
Transactions in MongoDB

LESSON

Google slide deck available here

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported

License
(CC BY-NC-SA 3.0)

https://docs.google.com/presentation/d/1DYbm0XUGmt-3W1tcHk953RBDTa6uiwlTLLsrFJC58wk
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

What is a Transaction?
A single unit of logic composed of multiple different database operations,
which exhibits the following properties:

Atomic: either completes in its entirety or has no effect whatsoever
(rolls back and is not left only partially complete)

Consistent: each transaction observes the latest current database state
in the correct write ordering

Isolated: the state of an inflight transaction is not visible to other
concurrent inflight transactions (and vice versa)

Durable: changes are persisted and cannot be lost if there is a system
failure

A transaction represents a single unit which consists of multiple different database
operations, all of these operations exhibit the following set of properties of Atomic,
Consistent, Isolated, and Durable or ACID.

The property atomic for a transaction means it is either completes in its entirety or has
no effect whatsoever (rolls back and is not left only partially complete)
The property consistent for a transaction means each transaction observes the latest
current database state in the correct write ordering
The property isolated for a transaction means the state of an inflight transaction is not
visible to other concurrent inflight transactions (and vice versa)
The property durable for a transaction means changes are persisted and cannot be
lost if there is a system failure

In databases, transactions are a solution to ensure writes are ACID compliant, which
stands for Atomicity (transactions are all or nothing), Consistency (only valid data is
saved), Isolation (transactions do not affect each other), and Durability (written data
will not be lost). If all of these properties are satisfied then the transaction is
guaranteed to be ACID compliant.

Local and Global Transactions
Local Transactions is when the single transaction and its operations are performed
against the same database instance.

Global Transaction is when the single transaction and its operations are performed
against two or more different instances.

Transactions can be defined as either local or global.

A local transaction is where the single transaction and the related operations are
performed against the same database instance. This is one process on one machine,
it isn’t distributed in the distributed systems sense.

A global transaction is where the single transaction and the related operations are
performed against two or more different database instances. This is where the
transaction occurs within a distributed system.

The Evolution of Transactions

WiredTiger
(Storage Engine)
Enhanced replication
protocol: stricter
consistency &
durability
WiredTiger default
storage engine
Config server
manageability
improvements
Read concern
“majority”

3.0 + 3.2 3.4 3.6

Shard membership
awareness

Consistent secondary
reads in sharded clusters
Logical sessions
Retryable writes

Causal Consistency
Cluster-wide logical
clock
Storage API to changes
to use timestamps
Read concern majority
feature always available
Collection catalog
versioning
UUIDs in sharding
Fast in-place updates to
large documents in WT

Replica Set
Transactions
Make catalog
timestamp-aware
Snapshot reads
Recoverable rollback
via WT checkpoints
Recover to a
timestamp
Sharded catalog
improvements

Global
Transactions
Oplog applier prepare
support
Distributed commit
protocol
Global point-in-time
reads
More extensive
WiredTiger repair
Transaction manager

4.24.0

The path to transactions for MongoDB represents a multi-year engineering effort,
which began with the integration of the WiredTiger storage engine. This required
changes and enhancements to almost every part of the server – from the storage
layer itself, to the replication consensus protocol, sharding architecture, consistency
and durability guarantees, the introduction of a global logical clock, and refactored
cluster metadata management and more.

This integration started with MongoDB 3.0.

WiredTiger is, and has been from its inception, an inherently transactional storage
engine. One of the key reasons why WiredTiger was acquired back in 2014 was to
provide the foundation for future transactions support within a distributed cluster. It
was introduced in MongoDB version 3.0 and was subsequently made the default
storage engine for MongoDB version 3.2 and beyond.WiredTiger has supported
transactions for a long time. In versions 3.x, MongoDB used WiredTiger’s
‘transactions capability’ to guarantee the modification atomicity of corresponding
document, indexes, and oplog together.

