
Data Modeling and Schema
Design Patterns

LESSON

Google slide deck available here

This work is licensed under the Creative
Commons

Attribution-NonCommercial-ShareAlike 3.0
Unported License
(CC BY-NC-SA 3.0)

https://docs.google.com/presentation/d/1gmU38CZRgmVOYs66E16wvDO_ystf8jKJN2QEoBM2oX4/edit?usp=sharing
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Schema Design: Overview
Schema is defined at the application-level and
may change over the lifetime.

Schema comes from the needs of the application.

Schema should be evolved as the application
changes.

Schema design best practices have been codified
in a number of patterns.

Schema design is defined at the application level and it is likely it will change over the
application’s lifetime.
The schema should be designed to service the needs of the application.
It will likely evolve as the application changes.
Schema design patterns are a codified set of approached to schema design which
help you use best practices within your schema.

Schema Design Considerations

Your queries and
specifically the data
your application needs.

How your application
reads and writes the
data (read and write
patterns).

What are the
relationships between
your data (linked or
embedded)

There are a number of considerations you should focus on within schema design.
Specifically, you need to understand the data and the queries needed by your
application.
You also need to understand how it reads and writes data.
Finally, you also need to understand the relationships between your data.
We’ll cover a methodology later in this lesson that should help you ask the right
questions to create a schema that fits these considerations.

Linking or
Embedding

Let’s look at linking data in documents across multiple collections and let’s also look
at embedding data in one document these are the main approaches to modelling data
in MongoDB.

Schema Design - Link or Embed?
Embedded vs Linked relationship in the Post-Comment example

blog post

_id: 123d456
text: “This is my
post”

comments

text: comment 1
author: <string>

text: comment 2
author: <string>

text: comment 3
author: <string>

blog post

_id: 123d456
text: “This is my post”

comments

Embedded
Linked

blog_id: 123d456
text: comment 1
author: <string>

blog_id: 123d456
text: comment 2
author: <string>

blog_id: 123d456
text: comment 3
author: <string>

When you are performing schema design the question of whether to link or to embed
your data are at the core of any schema design.
The questions here should all be answered when you are creating your schema
design as they can help ensure you fully consider all aspects of the design.

Firstly, Do I want the information mostly embedded? In this case, if all the information
is present in a single document then retrieval will be faster than if it is in two
documents or across two or more collections. The frequency of the specific data and
the size of the data must also be considered as very large documents will not be
retrieved as fast as tiny documents even if those documents are in two separate
collections.

A second important question to ask is, do I need to search with the embedded data?
You might also want to follow up to determine what you are searching for and if it is
only a fraction of the embedded data, should only some of it be embedded and the
rest linked.

Thirdly, you should ask, how frequently will the embedded data change?

Fourthly, you should consider whether the latest schema version or the same version
of the schema is required. The answer of this would indicate for instance if the

5

schema versioning pattern discussed later in the lesson might be applicable.

Finally, you should determine whether the embedded data can be shared or whether it
is private. Indeed, this should be double checked with all stakeholders to ensure there
are no doubts on this question which is increasingly important in the age of both data
and digital privacy.

An important set of questions that should be answered when designing your schema
is whether you should link to other documents with the data or whether the data
should be embedded in a single document. This should also be considered in terms of
the different users of the database as this might not be the same answer depending
on the specific user.

Example: Embedding and Linking
movies

title: <string>

actors [0,1000]

name: <string>
role: <string>

financials [2]

salaries: <decimal>
meal: <decimal>
Last_update:
<date>

reviews

date: <date>
publisher: <string>
stars: <int>[1,1] [0,30,100]

Let’s look at an application where we store details on movies and reviews related to
those movies.

In this example, we have a movie document where the actors and the financials are
embedded in a single document whilst reviews are linked.

Example: Embedding vs. Linking
Embedding

customers

_id: int
name: string

…

orders

OrderId: int
OrderDate: date
…

customers

OrderId: int
CustomerId: int
OrderDate: date
…

_id: int
name: string
…

orders

Referencing/Linking

Let’s look at another scenario where we want to store customers and their related
order data.
We can do this with either embedding (on the left) or linking (on the right) as shown
on the slide.

It is equally possible to design with either approach that is to say in this example on
the slide you could either link to the orders for a customer which are kept in a
separate orders table or they could equally be embedded within the customers
document.

In general, the rule of thumb is to favour embedding over linking. This typically gives
the required data with a single query. It is also a better design when data that will be
deleted exists together.

This all depends on the situation and if there is a large amount of unused data in the
document or say only the last 20 orders are required then it might be considering an
alternative design. We’ll cover one schema design pattern later in this lesson, the
subset pattern which would be appropriate for that situation.

One-to-One (1-1)

One-to-Many (1-N)

Many-to-Many
(N-N)

Relationships

We’re going to talk about the relationship or link types that you will typically use to
model data.

We’ll look at one to one relations firstly, then we’ll move to one to many, and finally
we’ll move to many to many relationships.

One-to-One (1-1)

One-to-Many (1-N)

Many-to-Many
(N-N)

customers

name
customer_id

Relationships

A one-to-one relationship is represented and stored in a single document, this would
typically be data like a person's name and the customer id. All these fields have a
one-to-one relationship with each other. More clearly, a user in our system has one
and only one name, and is associated with one and only one customer id.

In designing this relationship, if you only consider one side of the relationship you may
classify it as a “one” or as a “many” if you don’t consider both sides. The best advice
is to ensure you ask the question of associativity from both directions and that you
review your model a few times, especially for less apparent relationships.

Embedding is the preferred way to model a 1:1 relationship as it’s more efficient to
retrieve the document.

One-to-One (1-1)

One-to-Many (1-N)

Many-to-Many
(N-N)

Relationships customers

name
customer_id

invoices

invoice_id
customer_id
products[]

A one-to-many relationship can be considered as that when an object of a given type
is associated with N objects of a second type.

In this type of relationship, the customer can have many invoices. It can be modelled
by either linking the data (as shown) or by embedding the data (where the invoices
are within the customer documents).

There is an additional technical called bucketing which is a combination of both linking
and embedding. Bucketing works best when you can split your documents into
batches, it can speed up document retrieval. Time based data (IOT) or where there
are a number of entries (e.g. like comments pagination). We’ll look at bucketing in
more depth as part of the schema design patterns later in this lesson.

One-to-One (1-1)

One-to-Many (1-N)

Many-to-Many
(N-N)

Relationships customers

name
customer_id

invoices

invoice_id
customer_id
products[]

products

product_id
description

A Many-to-Many relationship between two entities where they both might have many
relationships between each other. This means that documents on the first side can be
associated with many documents on the second side. In terms of documents on the
second side, it equally means that these documents can be associated with many
documents on the first side.

To reiterate an important modelling point about designing relationships, if you only
consider one side of the relationship you may classify it as a “one” or as a “many” if
you don’t consider both sides. The best advice is to ensure you ask the question of
associativity from both directions and that you review your model a few times,
especially for less apparent relationships.

There are several strategies but the 1-way embedding strategy optimises the read
performance of a N:N relationship by embedding the references in one side of the
relationship. The key step in this strategy is establishing the relationship balance and
choosing the side which has one or two orders magnitude of difference in the number
of entities. If the relationships are close to an even ratio then 2-way embedding is
probably a better strategy.

When the "many" side is a huge
number

For integrity on write operations on
many-to-many

When a piece is frequently used,
but not the other and memory is

an issue

For integrity with read operations

For integrity with write operations

 On one-to-one and one-to-many

For data that is deleted together
by default

Embed Link

In order to help in the choice of relationship when you are modeling there are several
helpful rules of thumb:

In terms of integrity, there are rules of thumb which related to when different pieces of
information need to either be read or written together and where strong consistency is
required.
For embedding data, this should be favoured for read operations to support integrity
as well as for write operations on one-to-one and one-to-many relationships.
Embedding is also recommended when data is going to be deleted together.
In the majority of modeling designs, embedding data should be the default approach
or choice taken.

In terms of linking data, it is recommended that this is done where there is a very
large number of objects on the “many” side in either a one-to-many or a
many-to-many relationship.
It is also recommended for write operations on many-to-many relationships.
Finally, linkin is recommended where only a subset of the data is frequently used
whilst the rest of the data is not and where memory may be an issue. We’ll look at a
concrete design pattern later in this lesson, called the subset pattern which relates to
this concept.

