
Querying Data with Operators
and Compound Conditions

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License
(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1sW52E0YZ4DhGhEQQa29yEBuWNqZBHzzaaRuix7jZFmY/edit?usp=sharing

Using Operators and Compound Conditions

Combining operators

Cursors

Multiple compound conditions

Aggregation expressions

We are going to look at using MQL to execute complex queries where we use
operators in conjunction with compound queries to further enhance the selectivity of
our queries.

Using Operators and Compound Conditions

Combining operators

Cursors

Multiple compound conditions

Aggregation expressions

As an aside but a related topic, we are going to introduce Cursors to ensure we can
take our learnings so far and apply them beyond the Mongo Shell and within
MongoDB drivers when we are writing applications to connect to MongoDB.

Using Operators and Compound Conditions

Combining operators

Cursors

Multiple compound conditions

Aggregation expressions

We’ll then move into exploring multiple compound conditions. In MQL it is possible to
use multiple compound conditions and we’ll look at using the $and operator to see
how we do this.

Using operators and compound conditions

Combining operators

Cursors

Multiple compound conditions

Aggregation expressions

Finally, we’ll briefly review aggregation expressions as these can be used with MQL
as well as within the MongoDB Aggregation Framework. There are some caveats
when using them with MQL which will flag.

Combining
Operators

Combining Operators

MongoDB operators can be combined allowing for more complex
conditions to be included in the query

The boolean operators:

● AND
● OR

NOR and NOT can also be combined

Implied boolean “AND” style of query

The combination of operators in querying is important to allow you to model more
complex query logic.

In MongoDB there are two specific operators, the boolean AND as well as the
boolean OR operators. There are also the NOR and NOT boolean operators which
can also be combined with query logic.

By default all queries in MongoDB match all the fields which implicitly gives a logical
AND without using any operator.

MongoDB provides a MongoDB Shell that
accesses a MongoDB instance that can be
used to follow these examples using just a
web browser and no additional software.

How to use the MongoDB Web Shell

If you want to follow along with the example for your class or if you want your students
to follow along, MongoDB provides a MongoDB shell that accesses a MongoDB
instance that can be used to follow these examples using just a web browser and no
additional software. https://mws.mongodb.com/

https://mws.mongodb.com/
https://mws.mongodb.com/

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Combining Operators: Exercise

>>> db.inventory.drop()

>>> db.inventory.insertMany([

 { "item": "journal", "qty": 25, "size": { "h": 14, "w": 21, "uom": "cm" }, "status": "A" },

 { "item": "notebook", "qty": 50, "size": { "h": 8.5, "w": 11, "uom": "in" }, "status": "A" },

 { "item": "paper", "qty": 100, "size": { "h": 8.5, "w": 11, "uom": "in" }, "status": "D" },

 { "item": "planner", "qty": 75, "size": { "h": 22.85, "w": 30, "uom": "cm" }, "status": "D" },

 { "item": "postcard", "qty": 45, "size": { "h": 10, "w": 15.25, "uom": "cm" }, "status": "A" }

]);

…

First, let’s insert some data

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen. We’ll use this data for exploring how we can
combine operators.

db.inventory.drop()
db.inventory.insertMany([
 { "item": "journal", "qty": 25, "size": { "h": 14, "w": 21,
"uom": "cm" }, "status": "A" },
 { "item": "notebook", "qty": 50, "size": { "h": 8.5, "w":
11, "uom": "in" }, "status": "A" },
 { "item": "paper", "qty": 100, "size": { "h": 8.5, "w": 11,
"uom": "in" }, "status": "D" },
 { "item": "planner", "qty": 75, "size": { "h": 22.85, "w":
30, "uom": "cm" }, "status": "D" },
 { "item": "postcard", "qty": 45, "size": { "h": 10, "w":
15.25, "uom": "cm" }, "status": "A" }
]);

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

Let’s query using an implicit AND and OR

>>> db.inventory.find({ status: "A", $or: [{ qty: { $lt: 30 } }, { item: /^p/ }]}

)

{ "_id" : ObjectId("5f3bffba63a92a8719c01243"), "item" : "postcard", "status" : "A",

"size" : { "h" : 10, "w" : 15.25, "uom" : "cm" }, "instock" : [{ "warehouse" : "B",