MongoDB 3.6 introduced Causal Consistency. This allows developers to increase the
strength of data consistency and provide guarantees around the ordering of their read
and write operations. With causal consistency, MongoDB executes operations in an
order that respects their causal relationship, and clients observe results that are
consistent with this causal relationship.

MongoDB 3.6 also added a global ‘logical clock’. This enabled the capture of
chronological and causal relationships of changing data across a sharded cluster. The
sharded cluster has no concept of a physically synchronous global clock or absolute
common time. Instead, the logical clock allows global ordering on events occurring on
different shards of the same cluster. As a result, the cluster-wide ordering of
asynchronous operations across distributed nodes can be established. This was an
essential requirement to providing global transactions.

In MongoDB 4.0 Replica Set transactions were introduced. These were the first set
towards true global transaction and only allowed global transactions within a single
MongoDB replica set.

In MongoDB 4.2, Global Transactions were introduced. These built atop these to
provide true global transaction abilities for sharded clusters.

Ordering Events in Database

How to order the events in a MongoDB cluster

The ordering of events in a database is particularly important for transaction, we’ll
look at some of the work done in MongoDB to order the events to support
transactions.

MongoDB’s Logical Clock is based on the Lamport Clock mechanism (a
monotonically increasing software counter). This is the core foundation to ordered
events within MongoDB. A full write up of the work and issues faced by MongoDB in
implementing this is discussed in the paper “Implementation of Cluster-wide Logical
Clock and Causal Consistency in MongoDB”. The link to the paper is
https://dl.acm.org/doi/10.1145/3299869.3314049

Cluster participating nodes (mongod, mongos, config server, client/driver) always
track and include the greatest known ‘cluster time’ when sending a message. Cluster
time for Sharded clusters is required because Oplog time (optime) can only track the
chronological order for a single replica set.

Every node keeps track of the maximum value of ‘cluster time’ it has ever seen and
every node adds the latest time it is aware of to each message that it sends. Any
node that receives that message jumps to that time. The only nodes that can
increment time are the primary mongod nodes of each Shard.

The next aspect we’ll look at that is important to transactions is the consistency of
operations.

https://dl.acm.org/doi/10.1145/3299869.3314049

Consistency of operations

Balancing the performance and the safety of operations in terms of
consistency

The consistency of operations is a key element to transactions. The implementation of
transactions need to balance this along with performance to have usable transactions
in terms of performance as well as consistency.

Causal consistency was a key feature required for transactions. To give an example of
causal consistency, a write operation that deletes all documents based on a specified
condition, followed by a read operation that verifies the delete operation means there
is a causal relationship.

The work done by the engineering team at MongoDB on causal consistency was
written up in a paper titled “Tunable Consistency in MongoDB”. Here’s the link to the
paper https://dl.acm.org/doi/10.14778/3352063.3352125

The ability to leverage a cluster-wide logical clock was a linked requirement to
develop this this feature. This two features combined then enabled every recorded
CRUD operation to be tagged with its globally unique operation time to be able to
infer the order.

In terms of the transactions, these were the two most visible and important features
required after addressing the storage engine aspects with WiredTiger.

https://dl.acm.org/doi/10.14778/3352063.3352125

Quiz

Quiz

Which of the following were key features in MongoDB that
enabled global transactions in MongoDB? More than one
answer choice can be correct.

A. WiredTiger storage engine

B. Cluster-wide logical clock

C. Change streams

D. Causal consistency

Quiz

Which of the following were key features in MongoDB that
enabled global transactions in MongoDB? More than one
answer choice can be correct.