Finally, the most important factor to keep to the forefront when you are modelling is
the frequency of all the queries. This will help you make a better and more informed
decision as to how you should model any specific data or relationship.

Quiz

Quiz

Which of the following are common link type or relationship
types in MongoDB schemas? More than one answer choice
can be correct.

A. One-to-One

B. One-to-Many

C. Many-to-One

D. Many-to-Many

Quiz

Which of the following are common link type or relationship
types in MongoDB schemas? More than one answer choice
can be correct.

A. One-to-One

B. One-to-Many

C. Many-to-One

D. Many-to-Many

CORRECT: One-to-One, this is a common link or relationship type in MongoDB.
CORRECT: One-to-Many, this is a common link or relationship type in MongoDB.
INCORRECT: Many-to-One - This isn’t a common relationship or link type in
MongoDB.
CORRECT: Many-to-Many, this is a common link or relationship type in MongoDB.
This is possible in MongoDB, an example would be where you have arrays on either
side of this relationship.

Quiz

Which of the following are common link type or relationship
types in MongoDB schemas? More than one answer choice
can be correct.

A. One-to-One

B. One-to-Many

C. Many-to-One

D. Many-to-Many

This is correct.
One-to-One is a common
link or relationship type in
MongoDB.

CORRECT: One-to-One, this is a common link or relationship type in MongoDB.

Quiz

Which of the following are common link type or relationship
types in MongoDB schemas? More than one answer choice
can be correct.

A. One-to-One

B. One-to-Many

C. Many-to-One

D. Many-to-Many

This is correct. One-to-Many is a
common link or relationship type
in MongoDB.

CORRECT: One-to-Many - This is correct. One-to-Many is a common link or
relationship type in MongoDB.

Quiz

Which of the following are common link type or relationship
types in MongoDB schemas? More than one answer choice
can be correct.

A. One-to-One

B. One-to-Many

C. Many-to-One

D. Many-to-Many

This is incorrect. Many-to-One is
not a common relationship or
link type in MongoDB.

INCORRECT: Many-to-One - This is incorrect. Many-to-One is not a common
relationship or link type in MongoDB.

Quiz

Which of the following are common link type or relationship
types in MongoDB schemas? More than one answer choice
can be correct.

A. One-to-One

B. One-to-Many

C. Many-to-One

D. Many-to-Many

This is correct. Many-to-Many is a
common link or relationship type in
MongoDB. This is possible in
MongoDB, an example would be
where you have arrays on either side
of this relationship.

CORRECT: Many-to-Many - This is correct. Many-to-Many is a common link or
relationship type in MongoDB. This is possible in MongoDB, an example would be
where you have arrays on either side of this relationship.

“Dynamic”
Schema

Let’s introduce and define the various types of “Dynamic” schema.

Main Models for “Dynamic” Schema

Data DrivenEvolutionary Payload Driven

There are three main models of dynamic schema, we’ll explore each in a sequence.

Evolutionary is where the schema changes as your application changes.
Payload driven is where your application receives data from another application and
has very little control over the schema.
Data driven is where the field names actually represent data.

We’ll look at each of these three models in depth now.

Evolutionary Dynamic Schema
Characteristics of an evolutionary dynamic schema:

● Schema changes as application changes
● Big benefit to using MongoDB
● Slow changes to application but no big conversion needed
● Include a schema version number with the data as a field
● Retain ability to read previous schemas in application
● Either convert in background or on modification
● Loosely coupled Database Objects and Code Objects

Schema versioning can be used to achieve a dynamic schema that changes with your
application. We will also cover this topic in the patterns section later in this lesson.

This type of approach can provide significant benefits when using MongoDB as
changes to your code can be easily accommodated by your database.

It further allows for easy backward compatibility through the use of a schema version
number so older schemas can easily be read and processed without significant
application changes.

This type of schema means that changes can be modified when there is a document
modification or in the background, there is no need for a complete update of all
documents to the latest version in one bulk converison.

This allows for loosely couple database objects and code objects.

Payload Driven Dynamic Schema
Developer has 'no control' over what data goes in — the apps purpose is to
store arbitrary data.

Schema is therefore unpredictable

● You cannot optimize much for arbitrary data

● Performance will be poor

● Wildcard indexes are not a good solution

Need to consider the Payload versus Processing trade-offs

● Can you optimize by using metadata?

In some applications, the developer is merely passed data of which there is no
possibility to change the schema and they must store it as is.
It is also likely that the schema could change and due to this unpredictability,
performance will be not be possible.
Some optimization can be achieve through using metadata about the data but the
core data sent to the application itself isn’t optimizable.

In these situations, it is difficult to optimise and the trade-offs need to be consider in
terms of payload and of processing.

Data Driven Dynamic Schema

Characteristics of a data driven dynamic schema:

● Field Names are the data values
● Uncomfortable new concept for many designers
● Requires a truly dynamic coding approach
● Clean and performant for many things

Let’s look at the data driven dynamic schema approach, it can be highly performant
but does require a different coding approach.
Instead of using a field name, the field name itself is representing data. This does
require a different approach to coding but it is performant and clean when compared
to other approaches.

Data Driven Dynamic Schema

results: {john: {score: 25},

 fred: {score: 20},

 sarah: {score: 50}}

results: [{player: 'john', score:
25},

{player: 'fred', score:
20},

{player: 'sarah', score
50}]

OR

Which of the two examples use a data driven dynamic schema ? Recall that in a data
driven dynamic schema, the field itself typically represents data.

Modeling
Methodology

Let’s look at the methodology we recommend that you follow when modelling your
schema.

Modeling Methodology

Workload
Size data
Quantify ops
Qualify ops

Relationships
Identify
Quantify
Embed or link

Patterns
Recognize
Apply

Schema
Collections
Fields
Shapes

Applied Patterns
Queries
Indexes

Data sizing af
Operations
Assumptions

Modeling Methodology: Stage One

Workload
Size data
Quantify ops
Qualify ops

Relationships
Identify
Quantify
Embed or link

Patterns
Recognize
Apply

Schema
Collections
Fields
Shapes

Applied Patterns
Queries
Indexes

Data sizing af
Operations
Assumptions

The first stage of the modelling methodology we recommend for MongoDB is to
classify the workload.
This classification involves calculating the size of the data as well identify the
important reads and writes. You can identify the important operations only after
determining how many of each (reads/writes) will occur and which each will be (a
read or a write).

Modeling Methodology: Stage Two

Workload
Size data
Quantify ops
Qualify ops

Relationships
Identify
Quantify
Embed or link

Patterns
Recognize
Apply

Schema
Collections
Fields
Shapes

Applied Patterns
Queries
Indexes

Data sizing af
Operations
Assumptions

The second stage of the modelling methodology we recommend for MongoDB is to
classify the relationships in the data.
This process involves identifying all the relationships between the data and then how
to link or embed the related entities.

Modeling Methodology: Stage Three

Workload
Size data
Quantify ops
Qualify ops

Relationships
Identify
Quantify
Embed or link

Patterns
Recognize
Apply

Schema
Collections
Fields
Shapes

Applied Patterns
Queries
Indexes

Data sizing af
Operations
Assumptions

The third stage of the modelling methodology we recommend for MongoDB is to
identify if there are opportunities to use a pattern or patterns with the schema design.
If there is are opportunities, this phase includes apply these and refactoring the
existing schema to use the appropriate pattern or patterns.

Patterns are useful, however a good rule of thumb is only to apply patterns that are
needed for optimizations. Patterns can add functionality to the specific application’s
code so the best advice is to use them liberally and where there are clear gains.

Modeling Methodology: Final Stage

Workload
Size data
Quantify ops
Qualify ops

Relationships
Identify
Quantify
Embed or link

Patterns
Recognize
Apply

Schema
Collections
Fields
Shapes

Applied Patterns
Queries
Indexes

Data sizing af
Operations
Assumptions

After modelling your application and it’s workload, relationships, and patterns which
might apply you can then generate the most suitable schema.

This includes determine how many collection, what fields are needed in documents,
what queries are required and what indexes should be provided to support those
queries.