"qty" : 15 }, { "warehouse" : "C", "qty" : 35 }] }

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944a"), "item" : "journal", "qty" : 25,

"size" : { "h" : 14, "w" : 21, "uom" : "cm" }, "status" : "A" }

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944e"), "item" : "postcard", "qty" : 45,

"size" : { "h" : 10, "w" : 15.25, "uom" : "cm" }, "status" : "A" }

Combining Operators: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here.

db.inventory.find({ status: "A", $or: [{ qty: { $lt: 30
} }, { item: /^p/ }]})

This query is using an implicit AND combined with an OR condition. It will select all
the documents where the status is “A” and either (or) the qty is less than 30 or the
item starts with the character ‘p’. Note the use of anchoring and the regular
expression. MongoDB supports regular expressions within queries.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Let’s query using an explicit AND and OR

>>> db.inventory.find({ $and: [{ $or: [{ qty: { $lt : 10 }

}, { qty : { $gt: 50 } }] }, { $or: [{ status: "A" }, {

"size.w" : { $lt : 15 } }] }] })

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944c"), "item" :

"paper", "qty" : 100, "size" : { "h" : 8.5, "w" : 11, "uom" :

"in" }, "status" : "D" }

Combining Operators: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here.

db.inventory.find({ $and: [{ $or: [{ qty: { $lt : 10 }
}, { qty : { $gt: 50 } }] }, { $or: [{ status: "A" }, {
"size.w" : { $lt : 15 } }] }] }

This is a more complex statement combining AND and OR so let’s break it down. The
AND operator allows us to use the OR operator twice. The first OR operator is looking
for documents where the qty field is less than 10 or greater than 50. The second OR
operator is querying for documents with a status field equal to “A” or where the w field
in the size document is less than 15. The AND operator looks from results from both
of the OR operators to see where any documents have fulfill one or both of the query
parameters within the specific OR statement and equally one or both in the other OR
statement.

There is only one resulting document that fulfils these criteria, specifically in the first
OR clause it has a qty field of 100 which is greater than 50 and for the second OR
clause it has a w field in the size document less than 15.

See: https://docs.mongodb.com/manual/reference/method/db.collection.find/

https://docs.mongodb.com/manual/reference/method/db.collection.find/

Let’s query using the logical NOT operator

>>> db.inventory.find({ item: { $not: { $regex: /^p.*/ } } })

{ "_id" : ObjectId("5f3bffba63a92a8719c0123f"), "item" : "journal", "status" : "A", "size" : {

"h" : 14, "w" : 21, "uom" : "cm" }, "instock" : [{ "warehouse" : "A", "qty" : 5 }] }

{ "_id" : ObjectId("5f3bffba63a92a8719c01240"), "item" : "notebook", "status" : "A", "size" :

{ "h" : 8.5, "w" : 11, "uom" : "in" }, "instock" : [{ "warehouse" : "C", "qty" : 5 }] }

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944a"), "item" : "journal", "qty" : 25, "size" : { "h"

: 14, "w" : 21, "uom" : "cm" }, "status" : "A" }

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944b"), "item" : "notebook", "qty" : 50, "size" : {

"h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "A" }

Combining Operators: Exercise

Now to use the MQL find() to query the data we’ve just added to the database. You
can copy it from the slide or from the notes here.

db.inventory.find({ item: { $not: { $regex: /^p.*/ } } }
)

In this example, we use the $not operator and the $regex (regular expression)
operator to find all the documents where the item field does not start with the letter ‘p’.

See: https://docs.mongodb.com/manual/reference/operator/query/not/

https://docs.mongodb.com/manual/reference/operator/query/not/

Let’s query using the logical NOT operator

Using the same window, change <A> to the and operator, to the
less than operator, <C> to the greater than operator and <D> to the
status field.