A. WiredTiger storage engine

B. Cluster-wide logical clock

C. Change streams

D. Causal consistency

CORRECT: WiredTiger storage engine - the ability to provide ‘transactions capability’
to guarantee the modification atomicity of corresponding document, indexes, and
oplog together was a necessary feature to enabling global transactions.
CORRECT: Cluster-wide logical clock - the ability to the capture of chronological and
causal relationships of changing data across a sharded cluster to provide the ordering
was another necessary feature to enable global transactions.
INCORRECT: Change streams - these were not a necessary feature for global
transaction but did come about due to the cluster-wide logical clock, that feature also
enabled change streams.
CORRECT: Causal consistency - the ability to ensure operations in an order that
respects their causal relationship, and which then allowed clients to observe results
that are consistent with this causal relationship was a key feature to enabling global
transactions in MongoDB.

Quiz
Which of the following were key features in MongoDB
that enabled global transactions in MongoDB? More
than one answer choice can be correct.

A. WiredTiger storage engine

B. Cluster-wide logical clock

C. Change streams

D. Causal consistency

This is correct. The ability to
provide ‘transactions
capability’ to guarantee the
modification atomicity of
corresponding document,
indexes, and oplog together
was a necessary feature.

CORRECT: WiredTiger storage engine - the ability to provide ‘transactions capability’
to guarantee the modification atomicity of corresponding document, indexes, and
oplog together was a necessary feature to enabling global transactions.

Quiz
Which of the following were key features in MongoDB
that enabled global transactions in MongoDB? More
than one answer choice can be correct.

A. WiredTiger storage engine

B. Cluster-wide logical clock

C. Change streams

D. Causal consistency

This is correct. The ability to
the capture of chronological
and causal relationships of
changing data across a
sharded cluster to provide
the ordering was another
necessary feature.

CORRECT: Cluster-wide logical clock - This is correct. The ability to the capture of
chronological and causal relationships of changing data across a sharded cluster to
provide the ordering was another necessary feature.

Quiz
Which of the following were key features in MongoDB
that enabled global transactions in MongoDB? More
than one answer choice can be correct.

A. WiredTiger storage engine

B. Cluster-wide logical clock

C. Change streams

D. Causal consistency

This is incorrect. These were
not a necessary feature for
global transaction but did
come about due to the
cluster-wide logical clock, as
that feature also enabled
change streams.

INCORRECT: Change streams - This is incorrect. These were not a necessary
feature for global transaction but did come about due to the cluster-wide logical clock,
as that feature also enabled change streams.

Quiz
Which of the following were key features in MongoDB
that enabled global transactions in MongoDB? More
than one answer choice can be correct.

A. WiredTiger storage engine

B. Cluster-wide logical clock

C. Change streams

D. Causal consistency

This is correct. The ability to
ensure operations in an order
that respects their causal
relationship, and which then
allowed clients to observe
results that are consistent
with this causal relationship
was a key feature.

CORRECT: Causal consistency - This is correct. The ability to ensure operations in an
order that respects their causal relationship, and which then allowed clients to
observe results that are consistent with this causal relationship was a key feature.

Approaches to
Transactions in
MongoDB

Two Approaches to Transactions

>= 1.0 MongoDB

MongoDB Document MongoDB Transactions

>= 4.2 MongoDB

In terms of how you do transactions in MongoDB, there are two different approaches.

The first and recommended approach is to use a single MongoDB document.

The second approach is MongoDB Transactions which supports multiple documents
in a single transaction.

Transactions with a Document
Patient records from a doctor’s visit. Update the document in one operation

date of visit

doctor's notes

drugs prescribed

current weight

patients collection
{
 "_id": 2395652,
 "name": "AJ",
 "current_weight": 210,
 "next_physical": "2021-06-13",
 "visits": [
 { "date": "2018-12-24",
 "notes": "Torn right calf" },
 { "date": "2020-02-01",
 "notes": "Strained left hamstring"
}
],
 "drugs": [
 { "date": "2018-12-24",
 "drug": "Ibuprofen" },
 { "date": "2020-02-01",
 "drug": "Paracetamol" }
]
}

Let’s first look at using a document to perform a transaction in MongoDB. Let’s look at
an example of storing records related to a patient’s visit to their doctor

This will include storing data such as the date of the visit, the doctor’s notes, what the
doctor prescribed in terms of drugs, and the current weight of the patient.