This along with the data size and expected data growth as well as the mix of
operation types and any other assumptions should be documented to ensure you
have a clearly defined schema that you can easily implement in MongoDB.

Flexible Methodology

Goal Simplicity Simplicity and
Performance Performance

1. Identify Workload
Most Frequent
Op

Data Size
Quantify Ops

Data Size
Quantify Ops
Qualify Ops

2. Entities + Relationships Mostly Embed Embed & Link Embed & Link

3. Transformation Patterns Pattern A Patterns A, B Patterns A,B,C

We propose a flexible methodology, in that you don’t need to apply all the steps all the
time, and you should use it as and when needed. It should be seen as optional rather
than prescriptive.

As we’ve seen in the previous slides, the three steps are to identify the workload, to
identify the relationships and entities, and to determine if any schema design patterns
could apply. Let’s look at these steps from three different developer goals.

The goals are to have the simplest possible schema, or to have a simple but yet
performant schema, or to focus on having a highly performant schema. Developers
can focus on one of these goals and we’ll talk in the next slides about how they can
use this modeling methodology to satisfy any one of these goals.

Flexible Methodology

Goal Simplicity Simplicity and
Performance Performance

1. Identify Workload
Most Frequent
Op

Data Size
Quantify Ops

Data Size
Quantify Ops
Qualify Ops

2. Entities + Relationships Mostly Embed Embed & Link Embed & Link

3. Transformation Patterns Pattern A Patterns A, B Patterns A,B,C

If your goal is simplicity, you can focus on these specific aspects.

For the workload, you should identify the most frequent operation.

For the relationships, you should try and embedded these rather than linking them.

For any patterns, you should try and use one or none to keep it simple.

Flexible Methodology

Goal Simplicity Simplicity and
Performance Performance

1. Identify Workload
Most Frequent
Op

Data Size
Quantify Ops

Data Size
Quantify Ops
Qualify Ops

2. Entities + Relationships Mostly Embed Embed & Link Embed & Link

3. Transformation Patterns Pattern A Patterns A, B Patterns A,B,C

If you want to balance some performance with simplicity, you can focus on these
specific aspects.

For the workload, you should identify the data size and quantify the various
operations.

For the relationships, you should try embedded and link as your data.

For any patterns, you should use one or two patterns at most.

Flexible Methodology

Goal Simplicity Simplicity and
Performance Performance

1. Identify Workload
Most Frequent
Op

Data Size
Quantify Ops

Data Size
Quantify Ops
Qualify Ops

2. Entities + Relationships Mostly Embed Embed & Link Embed & Link

3. Transformation Patterns Pattern A Patterns A, B Patterns A,B,C

If you want to focus on performance, you can focus on these specific aspects.
Focusing on performance will likely increase the complexity of the application and will
make it more difficult to maintain.

For the workload, you should identify the data size, quantify the various operations
and also qualify those operations.

For the relationships, you should try embedded and link as your data.

For any patterns, you should use as many applicable patterns (two or more) that
provide performance advantages.

Quiz

Quiz

Which of the following are true for the schema design
methodology if simplicity is your goal for the design? More than
one answer choice can be correct.

A. For your workload you should only account for the most
frequent operations

B. For the relationships, you should plan to embed and link

C. For patterns, you should only use one or two to minimize the
complexity of the schema and implementation effort required

Quiz

Which of the following are true for the schema design
methodology if simplicity is your goal for the design? More than
one answer choice can be correct.

A. For your workload you should only account for the most
frequent operations

B. For the relationships, you should plan to embed and link

C. For patterns, you should only use one or two to minimize the
complexity of the schema and implementation effort required

CORRECT: For your workload you should only account for the most frequent
operations - If simplicity is the goal, the ease of implementation is low and the
maintenance of the application should be simpler
INCORRECT: For the relationships, you should plan to embed and link - Incorrect, in
the context of simplicity you should only embed relationships
CORRECT: For patterns, you should only use one or two to minimize the complexity
of the schema and implementation effort required - A minimum number of patterns
should be chosen when the focus is simplicity

Quiz
Which of the following are true for the schema design
methodology if simplicity is your goal for the design?
More than one answer choice can be correct.

A. For your workload you should only account for
the most frequent operations

B. For the relationships, you should plan to embed
and link

C. For patterns, you should only use one or two to
minimize the complexity of the schema and
implementation effort required

This is correct. If simplicity is
the goal, the ease of
implementation is low and
the maintenance of the
application should be
simpler.

CORRECT: For your workload you should only account for the most frequent
operations - If simplicity is the goal, the ease of implementation is low and the
maintenance of the application should be simpler

Quiz
Which of the following are true for the schema design
methodology if simplicity is your goal for the design?
More than one answer choice can be correct.

A. For your workload you should only account for
the most frequent operations

B. For the relationships, you should plan to embed
and link

C. For patterns, you should only use one or two to
minimize the complexity of the schema and
implementation effort required

This is incorrect. In the
context of simplicity you
should only embed
relationships.

INCORRECT: For the relationships, you should plan to embed and link - This is
incorrect. In the context of simplicity you should only embed relationships

Quiz
Which of the following are true for the schema design
methodology if simplicity is your goal for the design?
More than one answer choice can be correct.

A. For your workload you should only account for
the most frequent operations

B. For the relationships, you should plan to embed
and link

C. For patterns, you should only use one or two to
minimize the complexity of the schema and
implementation effort required

This is correct. A minimum
number of patterns should
be chosen when the focus is
simplicity.

CORRECT: For patterns, you should only use one or two to minimize the complexity
of the schema and implementation effort required - This is correct. A minimum number
of patterns should be chosen when the focus is simplicity

Patterns
Overview

Patterns Overview

There are a range of patterns that can be used to support certain use cases. We’ll
look at a number of these patterns to give some examples of how they are useful and
when you might use them.

Firstly, we’ll look at the Polymorphic pattern, which is useful when there are a variety
of documents that have more similarities than differences and the documents need to
be kept in a single collection.

We’ll then look at the Schema Versioning pattern, which allows for previous and
current versions of documents to exist side by side in a collection.

Then we’ll look at the Attribute patten, where there are big documents in a collection
but we are only interested in a subset of fields that share common characteristics and
we want to sort or query on that subset of fields.

After the Attribute pattern, we’ll investigate the Bucket pattern, is useful for when we
need to manage streaming data such as those from sensors/Internet of Things
devices but it can also be used in other areas such as financial services. We’ll show
examples of both.

Finally, we’ll look at the Subset pattern, helps resolve when your working set exceeds
the capacity of RAM due to large documents and where a large amount of the data in
the document isn’t being used by the main/frequent queries to your database.

When I send the slide deck out after class, you’ll see a link to Patterns
Summary blog
https://www.mongodb.com/blog/post/building-with-patterns-a-summary. Feel
free to visit that link to learn more about the various schema patterns.

Schema Design Patterns: Why?

Techniques to transformations for your schema

A common ground / language

Can be used within a methodology

Document databases are different to relational database and many of the approaches
used in relational data modelling don’t apply. This often leads people to ask questions
like “I’m creating an application to do thing X, how best should I model the data in
MongoDB to support this?”.

Patterns are guidance to try and help answer these types of modeling questions.

Patterns allow you to easily transform your schema to better support the specific use
case.

Patterns are designed to use a common set of terms and indeed the patterns
themselves to help ensure everyone understands what is being discussed.

Patterns can be used alone or as we suggest within a methodology. We highlighted
our recommended methodology earlier in the lesson and this has explicitly designed
to include using patterns.

Polymorphic
Pattern

Let’s look at our first pattern, the Polymorphic Pattern. This models situations where
the date being modelled is more similar than different and we want to keep the data in
the same collection.

Polymorphic Pattern

{
 "vehicle_type": "car",
 "owner": "Roland",
 "taxes": "200",
 "wheels": 4
}

{
 "vehicle_type": "truck",
 "owner": "Daniel",
 "taxes": "800",
 "wheels": 10,
 "axles": 3,
}

The Polymorphic pattern is useful when there are a variety of documents that have
more similarities than differences and the documents need to be kept in a single
collection.

An example of this would be if we had a vehicles collection with various different types
of vehicle such as cars, trucks, motorbikes or even construction vehicles.