>>> db.inventory.find({ $and: [{ <A>: [{ qty: { : 150 } }, { qty : {

<C>: 50 } }] }, { "<D>" : "D" }] })

{ "_id" : ObjectId("5f55eeea2d4b45b7f11b6d96"), "item" : "paper", "qty" : 100,

"size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }

{ "_id" : ObjectId("5f55eeea2d4b45b7f11b6d97"), "item" : "planner", "qty" :

75, "size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }

Combining Operators: Exercise

Now to use the MQL find() and you should follow the instructions to complete the
query above. It is a good example of a more complex MQL statement using multiple
operators. You can copy it from the slide or from the solution from the notes here

db.inventory.find({ $and: [{ $and: [{ qty: { $lt : 150
} }, { qty : { $gt: 50 } }] }, { "status" : "D" }] })
{ "_id" : ObjectId("5f55eeea2d4b45b7f11b6d96"), "item" :
"paper", "qty" : 100, "size" : { "h" : 8.5, "w" : 11,
"uom" : "in" }, "status" : "D" }
{ "_id" : ObjectId("5f55eeea2d4b45b7f11b6d97"), "item" :
"planner", "qty" : 75, "size" : { "h" : 22.85, "w" : 30,
"uom" : "cm" }, "status" : "D" }

Two documents are returned with exact matches for the query, where all the
conditions of the query are explicitly matched.

See: https://docs.mongodb.com/manual/reference/operator/query/not/

https://docs.mongodb.com/manual/reference/operator/query/not/

Quiz

Quiz

Which of the following are true for combining operators in MQL?

A. Multiple separate $or clauses can be combined without any
additional operators in MQL

B. Implicit AND is the default logic for MongoDB query criteria

C. $NOR and $NOT are boolean combination operators in MQL

Quiz

Which of the following are true for combining operators in MQL?

A. Multiple separate $or clauses can be combined without any
additional operators in MQL

B. Implicit AND is the default logic for MongoDB query criteria

C. $NOR and $NOT are boolean combination operators in MQL

INCORRECT: Multiple separate $or clauses can be combined without any additional
operators in MQL - To combine multiple or clauses you need to use the AND operator
CORRECT: Implicit AND is the default logic for MongoDB query criteria - This is the
standard / default in MQL queries.
CORRECT: $NOR and $NOT are boolean combination operators in MQL - These with
$OR and $AND are the boolean operators in MQL.

Quiz

Which of the following are true for
combining operators in MQL?

A. Multiple separate $or clauses can
be combined without any
additional operators in MQL

B. Implicit AND is the default logic
for MongoDB query criteria

C. $NOR and $NOT are boolean
combination operators in MQL

This incorrect. To combine
multiple or clauses you
need to use the $and
operator which is required
as an additional operator.

INCORRECT: Multiple separate $or clauses can be combined without any additional
operators in MQL - To combine multiple or clauses you need to use the AND operator

Quiz

Which of the following are true for
combining operators in MQL?

A. Multiple separate $or clauses can
be combined without any
additional operators in MQL

B. Implicit AND is the default logic
for MongoDB query criteria

C. $NOR and $NOT are boolean
combination operators in MQL

This is correct. This is the
standard / default in MQL
queries.

CORRECT: Implicit AND is the default logic for MongoDB query criteria - This is
correct. This is the standard / default in MQL queries.

Quiz

Which of the following are true for
combining operators in MQL?

A. Multiple separate $or clauses can
be combined without any
additional operators in MQL

B. Implicit AND is the default logic
for MongoDB query criteria

C. $NOR and $NOT are boolean
combination operators in MQL

This is correct. These with
$OR and $AND are the
boolean operators in
MQL.

CORRECT: $NOR and $NOT are boolean combination operators in MQL - This is
correct. These with $OR and $AND are the boolean operators in MQL.

Aggregation
Expressions

Aggregation Expressions

$expr operator allows the use of aggregation expressions in MQL

{ $expr: { <expression> } }

Expressions consist of field paths, literals, system variables,
expression objects, and expression operators. These can be nested.

The $expr operator was introduced to allow MQL to take advantages
of the wider range of query functionality built into the Aggregation
framework.

It is possible to use aggregation expressions within the MongoDB Query Language
(MQL) but you can only do so by using the $expr operator which allows for these
powerful expressions and functionality to be used in MQL.

The $expr takes an expression as it’s parameter. We’ll look at various expressions
and the range of expressions in the aggregation framework.

Aggregation Expressions

$expr operator allows the use of aggregation expressions in MQL

{ $expr: { <expression> } }

Expressions consist of field paths, literals, system variables,
expression objects, and expression operators. These can be nested.

The $expr operator was introduced to allow MQL to take advantages
of the wider range of query functionality built into the Aggregation
framework.

Aggregation expressions belong to one of several categories, these include field
paths, literals, system variables, expression objects, and expression operators.