We can make all of these updates in a single document and single operation making
this a transaction. Here’s an example of the fields in that document that would be
updated.

This example is taken from the online course “M100: MongoDB for SQL Pros” on
MongoDB University and you might enjoy that course and the deeper coverage of this
example there. See the web site for more details: M100 MongoDB for SQL Pros

https://university.mongodb.com/courses/M100/about

Transactions with a Document
Atomic: All writes to one
document are done at once

Consistency: No dependency on
other documents

Isolation: Document being
modified not seen by other reads

Durability: Guaranteed by doing
a write with a "majority" concern

patients collection
{
 "_id": 2395652,
 "name": "AJ",
 "current_weight": 210,
 "next_physical": "2021-06-13",
 "visits": [
 { "date": "2018-12-24",
 "notes": "Torn right calf" },
 { "date": "2020-02-01",
 "notes": "Strained left
hamstring" }
],
 "drugs": [
 { "date": "2018-12-24",
 "drug": "Ibuprofen" },
 { "date": "2020-02-01",
 "drug": "Paracetamol" }
]
}

So we said this is a transaction and we did it with a single document, let’s break down
how this is indeed an ACID transaction.

Firstly, it is atomic because all writes to the document are done at once.
Secondly, it is consist as there are no other dependency on other documents.
Thirdly, it is isolated as the document being modified is not seen by other reads.
Fourthly and finally, it is durability because it is guaranteed by doing the write with a
“majority” write concern. We cover read and write concerns in more depth in our
lesson on replication, please refer to that lesson for more details on these kinds of
concerns.

Similarly, the same fields in the document will be updated regardless of the approach
of how they are updated.

ACID with a MongoDB Document

Since MongoDB version 1.0

Design your model to have documents

embedding the different relational tables
updated together

Preferred way to achieve ACID

Let’s recap on ACID transactions in MongoDB using a single MongoDB document.

It’s been possible since MongoDB version 1.0

It’s the preferred way to achieve ACID in MongoDB. It’s preferred because it this
approach favors good schema design and because of the nature of being a single
document update/write operation, it is more performant than multi-document
transactions.

It does require you to design you model to have documents and it does require
embedding data to the same document to ensure all changes can be made within the
same/single document.

Transactions with a Document
Patient records and payments

from a doctor’s visit.

date of visit

doctor's notes

drugs prescribed

current weight

payment information

patients collection
{
 "_id": 2395652,
 "name": "AJ",
 "current_weight": 210,
 "next_physical": "2021-06-13",
 "visits": [

{ "date": "2018-12-24",
 "notes": "Torn right calf" },

{ "date": "2020-02-01",
 "notes": "Strained left hamstring"
}],
 "drugs": [

{ "date": "2018-12-24",
 "drug": "Ibuprofen" },

{ "date": "2020-02-01",
 "drug": "Paracetamol" }]
}
payments collection
{
 "date": "2020-02-01",
 "patient_id": 2395652,
 "amount": 250.00,
}

Transactions with a MongoDB Transaction
Atomic: All writes to all
documents are committed at
once

Consistency: All checks are
done within the transaction

Isolation: Guaranteed
through a "snapshot"
isolation level

Durability: Guaranteed by
default, the write has a
"majority" concern

patients collection
{
 "_id": 2395652,
 "name": "AJ",
 "current_weight": 210,
 "next_physical": "2021-06-13",
 "visits": [

{ "date": "2018-12-24",
 "notes": "Torn right calf" },

{ "date": "2020-02-01",
 "notes": "Strained left hamstring"
}],
 "drugs": [

{ "date": "2018-12-24",
 "drug": "Ibuprofen" },

{ "date": "2020-02-01",
 "drug": "Paracetamol" }]
}
payments collection
{
 "date": "2020-02-01",
 "patient_id": 2395652,
 "amount": 250.00,
}

So we said this is a transaction and we did it with multiple documents, let’s break
down how this is indeed an ACID transaction.
In MongoDB Transactions, it is atomic because all the writes to all the documents are
committed at once or if any fail the entire transaction is rolled back.
It is consistent because all of the checks are done within the transaction.
It is isolated as the “snapshot” isolation level is used to guarantee this.
It is durable as it uses the write concern of “majority” to commit the data.