On the slide here we can see that whilst there are some common similarities between
trucks and cars that there are some differences such as the number of axles but that
overall the differences are minor.

To dive deeper into this topic, check out the Patterns blog post on the Polymorphic
Pattern https://developer.mongodb.com/how-to/polymorphic-pattern

https://developer.mongodb.com/how-to/polymorphic-pattern

Pattern in Practice: Single View Use

System A

{
 id: "203-102-1222",
 name: "Adams",
 first: "Samuel",
 address: "100 Forest",
 city: "Palo Alto",
 state: "California",
}

System C

{
 pkey: "123456",
 soc_sec: "203-102-1222",
 name: "Samuel Adams",
 street: "222 University",
 city: "Palo Alto",
 state: "CA",
}

System B

{
 ss: "203-102-1222",
 last_name: "Adams",
 first_name: "Samuel",
 address: "100 Forest",
 city: "Palo Alto",
 state: "CA",
}

Single View

{
 _id: "203-102-1222",
 insurance_types: ["life", "home",
"car"],
 last_name: "Adams",
 first_name: "Samuel",
 addresses: [
 { address: "100 Forest",
 city: "Palo Alto", state:
"California" },
 { address: "100 Forest",
 city: "Palo Alto", state: "CA" },
 { street: "222 University",
 city: "Palo Alto", state: "CA" }
] }

The polymorphic pattern can also be used where you might want to consolidate
multiple different collections with the same or similar information into a single
collection.

A typical example as shown on the slide is where records for a single customer are
stored in various different databases or collections, by using the single view pattern it
is possible to collect all of the information into a single representation and document.
In the example above, the documents represented life, home, and car insurance
customer records which can now be stored in a single consolidated customer
insurance document.

This “Single View Use” has been a very successful use case for MongoDB as it allows
many different data sources to be unified into a single collection.
https://www.mongodb.com/blog/post/10-step-methodology-single-view-part-1
https://www.mongodb.com/blog/post/10-step-methodology-single-view-part-2
https://www.mongodb.com/blog/post/10-step-methodology-to-creating-a-single-view-o
f-your-business-part-3

This pattern and indeed the methodology in the blog posts listed on the slide can
resolve the generic problem of managing disconnected and duplicate data. The end
collection is also a great starting point for further analytics across the now
consolidated data.

https://www.mongodb.com/blog/post/10-step-methodology-single-view-part-1
https://www.mongodb.com/blog/post/10-step-methodology-single-view-part-2
https://www.mongodb.com/blog/post/10-step-methodology-to-creating-a-single-view-of-your-business-part-3
https://www.mongodb.com/blog/post/10-step-methodology-to-creating-a-single-view-of-your-business-part-3

Polymorphism in the Schema Versioning Pattern

{
 id: "203-102-1222",
 name: "Adams",
 first: "Samuel",
 address: "100 Forest",
 city: "Palo Alto",
 state: "California",
 telephone: 400-900-4000,
 cellphone: 600-900-0003
}

{
 id: ObjectID,
 schema_verison: <int>,
 name: <string>,
 first: <string>,
 address: <string>,
 city: <string>,
 state: <string>,
 contacts: [
 method: <string>,
 value: <sting>
]
}

{
 id: "203-102-1222",
 schema_version: 1,
 name: "Adams",
 first: "Samuel",
 address: "100 Forest",
 city: "Palo Alto",
 state: "California",
 contacts: [
 { method: telephone,
 value: 400-900-4000 },
 { method: cellphone,
 value: 600-900-0003 },
 { method: email,
 value: sam.adams@mongodb.com }
]
}

We’ll cover the schema versioning pattern next but in advance, we’ll highlight how the
polymorphism pattern is a key element to that pattern. The contacts sub-document is
an example of applying the polymorphism pattern with a second pattern.

To dive deeper, check out the blog post on Schema Versioning Pattern
https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pa
ttern

mailto:sam.adams@mongodb.com
https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pattern
https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pattern

Polymorphism Pattern

Problem
Objects more similar than different
Want to keep objects in same
collection

Solution
Field tracks the type of document or
sub-document
Application has different code paths
per document type, or has subclasses

Use Case Examples
Single View
Product Catalog
Content Management

Benefits and Trade-offs
Easier to implement
Allow to query across a single
collection

We’ll summarise each of patterns under the same four headings of Problem, Solution,
Use Case Examples, and Benefits & Trade-offs.

In the case of the Polymorphism Pattern, the problem is that the objects are often
more similar than different and we still wish to keep them in the same collection.

The solution is to create a field that tracks the sub-document, it does however require
application paths.

In terms of use case examples, the single view we covered but equally this pattern
could be applied to product catalogues or to content management use cases.

In terms of the benefits and trade-offs, the polymorphism is a easy to implement and
allows the query to work on a single collection.

Quiz

Quiz

Which of the following are true for the polymorphic pattern
in MongoDB? More than one answer choice can be correct.

A. Suited to where objects are more similar than different

B. Want to keep objects in same collections

C. Only requires a single code path in your application

D. Difficult to implement

Quiz

Which of the following are true for the polymorphic pattern
in MongoDB? More than one answer choice can be correct.

A. Suited to where objects are more similar than different

B. Want to keep objects in same collections

C. Only requires a single code path in your application

D. Difficult to implement

CORRECT: Suited to where objects are more similar than different
CORRECT: Want to keep objects in same collections
INCORRECT: Only requires a single code path in your application - This is incorrect,
you will typically need to add a number of code paths to deal with the various
differences.
INCORRECT: Difficult to implement - This is incorrect, this pattern is very easy to
implement.

Quiz
Which of the following are true for the polymorphic
pattern in MongoDB? More than one answer choice
can be correct.

A. Suited to where objects are more similar than
different

B. Want to keep objects in same collections

C. Only requires a single code path in your
application

D. Difficult to implement

This is correct. The
polymorphic pattern works
best when the objects are
similar.

CORRECT: Suited to where objects are more similar than different

Quiz
Which of the following are true for the polymorphic
pattern in MongoDB? More than one answer choice
can be correct.

A. Suited to where objects are more similar than
different

B. Want to keep objects in same collections

C. Only requires a single code path in your
application

D. Difficult to implement

This is correct. The
polymorphic pattern works
well where you want to keep
objects in the same
collections

CORRECT: Want to keep objects in same collections. - This is correct. The
polymorphic pattern works well where you want to keep objects in the same
collections.

Quiz
Which of the following are true for the polymorphic
pattern in MongoDB? More than one answer choice
can be correct.

A. Suited to where objects are more similar than
different

B. Want to keep objects in same collections

C. Only requires a single code path in your
application

D. Difficult to implement

This is incorrect. You will
typically need to add a
number of code paths to
deal with the various
differences.

INCORRECT: Only requires a single code path in your application - This is incorrect.
You will typically need to add a number of code paths to deal with the various
differences.

Quiz
Which of the following are true for the polymorphic
pattern in MongoDB? More than one answer choice
can be correct.

A. Suited to where objects are more similar than
different

B. Want to keep objects in same collections

C. Only requires a single code path in your
application

D. Difficult to implement

This is incorrect. This pattern
is very easy to implement.

INCORRECT: Difficult to implement - This is incorrect. This pattern is very easy to
implement.

Schema
Versioning
Pattern

Let’s look next at the Schema Versioning Pattern, this is a really useful pattern as it
utilizes the dynamic nature of schemas in documents to support a common task in the
application lifecycle and how best to manage your database schema when you
update your application.

Updating a Relational Database Schema

New schema is generated

● Migration files, similar to git commits

Application is stopped and restarted with new
schema

Hard revert to the old schema, if a problem arises

Document database — add a new field, no
requirement for stopping, starting, or migrating
files

A long established issue in relational databases is how to upgrade the database
schema. Typically, you generate the new schema and then use migration files. Your
application must be stopped and restarted with the new schema.

It is somewhat difficult to revert back to the previous schema, if a problem arises.

In the case of a document database such as MongoDB, this is not an issue as you
can simply add a new field without requiring migration files or restarting the database.

The schema versioning pattern was created to easily allow multiple versions of the
schema to be maintained in the database. We’ll look at how API versioning is handled
as there are similarities between this and the pattern.