It is useful to note that aggregation expressions can be nested.

Aggregation Expressions

$expr operator allows the use of aggregation expressions in MQL

{ $expr: { <expression> } }

Expressions consist of field paths, literals, system variables,
expression objects, and expression operators. These can be nested.

The $expr operator was introduced to allow MQL to take advantages
of the wider range of query functionality built into the Aggregation
framework.

Before we move into the various categories of aggregation expressions, it’s important
to reiterate the primary rationale for the $expr operator was to allow MQL to leverage
all of the query functionality that had been built into the Aggregation Framework.

Aggregation Expressions: Field paths

Field paths are strings where the field name is prefixed by a dollar
sign ($).

The field path will either be a field name or dotted field name (if the
field is an embedded document).

Taking a field, ‘product’ to specify it as a field path it would be
‘$product’. ‘$product.price’ would be how you specify ‘product.price’
field if an embedded field.

Field paths are identified by a dollar sign prefix and are normal strings where the field
name is prefixed by a dollar sign ($).

The field path will either be a field name or a dotted field name, if the field is an
embedded document.

Taking an example, the field ‘product’ would be represented as ‘$product’ as a field
path. If it was an embedded document with a price field so ‘product.price’ then it
would be represented as ‘$product.price’ for its field path.

Aggregation Expressions: Variables

System variables, useful helpers such as NOW, ROOT,
CLUSTER_TIME, etc.

User defined variables, hold any kind of BSON type data

$$<variable>"

"$$<variable>.<field>"

Variables in aggregation expressions are used to provide helper functions or to hold
BSON type data. There are two types, system and user defined variables.

System variables, are helpers provided by the Aggregation Framework like NOW
which gives the current time, ROOT which provides the root of the document, and
CLUSTER_TIME which gives the logical time of the cluster at this point in time.

User defined variables are used to hold BSON type data.

They can be referred to by a double dollar and their field name or by a double dollar
and the embedded document with it’s field name if it is an embedded document.

Aggregation Expressions: Literals

Literals can be of any type, they are used for values that you
do not want parsed but rather interpreted as it is.

You can use $literal operator

{ $literal: <value> }

{ $literal: { $add: [2, 3] } }

● { "$add" : [2, 3] }

A literal is used where you want to return an expression without performing any
processing on it. The value is passed as it is and is in no way interpreted.

The example of $literal $add 2,3 would be interpreted as { "$add" : [2, 3] }

Aggregation Expressions: Objects

Expression objects, a set of expressions

{ <field1>: <expression1>, ... }

If an expression is a literal and either numeric or boolean, it
will be treated as a projection flag unless combined with the
$literal operator.

Expression objects can be used to hold a set of expressions in a single container or
object.

Expression objects often use the $literal operator as otherwise expressions which are
numeric or boolean can be interpreted as projection flags.

Aggregation Expressions: Operators
● Arithmetic Expression Operators

● Array Expression Operators

● Boolean Expression Operators

● Comparison Expression Operators

● Conditional Expression Operators

● Custom Aggregation Expression Operators

● Data Size Expression Operators

● Date Expression Operators

● Literal Expression Operator

● Object Expression Operators

● Set Expression Operators

● String Expression Operators

● Text Expression Operator

● Trigonometry Expression
Operators

● Type Expression Operators

● Accumulators ($group)

● Accumulators (in Other Stages)

● Variable Expression Operators

The Aggregation Framework has a large selection of aggregation expressions, this
slides simply lists the operator categories, each of which has multiple aggregation
expressions. You can see:

Arithmetic Expressions
 To
Boolean Expressions
 To
String Expressions amongst the wide range of aggregation expressions on this slide
alone

Aggregation Expressions: Operators

Like functions and take arguments, typically these are an array of
arguments:

Array of arguments:

{ <operator>: [<argument1>, <argument2> ...] }

Single argument:

{ <operator>: <argument> }

Aggregation expressions work like functions and take arguments, either a single
argument or more typically an array of arguments.