ACID with a MongoDB Transaction

Since MongoDB version 4.2

Similar to traditional relational
databases

Let’s recap on ACID transactions in MongoDB using the MongoDB Transactions
feature.

It’s been available since MongodB 4.2.
It’s very similar mechanism to those traditional relational databases that provide
transactions. In the next slides, we’ll look at how similar it is to MySQL, a popular
relational database which offers transactions, in terms of syntax.

Using MongoDB
Transactions

MongoDB provides a MongoDB Shell that
accesses a MongoDB instance that can be
used to follow these examples using just a
web browser and no additional software.

How to use the MongoDB Web Shell

Let’s look at using the MongoDB Transactions with multiple documents being
updated. This is an example you can run against a locally running MongoDB instance
or against an instance running in MongoDB Atlas. If you want to follow along with the
example for your class or if you want your students to follow along, MongoDB
provides a MongoDB shell that accesses a MongoDB instance that can be used to
follow these examples using just a web browser and no additional software.
https://mws.mongodb.com/

https://mws.mongodb.com/
https://mws.mongodb.com/

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

Let s̓ try this in the Mongo Shell, here s̓ the code!

>>> var session = db.getMongo().startSession();
>>> session
session { "id" : UUID("b87d9720-fff3-40fb-af65-c5007a018fcf") }

The sequence is we start our session that we will use to associate to our transaction,
this is important so we can track when in the global sense these operations occur of
the global cluster clock. We can call the ‘session’ variable to see what is stored in the
document representing the session.

Let s̓ try this in the Mongo Shell, here s̓ the code!

>>> var session = db.getMongo().startSession();
>>> session
session { "id" : UUID("b87d9720-fff3-40fb-af65-c5007a018fcf") }

>>> db.inventory.updateOne({productId: 123}, {$inc : { "amount" : -3}},
session=session)
{ "acknowledged" : true, "matchedCount" : 0, "modifiedCount" : 0 }
>>> db.order.insertOne({orderItems: [{productId: 123, amount:3}]},
session=session)
{

"acknowledged" : true,
"insertedId" : ObjectId("5f748193216a39130480206e")

}
>>> session.endSession()

We then update a document and insert a document after which we finish our session
to indicate we have completed the transaction. This example utilises the MongoShell
which has the session helper functions, on the next slide we’ll look at how you would
more typically use transactions with a programming language.

You should cut and paste the following command directly from the slide or from these
notes into the prompt (indicated by >>>). Once they have been inserted you will see
the following output on the screen.

var session = db.getMongo().startSession();
session
session { "id" :
UUID("b87d9720-fff3-40fb-af65-c5007a018fcf") }
db.inventory.updateOne({productId: 123}, {$inc : {
"amount" : -3}}, session=session)
{ "acknowledged" : true, "matchedCount" : 0,
"modifiedCount" : 0 }
db.order.insertOne({orderItems: [{productId: 123,
amount:3}]}, session=session)
{

"acknowledged" : true,
"insertedId" : ObjectId("5f748193216a39130480206e")

}

session.endSession()

See: https://www.mongodb.com/transactions

https://www.mongodb.com/transactions

Transaction Syntax

Idiomatic

Natural
for developers

to programming
languages

Simple

with client.start_session as s:
s.start_transaction()
try:

collection.insert_one(doc1, session=s)
collection.insert_one(doc2, session=s)
s.commit_transaction()

except Exception:
s.abort_transaction.