API Versioning

Client

ApplicationVersioning

Version
Change #1

Version
Change #2

Version
Change #N

transform

transform

V1.0 request

V1.0 response

Latest version
request

Latest version
response

API

There are various approaches to dealing with different versions of an API. Essentially,
a request from a client using an old API version is sent to the application server. The
request is passed up through various transformation layers until it reaches the latest
version which is then processed and the result is likewise passed back down and
transformed through accordingly.

To learn more, check out this Intercom Engineering blog post on API versioning
Inspired by https://www.intercom.com/blog/api-versioning/

https://www.intercom.com/blog/api-versioning/

Schema Versioning Pattern
{
 id: "203-102-1222",
 name: "Adams",
 first: "Samuel",
 address: "100 Forest",
 city: "Palo Alto",
 state: "California",
 telephone: 400-900-4000,
 cellphone: 600-900-0003
}

{
 id: ObjectID,
 schema_verison: <int>,
 name: <string>,
 first: <string>,
 address: <string>,
 city: <string>,
 state: <string>,
 contacts: [
 method: <string>,
 value: <sting>
]
}

{
 id: "203-102-1222",
 schema_version: 1,
 name: "Adams",
 first: "Samuel",
 address: "100 Forest",
 city: "Palo Alto",
 state: "California",
 contacts: [
 { method: telephone,
 value: 400-900-4000 },
 { method: cellphone,
 value: 600-900-0003 },
 { method: email,
 value: sam.adams@mongodb.com }
]
}

The schema versioning pattern adds a new schema_version field, if the version
changes then the value for the version is incremented. This allows for the application
to adjust to changes in the schema easily. This approach allows for schema upgrades
without downtime. It also allows applications to support multiple versions (say the
latest and older versions) within the application’s code.

mailto:sam.adams@mongodb.com

Application Life Cycle

Modify application Update all application servers Migration completed /
post migration

In terms of a typical application lifecycle, there are a number of major stages.
Typically, you modify the application,

then you update the servers where it is running and

then you cleanup the code that you left to maintain compatibility with the older
versions whilst you were migrating.

Application Life Cycle: Modify Application

Read/process all versions of
documents

Reshape the document before
processing it

Provide a different handler per
document version

Let’s look at the first stage, modifying the application. Here you would typically read all
the versions of the documents, then you will need to have a different handler per
version of the document and finally you pass the document through all the relevant
version handlers which would reshape it before the final processing of it.

Application Life Cycle: Update the App Servers

Install updated application

Remove old processes

The actual updating stage in the life cycle involves installing the updated application
to the various application servers and swapping over to new versions of these by
running processes and gracefully removing any older processes, stopping new
requests to them and redirecting them to the new processes. Once all the in-flight
requests are handled you can then fully remove the old processes as the new
processes will seamlessly take over at that point.

Application Life Cycle: Post Migration

Remove the code used to process the
old versions and redeploy the
application.

Handle all in-flight requests until
the old processes can be
transitioned / phased out for the
new application version.

The actual updating stage in the life cycle involves installing the updated application
to the various application servers and swapping over to new versions of these by
running processes and gracefully removing any older processes, stopping new
requests to them and redirecting them to the new processes. Once all the in-flight
requests are handled you can then fully remove the old processes as the new
processes will seamlessly take over at that point.

Schema Versioning Pattern

Problem
Avoid downtime doing schema upgrades

Upgrading all documents can take hours,
days or even weeks when dealing with
big data

Solution
Each document gets a "schema_version"
field

Application can handle all versions

Choose your strategy to migrate the
documents

Use Case Examples
Every application that use a database,
deployed in production and heavily used.

System with a lot of legacy data

Benefits and Trade-offs
No downtime needed

Feel in control of the migration

Less future technical debt

May need 2 indexes for same field while in
migration period

As noted previously we’ll summarise each of pattern under the same four headings of
Problem, Solution, Use Case Examples, and Benefits & Trade-offs.

In the terms of the Schema Versioning Pattern and the “Problem” heading, we can
see this pattern helps avoid downtime by allowing your applications to run during
schema upgrades. It can limit the amount of documents that need to be upgraded at
any point in time and can space out this upgrading to reduce the processing and
impact of the document schema upgrade.

In terms of a Solution, each document is assigned a schema_version field and you
add code within your application to handle the various versions. This allows you to
specifically choose the strategy you wish to take to migrate your documents.

In terms of Use Case Examples, this pattern applies to any heavily used production
database. It is also a strong contender in situations where your system has a lot of
legacy data.

The key benefits and trade-offs with this pattern are that no downtime is needed, the
developers feel in control of the migration and it supports less future technical debt.
The caveat is that it may require 2 indexes for the same fields during the migration
period.

Quiz

Quiz

Which of the following are true for the schema versioning
pattern? More than one answer choice can be correct.

A. Uses a field to hold version so multiple versions can be
handled by the application at any time

B. Avoids downtime for the application

C. On a schema version upgrade, all documents must be
updated

Quiz

Which of the following are true for the schema versioning
pattern? More than one answer choice can be correct.

A. Uses a field to hold version so multiple versions can be
handled by the application at any time

B. Avoids downtime for the application

C. On a schema version upgrade, all documents must be
updated

CORRECT: Uses a field to hold version so multiple versions can be handled be the
application at any time - The application will need to handle the different versions
depending on which version is specified within the field
CORRECT: Avoids downtime for the application - Using multiple versions specified by
the field allows the application to avoid downtime
INCORRECT: On a schema version upgrade, all documents must be updated - This is
incorrect and is true when you don’t use this pattern.

Quiz
Which of the following are true for the schema
versioning pattern? More than one answer
choice can be correct.

A. Uses a field to hold version so multiple
versions can be handled by the
application at any time

B. Avoids downtime for the application

C. On a schema version upgrade, all
documents must be updated

This is correct. The
application will need to
handle the different
versions depending on
which version is specified
within the field.

CORRECT: Uses a field to hold version so multiple versions can be handled be the
application at any time - The application will need to handle the different versions
depending on which version is specified within the field

Quiz
Which of the following are true for the schema
versioning pattern? More than one answer
choice can be correct.

A. Uses a field to hold version so multiple
versions can be handled by the
application at any time

B. Avoids downtime for the application

C. On a schema version upgrade, all
documents must be updated

This is correct. Using
multiple versions
specified by the field
allows the application to
avoid downtime.

CORRECT: Avoids downtime for the application - This is correct. Using multiple
versions specified by the field allows the application to avoid downtime

Quiz
Which of the following are true for the schema
versioning pattern? More than one answer
choice can be correct.

A. Uses a field to hold version so multiple
versions can be handled by the
application at any time

B. Avoids downtime for the application

C. On a schema version upgrade, all
documents must be updated

This is incorrect. It is only
true when you don’t use
this pattern.

INCORRECT: On a schema version upgrade, all documents must be updated - This is
incorrect. It is only true when you don’t use this pattern.

Attribute Pattern

Let’s look next at another common pattern, the Attribute Pattern. This is useful where
the object being modelling can have similar but not the same fields or information to
be modelled.

When to Use Attribute Patterns
The attribute pattern is a useful in two specific situations:

1. You have a subset of fields that share common characteristics and you want to sort
or query on a subset of those fields

2. You have a small subset of documents that contain the fields you want sort

Or both of these situations.

The attribute pattern is a useful in two specific situations, firstly when:

You have a subset of fields that share common characteristics and you want to sort or
query on a subset of those fields, OR

You have a small subset of documents that contain the fields you want sort, OR

Both of these situations.

EXAMPLE

Pattern in Practice: Movie Data
{

 title: "Star Wars",

 director: "George Lucas",

 ...

 release_US: ISODate
("1977-05-20T01:00:00+01:00"),

 release_France: ISODate
("1977-10-19T01:00:00+01:00"),

 ...
}

{

 title: "Star Wars",

 director: "George Lucas",

 ...

 releases:[

{ location: "US",

 Date: ISODate
("1977-05-20T01:00:00+01:00")},
{ location: "France",

 Date: ISODate
("1977-05-20T01:00:00+01:00")},

 ...
}

Taking an example of movie data where we have fields representing the title, the
director, the cast, the locations and other details including when it was released.