Aggregation expressions: Operators
● $abs
● $accumulator
● $acos
● $acosh
● $add
● $addToSet
● $allElementsTrue
● $and
● $anyElementTrue
● $arrayElemAt
● $arrayToObject
● $asin
● $asinh
● $atan

● $atan2
● $atanh
● $avg
● $binarySize
● $bsonSize
● $ceil
● $cmp
● $concat
● $concatArrays
● $cond
● $convert
● $cos
● $dateFromParts
● $dateFromString

● $dateToParts
● $dateToString
● $dayOfMonth
● $dayOfWeek
● $dayOfYear
● $degreesToRadians
● $divide
● $eq
● $exp
● $filter
● $first(array)
● $first(accumulator)
● $floor
● $function

● $gt
● $gte
● $hour
● $ifNull
● $in
● $indexOfArray
● $indexOfBytes
● $indexOfCP

There are a lot of aggregation expression operators, we’ll cover some of these in
more depth in the Aggregation Framework lesson. In this section, we’ll just highlight
that you can use these with MQL via the $expr operator.

The expression operators cover arithmetic, array, boolean, comparison, conditional,
date, object, string, accumulators and other functionality.

Aggregation expressions: Operators
● $isArray
● $isNumber
● $isoDayOfWeek
● $isoWeek
● $isoWeekYear
● $last (array)
● $last (accumulator)
● $let
● $literal
● $ln
● $log
● $log10
● $lt
● $lte

● $ltrim
● $map
● $max
● $mergeObjects
● $meta
● $millisecond
● $min
● $minute
● $mod
● $month
● $multiply
● $ne
● $not
● $objectToArray

● $or
● $pow
● $push
● $radiansToDegrees
● $range
● $reduce
● $regexFind
● $regexFindAll
● $regexMatch
● $replaceOne
● $replaceAll
● $reverseArray
● $round
● $rtrim

Here is yet more aggregation expression operators cover arithmetic, array, boolean,
comparison, conditional, date, object, string, accumulators and other functionality.

The purpose of this slide isn’t to examine any operator in depth but rather to give a
flavour of the breath/spectrum of the available aggregation expressions.

Aggregation expressions: Operators
● $second
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion
● $sin
● $size
● $slice
● $split
● $sqrt
● $stdDevPop
● $stdDevSamp
● $strLenBytes

● $strLenCP
● $strcasecmp
● $substr
● $substrBytes
● $substrCP
● $subtract
● $sum
● $switch
● $tan
● $toBool
● $toDate
● $toDecimal
● $toDouble
● $toInt

● $toLong
● $toLower
● $toObjectId
● $toString
● $toUpper
● $trim
● $trunc
● $type
● $week
● $year
● $zip

Here is the final set of functionality available in aggregation expressions.

The Aggregation Framework and particularly aggregation expression are an area
within the MongoDB database that’s seen a significant improved in terms of
functionality with new operators added in almost every release since the Aggregation
Framework was introduced.

https://docs.mongodb.com/manual/reference/operator/aggregation/split/#exp._S_split
https://docs.mongodb.com/manual/reference/operator/aggregation/regexFindAll/#exp._S_regexFindAll
https://docs.mongodb.com/manual/reference/operator/aggregation/sqrt/#exp._S_sqrt
https://docs.mongodb.com/manual/reference/operator/aggregation/stdDevPop/#grp._S_stdDevPop
https://docs.mongodb.com/manual/reference/operator/aggregation/stdDevSamp/#grp._S_stdDevSamp
https://docs.mongodb.com/manual/reference/operator/aggregation/strLenBytes/#exp._S_strLenBytes
https://docs.mongodb.com/manual/reference/operator/aggregation/strLenCP/#exp._S_strLenCP
https://docs.mongodb.com/manual/reference/operator/aggregation/strcasecmp/#exp._S_strcasecmp
https://docs.mongodb.com/manual/reference/operator/aggregation/substr/#exp._S_substr
https://docs.mongodb.com/manual/reference/operator/aggregation/substrBytes/#exp._S_substrBytes
https://docs.mongodb.com/manual/reference/operator/aggregation/substrCP/#exp._S_substrCP
https://docs.mongodb.com/manual/reference/operator/aggregation/subtract/#exp._S_subtract
https://docs.mongodb.com/manual/reference/operator/aggregation/sum/#grp._S_sum
https://docs.mongodb.com/manual/reference/operator/aggregation/switch/#exp._S_switch
https://docs.mongodb.com/manual/reference/operator/aggregation/tan/#exp._S_tan
https://docs.mongodb.com/manual/reference/operator/aggregation/toBool/#exp._S_toBool
https://docs.mongodb.com/manual/reference/operator/aggregation/toDate/#exp._S_toDate