Python

try (ClientSession clientSession =
client.startSession()) {
 clientSession.startTransaction();
 collection.insertOne(clientSession, docOne);
 collection.insertOne(clientSession, docTwo);
 clientSession.commitTransaction();
}

JavaJavascript

const session = client.startSession()
await session.withTransaction(async () => {
 await collection.insertOne(doc1, { session })
 await collection.insertOne(doc2, { session })
})
session.commitTransaction()
session.endSession()

Let’s look at how you can use MongoDB Transactions with various programming
languages, the example shown is for Python and we’ll look at Java and at Javascript
shortly.

Let’s first look at the syntax for MongoDB Transactions.

It is designed to be natural for developers, it is idiomatic to the specific programming
language, and it is designed to be simple to use.

Let’s look at the equivalent Java syntax. We can again see the idiomatic to Java
usage of the same functionality for sessions and for transactions.

If we look at the Javascript syntax, again we can see the same functionality in a
Javascript idiomatic fashion.

Transaction Syntax - Relational and MongoDB

with client.start_session() as s:
 s.start_transaction()

 collection_one.insert_one(
doc_one, session=s)

 collection_two.insert_one(
doc_two, session=s)

 s.commit_transaction()

db.start_transaction()

cursor.execute(orderInsert,
orderData)

cursor.execute(stockUpdate,
stockData)

db.commit()

We’ve just looked at programming languages but let’s also look at how this
functionality and it’s syntax in relational databases.

We’ll compare the syntax for MySQL and for MongoDB.

We can see the similarities immediately, start transaction.
Then we perform the operations within.
Finally we then ‘commit’ the transaction.

The choice of syntax was deliberate it is designed to be natural and relatable to those
coming from a relational database experience to reduce the learning barriers.

Quiz

Quiz

Which of the following were key design choices/considerations in
MongoDB for the Transactions syntax? More than one answer choice
can be correct.

A. Simple

B. Exactly matched existing relational database syntax for
transactions

C. Supports only Python, Java, and Javascript

D. Idiomatic

Quiz

Which of the following were key design choices/considerations in
MongoDB for the Transactions syntax? More than one answer choice
can be correct.

A. Simple

B. Exactly matched existing relational database syntax for
transactions

C. Supports only Python, Java, and Javascript

D. Idiomatic

CORRECT: Simple - Yes, this is correct. The choice of syntax was deliberately
designed to be simple to ensure no confusion and to make it easy to use MongoDB
Transactions.
INCORRECT: Exactly matched existing relational database syntax for transactions. -
This is not correct, the syntax was designed to be similar to existing relational
databases but it wasn’t designed to match it exactly.
INCORRECT: Supports only Python, Java, and Javascript - This is incorrect, all of the
MongoDB company supported drivers support transactions. Python, Java, and
Javascript are very popular drivers and programming languages but they are not the
only ones supported.
CORRECT: Idiomatic - This is correct, each implementation of transactions for each
programming language was designed to support the style and idioms of that specific
programming language. This makes it much easier and natural for developers fluent
in the specific language to use and understand MongoDB Transactions.

Quiz

Which of the following were key design
choices/considerations in MongoDB for the
Transactions syntax? More than one answer choice
can be correct.

A. Simple

B. Exactly matched existing relational database
syntax for transactions

C. Supports only Python, Java, and Javascript

D. Idiomatic

This is correct. The choice
of syntax was
deliberately designed to
be simple to ensure no
confusion and to make it
easy to use MongoDB
Transactions.

CORRECT: Simple - Yes, this is correct. The choice of syntax was deliberately
designed to be simple to ensure no confusion and to make it easy to use MongoDB
Transactions.

Quiz

Which of the following were key design
choices/considerations in MongoDB for the
Transactions syntax? More than one answer choice
can be correct.

A. Simple

B. Exactly matched existing relational database
syntax for transactions

C. Supports only Python, Java, and Javascript

D. Idiomatic

This is incorrect. The
syntax was designed
to be similar to
existing relational
databases but it
wasn’t designed to
match it exactly.