A typical query would involve sorting results for movies by when they were released.
However, a movie isn’t always released simultaneously world wide and that means
countries may have differing release dates.

In the snippet of the document we can see a fraction of the releases, just for the US
and for France.

In the first iteration of our schema, we use a release_COUNTY field where each
country has an individual field representing when the film was released there.

This schema also means we’ll need to add an index per country that we want to query
a release on.

Now, let’s apply the Attribute pattern and refactor this schema.

In the new schema using the Attribute pattern, the releases are now stored as
documents in the ‘releases’ array with each array item holding a location and a data
for the movie’s release there.

A single compound index on releases.location and releases.date is all that is needed
with the new schema to service any release related query.

To dive deeper check out the Patterns blog post on the Attribute Pattern
https://developer.mongodb.com/how-to/attribute-pattern

https://developer.mongodb.com/how-to/attribute-pattern

EXAMPLE

Pattern in Practice: Water Bottles
{

 "specs": [

{ k: "volume", v: "500", u: "ml" },

{ k: "volume", v: "12", u: "ounces" }

]

}

{"specs.k": 1, "specs.v": 1, "specs.u": 1}

Let’s looks at another example, assuming we are storing data around bottles of water
in our collection.

We can use the key/value convention to support the use of non-deterministic naming
and we can then also easily add qualifiers.

In the example, the key refers to the volume, the value refers to the measure of that
volume, and the qualifier is the unit (u) for that volume.

The index can similarly use a compound index on the key, value and unit.

Attribute Pattern

Problem
Lots of similar fields
Want to search across many fields at
once
Fields present in only a small subset of
documents

Solution
Break the field/value into a
sub-document
{ "color": "blue", "size": "large" }
{ [{ "k": "color", "v": "blue" },
{ "k": "size", "v": "large" }] }

Use Case Examples
Characteristics of a product
Set of fields all having same value type
List of dates

Benefits and Trade-offs
Easier to index
Allow for non-deterministic field names
Ability to qualify the relationship of the
original field and value

As noted previously we’ll summarize each of pattern under the same four headings of
Problem, Solution, Use Case Examples, and Benefits & Trade-offs.

In terms of the problem, there are similar fields in the document and we want to be
able to query across many of these fields at once. Additionally, these fields may only
be present in a small subset of the documents.

The solution in terms of the attribute to this is to break the similar fields into key
values in a sub-document. We can easily add qualifiers to the data in this format. We
can use a compound index on these to easily index the data.

This pattern is typically found where you describe the characteristics of a product (e.g.
in e-commerce), or where there are a set of fields all of which have the same value
type, or where there is a list of dates.

In terms of benefits, you can use a compound index as noted earlier which makes this
easier to index. The pattern also allows for non-deterministic field names and provides
the ability to add qualifiers that can further describe the relationship between the
original field and value. In our water bottle example, we showed how we could add a
unit qualifier to add this additional detail.

When I send the slide deck out after class, you’ll see a link to a HowTo blog
post on using the Attribute Pattern

https://developer.mongodb.com/how-to/attribute-pattern. Feel free to visit that
link to learn more about the attribute pattern.

Quiz

Quiz

Which of the following are true for the attribute pattern in
MongoDB? More than one answer choice can be correct.

A. Used where there are lots of different fields

B. Used where there are lots of similar fields

C. Does not all for qualifiers to be added to the data to
indicate the relationship

Quiz

Which of the following are true for the attribute pattern in
MongoDB? More than one answer choice can be correct.

A. Used where there are lots of different fields

B. Used where there are lots of similar fields

C. Does not all for qualifiers to be added to the data to
indicate the relationship

INCORRECT: Used where there are lots of different fields. - This is not correct for this
pattern.
CORRECT: Used where there are lots of similar fields. - This pattern is ideal where
there are lots of similar fields.
INCORRECT: Does not all for qualifiers to be added to the data to indicate the
relationship. - This pattern does allow for qualifiers to be added to provide additional
details about the relationship.

Quiz
Which of the following are true for the attribute pattern
in MongoDB? More than one answer choice can be
correct.

A. Used where there are lots of different fields

B. Used where there are lots of similar fields

C. Does not all for qualifiers to be added to the data
to indicate the relationship

This is incorrect. This pattern
is not applicable where there
are lot of different fields.

INCORRECT: Used where there are lots of different fields. - This is not correct for this
pattern.

Quiz
Which of the following are true for the attribute pattern
in MongoDB? More than one answer choice can be
correct.

A. Used where there are lots of different fields

B. Used where there are lots of similar fields

C. Does not all for qualifiers to be added to the data
to indicate the relationship

This is correct. This pattern is
ideal where there are lots of
similar fields.

CORRECT: Used where there are lots of similar fields. - This is correct. This pattern is
ideal where there are lots of similar fields.

Quiz
Which of the following are true for the attribute pattern
in MongoDB? More than one answer choice can be
correct.

A. Used where there are lots of different fields

B. Used where there are lots of similar fields

C. Does not all for qualifiers to be added to the data
to indicate the relationship

This is incorrect. This
pattern does allow for
qualifiers to be added
to provide additional
details about the
relationship.

INCORRECT: Does not all for qualifiers to be added to the data to indicate the
relationship. - This is incorrect. This pattern does allow for qualifiers to be added to
provide additional details about the relationship.

Bucket Pattern

Let’s look next at the Bucket Pattern which is really useful for streaming data, for
instance where a lot of data is sent from sensors on a frequent basis.

{
 "device_id": 000123456,
 "type": "2A",
 "timestamp":
ISODate("2019-01-31T10:00:00.000Z"
),
 "temp": 20.0
}

{
 "device_id": 000123456,
 "type": "2A",
 "date": ISODate("2019-01-30"),
 "timestamp":
ISODate("2019-01-31T10:01:00.000Z"
),
 "temp": 20.0
}

One document per device reading

Streaming data

MongoDB Disk

Sensors, outputting one
reading every minute.

In the streaming data, like the internet of things use cases or similar use cases where
a number of sources or sensors are generating data at a regular interval, say take a
sensor and every minute. We could initially create a schema where each reading gets
its own document.

This schema design will introduce a lot of overhead and additional reads/writes on the
system and the number of sensors grow.

https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960

Bucket Pattern

MongoDB Disk

{
 "device_id": 000123456,
 "type": "2A",
 "date": ISODate("2019-01-31"),
 "temp": [[20.0, 20.1, 20.2, ...],
 [22.1, 22.1, 22.0, ...],
 ...
]
}
{
 "device_id": 000123456,
 "type": "2A",
 "date": ISODate("2019-01-30"),
 "temp": [[20.1, 20.2, 20.3, ...],
 [22.4, 22.4, 22.3, ...],
 ...
]
}

One document per device per day

The bucket pattern is typically used in event type use cases, examples of this type of
data stream includes sensors, financial trading data, or real time analytics.

Here’s an example of a bucket pattern schema where instead of each document
creating one document per recording, all of the recordings for a day are stored
(bucketed) into a single document.

Let’s look at this example for Internet of Things and sensors in more depth on the next
slide.

To dive deeper, check out the blog post on Bucket Pattern
https://developer.mongodb.com/how-to/bucket-pattern

https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://www.lucidchart.com/documents/edit/54ea9d42-0b23-4ef2-8b28-a2a99d8a9165/13?callback=close&name=slides&callback_type=back&v=4905&s=960
https://developer.mongodb.com/how-to/bucket-pattern

Bucket Pattern

{
 sensor_id: 12345,
 timestamp: ISODate
("2019-01-31T10:00:00.000
Z"),
 temperature: 40
}

{
 sensor_id: 12345,
 timestamp: ISODate
("2019-01-31T10:01:00.000
Z"),
 temperature: 42
}

{
 sensor_id: 12345,
 start_date: ISODate
("2019-01-31T10:00:00.000Z"),
 end_date: ISODate
("2019-01-31T10:59:59.000Z"),
 measurements: [
 { timestamp: ISODate
("2019-01-31T10:00:00.000Z"),
 temperature: 40 },
 { timestamp: ISODate
("2019-01-31T10:01:00.000Z"),
 temperature: 42 }],
 readings_count: 50,
 sum_of_readings: 2050
}

The bucket pattern is typically used in event type use cases, examples of this type of
data stream includes sensors, financial trading data, or real time analytics.