Example: Aggregation Expression

>>> db.inventory.find({ $expr: { $gt: ["$qty" , 50] } })

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944c"), "item" :
"paper", "qty" : 100, "size" : { "h" : 8.5, "w" : 11, "uom" :
"in" }, "status" : "D" }

{ "_id" : ObjectId("5f3cfb9cc7701a1b3b6e944d"), "item" :
"planner", "qty" : 75, "size" : { "h" : 22.85, "w" : 30, "uom" :
"cm" }, "status" : "D" }

In this query, the $expr operator is using the aggregation expression $gt (greater
than) operator to only return documents where the quantity (‘qty’) field is greater than
50.

This should how to use an aggregation expression in this case with the greater than
($gt) operator to find all documents where the “qty” (quantity) field is greater than 50.

If you need further details on $expr see:
https://docs.mongodb.com/manual/reference/operator/query/expr/#op._S_expr.

https://docs.mongodb.com/manual/reference/operator/query/expr/#op._S_expr

Quiz

Quiz

Which of the following are true for aggregation expression
in MQL?

A. Can have one or more expressions in a query

B. Use dotted names instead of field paths

C. Works with system or with user defined variables

D. Object expressions are not usable in MQL and are only
usable in the Aggregation Framework

Quiz

Which of the following are true for aggregation expression
in MQL?

A. Can have one or more expressions in a query

B. Use dotted names instead of field paths

C. Works with system or with user defined variables

D. Object expressions are not usable in MQL and are only
usable in the Aggregation Framework

CORRECT: Can have one or more expressions in a query - This is correct, the syntax
varies slightly as noted.
INCORRECT: Use dotted names instead of field paths - This is incorrect, field paths
are used with aggregation expressions. Dotted names as a concept are used within
field paths.
CORRECT: Works with system or with user defined variables - This is correct.
INCORRECT: Object expressions are not usable in MQL and are only usable in the
Aggregation Framework - This is incorrect, you can use singular aggregation
expressions or an object consisting of aggregation expressions.

Quiz
Which of the following are true for
aggregation expression in MQL?

A. Can have one or more expressions in a
query

B. Use dotted names instead of field paths

C. Works with system or with user defined
variables

D. Object expressions are not usable in
MQL and are only usable in the
Aggregation Framework

This is correct. It is
possible to have multiple
expressions in a query,
however the syntax varies
slightly as noted.

CORRECT: Can have one or more expressions in a query - This is correct. It is
possible to have multiple expressions in a query, however the syntax varies slightly as
noted.

Quiz
Which of the following are true for
aggregation expression in MQL?

A. Can have one or more expressions in a
query

B. Use dotted names instead of field paths

C. Works with system or with user defined
variables

D. Object expressions are not usable in
MQL and are only usable in the
Aggregation Framework

This incorrect. Field paths
are used with
aggregation expressions.
Dotted names as a
concept are used within
field paths.

INCORRECT: Use dotted names instead of field paths - This is incorrect. Field paths
are used with aggregation expressions. Dotted names as a concept are used within
field paths.

Quiz
Which of the following are true for
aggregation expression in MQL?

A. Can have one or more expressions in a
query

B. Use dotted names instead of field paths

C. Works with system or with user defined
variables

D. Object expressions are not usable in
MQL and are only usable in the
Aggregation Framework

This is correct. System or
user defined variables
can be used in
aggregation expressions
in MQL.

CORRECT: Works with system or with user defined variables - This is correct. System
or user defined variables can be used in aggregation expressions in MQL.

Quiz
Which of the following are true for
aggregation expression in MQL?

A. Can have one or more expressions in a
query

B. Use dotted names instead of field paths

C. Works with system or with user defined
variables

D. Object expressions are not usable in
MQL and are only usable in the
Aggregation Framework

This incorrect. You can
use singular aggregation
expressions or an object
consisting of aggregation
expressions.

INCORRECT: Object expressions are not usable in MQL and are only usable in the
Aggregation Framework - This is incorrect. You can use singular aggregation
expressions or an object consisting of aggregation expressions.