INCORRECT: Exactly matched existing relational database syntax for transactions. -
This is incorrect. The syntax was designed to be similar to existing relational
databases but it wasn’t designed to match it exactly.

Quiz

Which of the following were key design
choices/considerations in MongoDB for the
Transactions syntax? More than one answer choice
can be correct.

A. Simple

B. Exactly matched existing relational database
syntax for transactions

C. Supports only Python, Java, and Javascript

D. Idiomatic

This is incorrect. All of the
MongoDB company
supported drivers
support transactions.
Python, Java, and
Javascript are very
popular drivers and
programming languages
but they are not the only
ones supported.

INCORRECT: Supports only Python, Java, and Javascript - This is incorrect. All of the
MongoDB company supported drivers support transactions. Python, Java, and
Javascript are very popular drivers and programming languages but they are not the
only ones supported.

Quiz

Which of the following were key design
choices/considerations in MongoDB for the
Transactions syntax? More than one answer choice
can be correct.

A. Simple

B. Exactly matched existing relational database
syntax for transactions

C. Supports only Python, Java, and Javascript

D. Idiomatic

This is correct. Each
implementation of
transactions for each
programming language
was designed to
support the style and
idioms of that specific
programming
language.

CORRECT: Idiomatic - This is correct. Each implementation of transactions for each
programming language was designed to support the style and idioms of that specific
programming language.

Transactions API

Let’s look at a little more depth about how you can use MongoDB Transactions in your
applications, specifically let’s look now at the Application Programming Interfaces
available.

Two Approaches

Core Transaction API

>= 4.0 drivers

Callback API

>= 4.2 drivers

There are two Application Programming Interfaces available to implement
transactions in your application.

Firstly, the Core Transaction API, it was designed as the first API for Transactions.
You can use this API with MongoDB Drivers that support version 4.0 or greater of the
database. This is not the recommend API for development in terms of implementing
transactions in applications.

The second approach is the Callback API. The learnings from the first API, the Core
Transaction API, as well as significant feedback from the developer community led to
the creation of a second API, the Callback API. This API is the recommended
approach for developing your application and adding transactions to them.

It simplified how you program transactions and automatically handles a number of
common errors/exceptions that can occur. This significantly improves the robustness
of your application when it is uses MongoDB transactions.

We’re only going to look at the Callback API, the Core Transaction API should not be
used for your development in the vast majority of cases.

Callback API

Callback API

def callback(session):
employees_coll = session.client.hr.employees
events_coll = session.client.reporting.events
employees_coll.update_one({"employee_id": 3},

 {"$set”: {"status": "Inactive"}},
 session=session)

events_coll.insert_one({"employee_id": 3, "status": {
"new": "Inactive", "old": "Active"},
 session=session } })

Here’s an example in Python of the Callback API, this is the recommended API to use
with your applications.

In this example, we define in Python our callback function. You can see the most
important piece is that of the session. The callback function in this example, uses two
collections, employees which it updates a document in and events where it inserts a
new document.

The Callback API is more concise than the Transactions API, it automatically retries
for the errors TransientTransactionError or UnknownTransactionCommitResult. It
will also retry the write once if it fails per the default MongoDB behaviour.

For more details refer to the documentation page online at
https://docs.mongodb.com/manual/core/transactions-in-applications/#txn-callback-api

https://docs.mongodb.com/manual/core/transactions-in-applications/#txn-callback-api

Callback API
def callback(session):

employees_coll = session.client.hr.employees
events_coll = session.client.reporting.events
employees_coll.update_one({"employee_id": 3},

 {"$set”: {"status": "Inactive"}},
 session=session)

events_coll.insert_one({"employee_id": 3, "status": {
"new": "Inactive", "old": "Active"},
 session=session } })

def run_transaction(session):
session.with_transaction(callback, read_concern=ReadConcern("local"),

 write_concern=wc_majority,
 read_preference=ReadPreference.PRIMARY)

Continuing our example, let’s introduce the run_transaction function. This performs
the wrapping and additionally also configuration of the read and the write concerns as
well as the read preference for the transaction.

