id": 1, "coupon": "10% off apples",
"coupon_value": 10, "discounted_product":"apples","expireAt":
new Date('January 01, 2021 14:00:00')}, {"_id": 2, "coupon":
"10% off", "coupon_value": 10, "expireAt": new Date('December
01, 2021 14:00:00')}]);
db.coupons.createIndex({ "expireAt": 1 }, {
expireAfterSeconds: 0 });

EXAMPLE

Check the Collections
>>> db.coupons.find()

{ "_id" : 1, "coupon" : "10% off apples", "coupon_value" : 10,

"discounted_product" : "apples", "expireAt" : ISODate("2021-01-01T14:00:00Z") }

{ "_id" : 2, "coupon" : "10% off", "coupon_value" : 10, "expireAt" :

ISODate("2023-12-01T14:00:00Z") }

(wait 60 seconds or so)

>>> db.coupons.find()

{ "_id" : 2, "coupon" : "10% off", "coupon_value" : 10, "expireAt" :

ISODate("2023-12-01T14:00:00Z") }

In the same MongoDB Shell window, let’s run a find on the coupons collection.
If we are quick (less than 60 seconds), it will still show two documents.

Let’s now wait for about 60 seconds or so, and then we can again re-run the find
query.

Running the find query on the coupons collection after this period will only return one
document as the other document has been expired by the TTL and deleted from the
collection.

EXAMPLE

Create a TTL Index for 24 Hours
Using the same window, change <a> to the field containing the the only date field
in the document (see below for an example). should be set to 24 hours in
terms of seconds (60 seconds * 60 minutes * 24 hours = the value for b).

>>> db.coupons.dropIndex({"expireAt": 1})

{ "nIndexesWas" : 2, "ok" : 1 }

…

>>> db.coupons.createIndex({ "<a>": 1 }, { expireAfterSeconds: })

…

>>> db.coupons.getIndexes()

Let’s now create a different kind of TTL where we want an explicit expiration time that
is controlled not by the field in the document but rather by the TTL index itself. In this
case, we also clean up the index we previously created as we want to again use the
field name for the TTL index we will create in this exercise.

In this example, you will need to reuse the same Mongo Shell window and change
<a> to field with the date information we used previously. You should also set to
represent 24 hours in terms of seconds, this configures the new TTL index to delete
documents 24 hours or so after they have been added.

The result in the code block is what will create a TTL with a 24 hour expiration with
documents which have the “expireAt” field in the “coupons” collection.

db.coupons.dropIndex({"expireAt": 1});
db.coupons.createIndex({"expireAt": 1}, { expireAfterSeconds:
86400 });
db.coupons.getIndexes();

EXAMPLE

Results from Example
[

{
"v" : 2,
"key" : {

"_id" : 1
},
"name" : "_id_"

},
{

"v" : 2,
"key" : {

"expireAt" : 1
},
"name" : "expireAt_1",
"expireAfterSeconds" : 86400

}
]

Here is the output from the getIndexes() command and we can see that we have
created a new TTL index called "expire_at" which has a 24 hour time-to-live setting for
documents with that field as a date/time field in the collection.

It should be noted that documents without that field (and where it is a date/time field)
will not be deleted/expired, it's like any document that does not contain the indexed
field, it won't be found so it can't be deleted.

Quiz

Quiz

Which of the following are true for deleting data in MongoDB? More
than one answer choice can be correct.

A. A Time To Live (TTL) index can be on multiple fields

B. A TTL index deletes the document at the exact expire time

C. TTL indexes use a background task to delete documents

D. TTL indexes are for either a specific elapsed time or at a
specific time

Quiz

Which of the following are true for deleting data in MongoDB? More
than one answer choice can be correct.

A. A Time To Live (TTL) index can be on multiple fields

B. A TTL index deletes the document at the exact expire time

C. TTL indexes use a background task to delete documents

D. TTL indexes are for either a specific elapsed time or at a
specific time

INCORRECT: A Time To Live (TTL) index can be on multiple fields - This is incorrect,
a TTL index can only be used with a single field
INCORRECT: A TTL index deletes the document at the exact expiry time - This is
incorrect, documents are deleted by a periodic tasks once they have expired but it is
not guaranteed to be at the exact expiry time.
CORRECT: TTL indexes use a background task to delete documents - This is correct,
a background task that runs every 60 seconds is used to identify and delete
documents that have expired.
CORRECT: TTL indexes are for either a specific elapsed time or at a specific time -
This is correct, a TTL can either be set for a specific elapsed time or for a specific time
(date and time) but not both.

Quiz
Which of the following are true for deleting data in MongoDB?
More than one answer choice can be correct.

A. A Time To Live (TTL) index can be on multiple fields

B. A TTL index deletes the document at the exact expire time

C. TTL indexes use a background task to delete documents

D. TTL indexes are for either a specific elapsed time or at a
specific time

This is incorrect. A
TTL index can only
be used with a
single field.

INCORRECT: A Time To Live (TTL) index can be on multiple fields - This is incorrect,
a TTL index can only be used with a single field

Quiz
Which of the following are true for deleting data in MongoDB?
More than one answer choice can be correct.

A. A Time To Live (TTL) index can be on multiple fields

B. A TTL index deletes the document at the exact expire time

C. TTL indexes use a background task to delete documents

D. TTL indexes are for either a specific elapsed time or at a
specific time

This is incorrect.
Documents are
deleted by a
periodic task once
they have expired
but it is not
guaranteed to be
at the exact expiry
time.

INCORRECT: A TTL index deletes the document at the exact expiry time - This is
incorrect. Documents are deleted by a periodic task once they have expired but it is
not guaranteed to be at the exact expiry time.

Quiz
Which of the following are true for deleting data in MongoDB?
More than one answer choice can be correct.

A. A Time To Live (TTL) index can be on multiple fields

B. A TTL index deletes the document at the exact expire time

C. TTL indexes use a background task to delete documents

D. TTL indexes are for either a specific elapsed time or at a
specific time

This is correct. A
background task
that runs every 60
seconds is used to
identify and delete
documents that
have expired.

CORRECT: TTL indexes use a background task to delete documents - This is correct.
A background task that runs every 60 seconds is used to identify and delete
documents that have expired.

Quiz
Which of the following are true for deleting data in MongoDB?
More than one answer choice can be correct.

A. A Time To Live (TTL) index can be on multiple fields

B. A TTL index deletes the document at the exact expire time

C. TTL indexes use a background task to delete documents

D. TTL indexes are for either a specific elapsed time or at a
specific time

This is correct. A
TTL can either be
set for a specific
elapsed time or for
a specific time
(date and time) but
not both.

CORRECT: TTL indexes are for either a specific elapsed time or at a specific time -
This is correct. A TTL can either be set for a specific elapsed time or for a specific time
(date and time) but not both.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