Cursors

Cursors

MongoDB queries return a cursor, a pointer to the result set of
documents

Cursors can be iterated through to retrieve the results

10 minutes of inactivity before timing out

Various options available within the MongoDB Shell or via
MongoDB’s drivers

count(), hint(), limit(), readPreference(), readConcern(), skip(), sort(),
etc.

The cursor is the underlying mechanism used to return the documents when you
query a MongoDB database.

Cursors

MongoDB queries return a cursor, a pointer to the result set of
documents

Cursors can be iterated through the results

10 minutes of inactivity before timing out

Various options available within the MongoDB Shell or via
MongoDB’s drivers

count(), hint(), limit(), readPreference(), readConcern(), skip(), sort(),
etc.

You can iterate through the result set of your query using the cursor, it is the helper
functionality that allows for you to easily access and traverse the results.

Cursors

MongoDB queries return a cursor, a pointer to the result set of
documents

Cursors can be iterated through to retrieve the results

10 minutes of inactivity before timing out

Various options available within the MongoDB Shell or via
MongoDB’s drivers

count(), hint(), limit(), readPreference(), readConcern(), skip(), sort(),
etc.

Cursors only remain active for 10 minutes after which they time out and you will need
to make another request of the database. This helps avoid situations where idle
cursors stay open and use machine resources but actually aren’t doing any querying.

Cursors

MongoDB queries return a cursor, a pointer to the result set of
documents

Cursors can be iterated through to retrieve the results

10 minutes of inactivity before timing out

Various options available within the MongoDB Shell or via
MongoDB’s drivers count(), hint(), limit(), readPreference(),
readConcern(), skip(), sort(), etc.

Cursors have a host of functionality and options that can be used with them including
index hinting, read concerns and read preferences as well as more typical
functionality around skipping, limiting, and count the number of documents in the
result set.

These options exist in both the MongoDB Shell and in the various drivers, however
they may have slightly different naming conventions for the functionality depending on
the language.

Quiz

Quiz

Which of the following are true for cursors in MQL?

A. Stay active/open indefinitely by default

B. Supports read concerns and read preferences

C. Does not support index hinting

D. Uses exactly the same naming conventions across the
MongoDB Drivers and the MongoDB Shell

Quiz

Which of the following are true for cursors in MQL?

A. Stay active/open indefinitely by default

B. Supports read concerns and read preferences

C. Does not support index hinting

D. Uses exactly the same naming conventions across the
MongoDB Drivers and the MongoDB Shell

INCORRECT: Stay active/open indefinitely by default - Cursors only stay active for 10
minutes without any activity before being closed
CORRECT: Supports read concerns and read preferences - This is correct
INCORRECT: Does not support index hinting - Cursors can and often do use hinting
to improve performance with a selected index
INCORRECT: Use exactly the same naming conventions across the MongoDB
Drivers and the MongoDB Shell - The Drivers will offer the same functionality but the
naming conventions may differ slightly depending on the programming language.

Quiz

Which of the following are true for cursors in
MQL?

A. Stay active/open indefinitely by default

B. Supports read concerns and read
preferences

C. Does not support index hinting

D. Uses exactly the same naming conventions
across the MongoDB Drivers and the
MongoDB Shell

This incorrect. Cursors
only stay active for 10
minutes without any
activity before being
closed.

INCORRECT: Stay active/open indefinitely by default - This is incorrect. Cursors only
stay active for 10 minutes without any activity before being closed.

Quiz

Which of the following are true for cursors in
MQL?

A. Stay active/open indefinitely by default

B. Supports read concerns and read
preferences

C. Does not support index hinting

D. Uses exactly the same naming conventions
across the MongoDB Drivers and the
MongoDB Shell

This is correct. Cursors
support read concerns as
well as read preferences.

CORRECT: Supports read concerns and read preferences - This is correct. Cursors
support read concerns as well as read preferences.

Quiz

Which of the following are true for cursors in
MQL?

A. Stay active/open indefinitely by default

B. Supports read concerns and read
preferences

C. Does not support index hinting

D. Uses exactly the same naming conventions
across the MongoDB Drivers and the
MongoDB Shell

This incorrect. The Drivers
will offer the same
functionality but the
naming conventions may
differ slightly depending
on the programming
language.

INCORRECT: Use exactly the same naming conventions across the MongoDB
Drivers and the MongoDB Shell - This is incorrect. The Drivers will offer the same
functionality but the naming conventions may differ slightly depending on the
programming language.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