A first design of the schema (shown on the left of the slide) may use a document to
store the sensor_id, the timestamp for a recording, and the value of the recording
(temperature in this case).

The bucket pattern refactors the earlier schema to hold a range or bucket of
measurements, in this example it’s an hour of sensor recordings for a single sensor.

In this example, we’ll assume there are still a number of measurements to be added
which would be added to the measurements array. In addition, we would also
increment the readings_count and update the sum_of_readings.

Using a bucket pattern allows applications to easily pull up a particular bucket and
determine the average reading (sum/count). In this example of sensors and the wider
time series data, a question is often what was the average reading during a period for
a date and indeed we could easily add location as a field to our document above to
allow us to answer where as well.

Bucketing and pre-aggregation allow us to easily answer those types of questions.

Specifically, this pattern reduces the overall number of documents in a collection,
improves the indexing performance, and if pre-aggregation is used, it can simplify

queries and data access.

When I send the slide deck out after class, you’ll see a link to a HowTo blog post on
using the Bucket Pattern https://developer.mongodb.com/how-to/bucket-pattern. Feel
free to visit that link to learn more about the bucket pattern.

Bucket pattern - For IOT - Why?

Looking at 1 hour of data for 1 sensor
Assuming 1 data point per second

Number of Writes for 1 hour of data Number of Reads for 1 hour of data

1 document per event
3,600 inserts

0 updates
3,600

1 document per minute
3,600 inserts

0 updates
60

1 document per hour
1 insert

3,599 updates
1

We’ve looked at the bucket pattern for sensor data, let’s take a practice example of
the impact this might have given one sensor that records data every second and let’s
look at how many operations are need to write that data and also to read back the full
hours data.

If it takes 3,600 reads to retrieve the unbucketed schema, how many reads does it
take with the bucketed to one minute schema ?

The answer is 60.

At bucketing per minute you will have 60x less documents, and hence 60x less index
entries, which then in turn reduce your memory requirements to a much lower
requirement.

It’s also possible to bucket the bucket, in this case we could have each minute’s worth
of sensor data is an array entry into a document holding one hour’s worth of sensor
data.

Pattern in Practice: Financial Services
Transactions
{
 "account_id": 794875,
 "date": {"$date" : 1325030400000},
 "amount": 1197,
 "transaction_code": "buy",
 "symbol": "nvda",
 "price": "12.73",
 "total": "15241.40"
}

{
 "account_id": 794875,
 "date": {"$date" : 1325030400000},
 "amount": 253,
 "transaction_code": "buy",
 "symbol": "amzn",
 "price": "37.77",
 "total": "9556.92"
}

Bucketed Transactions
{
 "account_id": 794875,
 "transaction_count": 6,
 "bucket_start_date": { "$date" :
693792000000},
 "bucket_end_date": { "$date" :
1473120000000},
"transactions": [
 {
 "date": {"$date": 1325030400000},
 "amount": 1197,
 "transaction_code": "buy",
 "symbol": "nvda",
 "price": "12.73",
 "total": "15241.40"
 }....] }

Another example of this pattern in practice can be seen in the Atlas Sample Dataset,
specifically in the sample analytics data. It provides three collections to represent
customers, accounts, and transactions.

In the case of the transactions collection, it uses the bucket pattern as shown in the
schema on the right of the slide.

To dive deeper, check out the MongoDB documentation page on using the Sample
Analytics dataset https://docs.atlas.mongodb.com/sample-data/sample-analytics/

https://docs.atlas.mongodb.com/sample-data/sample-analytics/

Bucket Pattern

Problem
Avoiding too many documents, or too big
documents

A One-to-Many relationship that can't be
embedded

Solution
Define optimal amount of information to group together

Arrays to store the information in the main object

An embedded One-to-Many relationship, where you
get N documents, each having an average of many/N
sub documents.

Use Case Examples
Internet Of Things

Data warehouse

Information associated to one object

Financial services

Benefits and Trade-offs
Good balance between number of data access and
size of data returned

Easy to prune data

Poor query results if not designed correctly

Less friendly to BI Tools

As noted previously we’ll summarise each of pattern under the same four headings of
Problem, Solution, Use Case Examples, and Benefits & Trade-offs.

In terms of the problem the bucket problem is seeking to resolve it is concerned with
too many documents or documents that are too big. We looked at the IOT area and
highlighted how one document per sensor reading might be inefficient when
compared to bucketing the readings. The bucket pattern is also helpful where it is a
one-to-many relationship that cannot be embedded.

In terms of the solution, the bucket pattern allows for the optimal amount of
information to be grouped together. This might be sensor data at a one minute bucket
or at a bucket of buckets where this data is bucketed at the second level within a
minute bucket to give an hour document of sensor readings. Arrays can be used in
the main object to implement this pattern. This pattern highlights how you can embed
one-to-many relationships with n documents each having many other sub documents.

The use case we already covered was sensor data in the Internet of Things but this
pattern is applicable in data warehouses, financial services or where a single object
may have lots of information associated to it.

The bucket pattern provides a good balance between data access and data size
returned when accessed. It is also easy to prune data when using this pattern given
both the clear structure of how it’s stored in a document or at a document level using
the likes of a TTL index to remove data at a certain time or after a certain time.

The bucket pattern can lead to poor queries if it is not designed carefully and it is not
well matched with current BI tools for visualisation/analytics.

When I send the slide deck out after class, you’ll see a link to a HowTo blog post on
using the Bucket Pattern https://developer.mongodb.com/how-to/bucket-pattern. Feel
free to visit that link to learn more about the bucket pattern.

Quiz

Quiz

Which of the following are true for the bucket pattern in MongoDB?
More than one answer choice can be correct.

A. Arrays can be used to store information in the main object

B. Useful for Internet of Things, Financial Services or situations
where a lot of data is associated to a single object

C. Works well with BI Tools

D. Difficult to prune data

Quiz

Which of the following are true for the bucket pattern in MongoDB?
More than one answer choice can be correct.

A. Arrays can be used to store information in the main object

B. Useful for Internet of Things, Financial Services or situations
where a lot of data is associated to a single object

C. Works well with BI Tools

D. Difficult to prune data

CORRECT: Arrays can be used to store information in the main object. - This is
typically the case for the bucket pattern.
CORRECT: Useful for Internet of Things, Financial Services or situations where a lot
of data is associated to a single object. - It can be used in other use cases, these are
only an example where it’s clear that the pattern is known to be useful.
INCORRECT: Works well with BI Tools. - This is incorrect as due to the formatting of
the data and how it is structured most BI tools are not well suited to visualising it.
INCORRECT: Difficult to prune data. - This is incorrect due to the structuring of the
data within the document and at the document level, this pattern makes it easy to
prune data.

Quiz
Which of the following are true for the bucket pattern in
MongoDB? More than one answer choice can be correct.

A. Arrays can be used to store information in the main
object

B. Useful for Internet of Things, Financial Services or
situations where a lot of data is associated to a single
object

C. Works well with BI Tools

D. Difficult to prune data

This is correct. This is
typically the case for the
bucket pattern.

CORRECT: Arrays can be used to store information in the main object. - This is
correct. This is typically the case for the bucket pattern.

Quiz
Which of the following are true for the bucket pattern in
MongoDB? More than one answer choice can be correct.

A. Arrays can be used to store information in the main
object

B. Useful for Internet of Things, Financial Services or
situations where a lot of data is associated to a single
object

C. Works well with BI Tools

D. Difficult to prune data

This is correct. It can be
used in other use cases,
these are only an example
where it’s clear that the
pattern is known to be
useful.

CORRECT: Useful for Internet of Things, Financial Services or situations where a lot
of data is associated to a single object. - This is correct. It can be used in other use
cases, these are only an example where it’s clear that the pattern is known to be
useful.

Quiz
Which of the following are true for the bucket pattern in
MongoDB? More than one answer choice can be correct.

A. Arrays can be used to store information in the main
object

B. Useful for Internet of Things, Financial Services or
situations where a lot of data is associated to a single
object

C. Works well with BI Tools

D. Difficult to prune data

This is incorrect. Due to
the formatting of the data
and how it is structured
most BI tools are not well
suited to visualizing it.