Here’s the full callback and transactions code:

def callback(session):
employees_coll = session.client.hr.employees
events_coll = session.client.reporting.events
employees_coll.update_one({"employee_id": 3},

{"$set”: {"status": "Inactive"}}, session=session)
events_coll.insert_one({"employee_id": 3, "status":

{ "new": "Inactive", "old": "Active"}, session=session } }
)

def run_transaction(session):
session.with_transaction(callback,

read_concern=ReadConcern("local"),
write_concern=wc_majority,
read_preference=ReadPreference.PRIMARY)

Quiz

Quiz
Which of the following were application programming
interfaces (APIs) that allow you to program transactions in
MongoDB? More than one answer choice can be correct.

A. Core Transactions API

B. Callback API

C. MongoShell API

D. ACID API

Quiz
Which of the following were application programming
interfaces (APIs) that allow you to program transactions in
MongoDB? More than one answer choice can be correct.

A. Core Transactions API

B. Callback API

C. MongoShell API

D. ACID API

CORRECT: Core Transaction API - This is an API that allows you to program
transaction in MongoDB, however it is not recommended as the API for the majority of
use cases. It is low level and does not provide much supporting scaffolding.
CORRECT: Callback API - This is the recommend API to develop transactions with
MongoDB. It was built from the learnings of the Core Transaction API. It is much
easier to use and includes supporting scaffolding such that it will capture the most
typical errors and retry automatically. If you intend to add transactions to your code,
then this is the API you should use.
INCORRECT: MongoShell API - there is no API for the MongoShell and it is not
something you can use to add to your application to allow it to use MongoDB
Transactions.
INCORRECT: ACID API - there is no ACID API.

Quiz
Which of the following were application
programming interfaces (APIs) that allow
you to program transactions in MongoDB?

A. Core Transactions API

B. Callback API

C. MongoShell API

D. ACID API

This is correct. This is an
API that allows you to
program transaction in
MongoDB, however it is
not recommended for the
majority of use cases. It is
low level and does not
provide much supporting
scaffolding.

CORRECT: Core Transaction API - This is an API that allows you to program
transaction in MongoDB, however it is not recommended as the API for the majority of
use cases. It is low level and does not provide much supporting scaffolding.

Quiz
Which of the following were application
programming interfaces (APIs) that allow
you to program transactions in MongoDB?

A. Core Transactions API

B. Callback API

C. MongoShell API

D. ACID API

This is correct. This is the
recommended API to
develop transactions with
MongoDB. t is much
easier to use and includes
scaffolding such that it
will capture the most
typical errors and retry
automatically.

CORRECT: Callback API - This is correct. This is the recommended API to develop
transactions with MongoDB. t is much easier to use and includes scaffolding such that
it will capture the most typical errors and retry automatically.

If you intend to add transactions to your code, then this is the API you should use.

Quiz
Which of the following were application
programming interfaces (APIs) that allow
you to program transactions in MongoDB?

A. Core Transactions API

B. Callback API

C. MongoShell API

D. ACID API

This is incorrect. There is
no API for the MongoShell
and it is not something
you can use to add to
your application to allow
it to use MongoDB
Transactions.

INCORRECT: MongoShell API - This is incorrect. There is no API for the MongoShell
and it is not something you can use to add to your application to allow it to use
MongoDB Transactions.

Quiz
Which of the following were application
programming interfaces (APIs) that allow
you to program transactions in MongoDB?

A. Core Transactions API

B. Callback API

C. MongoShell API

D. ACID API

This is incorrect. There is
no ACID API.

INCORRECT: ACID API - This is incorrect. There is no ACID API.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