INCORRECT: Works well with BI Tools. - This is incorrect. Due to the formatting of the
data and how it is structured most BI tools are not well suited to visualising it.

Quiz
Which of the following are true for the bucket pattern in
MongoDB? More than one answer choice can be correct.

A. Arrays can be used to store information in the main
object

B. Useful for Internet of Things, Financial Services or
situations where a lot of data is associated to a single
object

C. Works well with BI Tools

D. Difficult to prune data

This is incorrect. Due to
the structuring of the data
within the document and
at the document level, this
pattern makes it easy to
prune data.

INCORRECT: Difficult to prune data. - This is incorrect. Due to the structuring of the
data within the document and at the document level, this pattern makes it easy to
prune data.

Subset Pattern

Subset Pattern: When and Why it is Needed?

Used when a large portion of data inside a document is rarely needed.

● Examples of when data is not part of the majority of the queries include
product reviews, article comments, or cast in a movie.

The Subset Pattern is the solution to refactoring schemas with this
characteristic.

The Subset Pattern is typically used in the case where there is:
- A large portion of data within a document that is rarely accessed/needed

An example of this, is in terms of product reviews, article comments, or actors in a
movie. In the case of product reviews, it’s typical to show the last ten or twenty for a
specific item but beyond these the rest of the reviews are infrequently
requested/queried.

The Subset patten splits out the frequently accessed data and the rarely accessed
data. It refactors the schema to support a smaller main object and pushes the rarely
accessed data from that document to a new document in another collection.

Subset Pattern
{

 "name": "MongoDB- The Definitive Guide",

 "edition": "3",

 "description": "Learn all about MongoDB",

 "price": { "value":NumberDecimal(29.99), "currency": "USD" },

 "reviews": [{ rid: 767, username: "eliot_h", review: "Great introduction to
MongoDB", date: ISODate("2020-09-09")},

{ rid: 766, username: "dwight_m", review: "Fantastic overview of
MongoDB", date: ISODate("2020-09-08")}, …

{ rid: 1, username: "kevin_r", review: "Nice introduction to
MongoDB", date: ISODate("2020-01-06")}

}

Here’s a example of a review document for an ecommerce catalogue which sells
books.
In the initial schema all of the reviews are stored in an array in the product document.

This can lead to retrieving a large amount of data that isn’t typically required by
queries.
The Subset pattern splits this data, in this example the last ten reviews might be kept
within the product document.

When I send the slide deck out after class, you’ll see a link to Patterns blog post on
the Subset Pattern https://developer.mongodb.com/how-to/subset-pattern. Feel free
to visit that link to learn more about the subset pattern.

Subset Pattern: Split the Data
{ review_id: 740, product_id:
 ObjectId("5f2aefa8fde88235b959f0b1e"),
 review_author: "ken_a", review_date: ISODate("2020-08-08"),
 review_text: "Nice book, great topics!"},

{ review_id: 739, product_id:
 ObjectId("5f2aefa8fde88235b959f0b1e"),
 review_author: "matt_j", review_date: ISODate("2020-08-06"),
 review_text: "Fantastic book, learnt lots."},

{ review_id: 738, product_id:
 ObjectId("5f2aefa8fde88235b959f0b1e"),
 review_author: "sonalim", review_date: ISODate("2020-07-06"),
 review_text: "Comprehensive MongoDB coverage"}

The remaining reviews (outside of the latest / last ten) are moved to their own
dedicated collection, say reviews.

In using the Subset Pattern, the main consideration is where to split your data,
specifically what part of the frequently used data should stay in the original/”main”
collection and which part should be moved to a new less frequently accessed
collection. In the case of product reviews, it might be ten or twenty is around the point
we want to split the data.

The tradeoff with this pattern is that additional queries will be required if we need to
pull more than the ten or twenty reviews for a product.

Subset Pattern

Problem
Working set is too big

Lot of pages are evicted from memory

A large part of documents is rarely needed

Solution
Split the collection in 2 collections

Most used part of documents

Less used part of documents

Duplicate part of a 1-N or N-N relationship that is
often used in the most used side

Use Case Examples
List of reviews for a product

List of comments on an article

List of cast in a movie

Benefits and Trade-offs
Smaller working set, used documents are smaller

Shorter disk access for bringing in additional documents
from the most used collection

Can add more round trips to the server

A little more space used on disk

As noted previously we’ll summarize each pattern under the same four headings of
Problem, Solution, Use Case Examples, and Benefits & Trade-offs.

The Subset pattern is concerned in situations where the working set is too large and
large documents are a significant factor in the contributing to the workset. The large
documents can cause lots of pages to be evicted from memory and typically only a
subset of the information in any particular document is only being used.

The solution to this situation is to split the collection into two different parts, one
holding the most frequently used parts of the documents and a second holding the
less frequently used/accessed parts of the document. This is done by locating a 1-N
or N-N relationship on the most used side and breaking on this.

In terms of use, we’ve highlighted the product reviews but the same rationale applies
for comments on an article or for cast in a movie.

Splitting the collection provides a much smaller working set as it reduces the size of
documents and allows more of these used documents to be kept in memory. This
approach can add some more query round trips to the server if the workload changes
and the less used parts of the documents are required for queries and it does add a
little more disk space usage.

When I send the slide deck out after class, you’ll see a link to Patterns blog post on

the Subset Pattern https://developer.mongodb.com/how-to/subset-pattern. Feel free
to visit that link to learn more about the subset pattern.

Quiz

Quiz

Which of the following are true for the subset pattern in
MongoDB? More than one answer choice can be correct.

A. Ideal where working set is too big

B. Designed for where documents have large portion of
data/fields that are rarely used

C. Uses less disk space

D. Can involve more queries / round trips to the server

Quiz

Which of the following are true for the subset pattern in
MongoDB? More than one answer choice can be correct.

A. Ideal where working set is too big

B. Designed for where documents have large portion of
data/fields that are rarely used

C. Uses less disk space

D. Can involve more queries / round trips to the server

CORRECT: Ideal where working set is too big. - This is the core problem of why this
pattern was designed.
CORRECT: Designed for where documents have large portion of data/fields that are
rarely used. - This correct and it’s the main symptom that the pattern tries to resolve.
INCORRECT: Uses less disk space. - This is incorrect splitting into two collections
does increase the disk space.
CORRECT: Can involve more queries / round trips to the server. - If parts of the lesser
accessed collection is required then more queries will be required.

Quiz
Which of the following are true for the subset pattern in
MongoDB? More than one answer choice can be correct.

A. Ideal where working set is too big

B. Designed for where documents have large portion of
data/fields that are rarely used

C. Uses less disk space

D. Can involve more queries / round trips to the server

This is correct. This is
the core problem of
why this pattern was
designed.

CORRECT: Ideal where working set is too big. - This is the core problem of why this
pattern was designed.

Quiz
Which of the following are true for the subset pattern in
MongoDB? More than one answer choice can be correct.

A. Ideal where working set is too big

B. Designed for where documents have large portion of
data/fields that are rarely used

C. Uses less disk space

D. Can involve more queries / round trips to the server

This is correct. This is
the main symptom
that the pattern tries
to resolve.

CORRECT: Designed for where documents have large portion of data/fields that are
rarely used. - This is correct. This is the main symptom that the pattern tries to
resolve.

Quiz
Which of the following are true for the subset pattern in
MongoDB? More than one answer choice can be correct.

A. Ideal where working set is too big

B. Designed for where documents have large portion of
data/fields that are rarely used

C. Uses less disk space

D. Can involve more queries / round trips to the server

This is incorrect. The
splitting into two
collections does
increase the disk
space.

INCORRECT: Uses less disk space. - This is incorrect. The splitting into two
collections does increase the disk space.

Quiz
Which of the following are true for the subset pattern in
MongoDB? More than one answer choice can be correct.

A. Ideal where working set is too big

B. Designed for where documents have large portion of
data/fields that are rarely used

C. Uses less disk space

D. Can involve more queries / round trips to the server

This is correct. If
parts of the lesser
accessed collection
is required then
more queries will be
required.

CORRECT: Can involve more queries / round trips to the server. - This is correct. If
parts of the lesser accessed collection is required then more queries will be required.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

