
Change Streams in
MongoDB

LESSON

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported

License
(CC BY-NC-SA 3.0)

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1tXIdT6Hr_hAOhkj4UiytRv_PsHUYTNlxJPeYIVmIdXU

MongoDB Change Streams
Enabling developers to build reactive, real-time services

Business
Apps

User Data

Sensors

Clickstream

C
ha

ng
e

St
re

am
s

A
PI

Business
Apps

User Data

Sensors

Clickstream

Real-Time
Event Notifications

MongoDB
Atlas Triggers

This diagram illustrates a variety of real time applications that use MongoDB and how
change streams can be used to support these use cases.

Change streams were built to allow developers to easily create reactive, real-time
services that stream data changes from MongoDB to applications which can then act
upon those changes.

They support a reactive style of programming. In MongoDB, we use change streams
in a number of other products, specifically charts, triggers, and kafka. We’ll look at
Kafka briefly at the end of this lesson and it is covered in more depth in the
Connectors lesson.

What is Reactive Programming?

Reactive programming is concerned with data streams and change
propagation

Events, messages, and calls can all be programmed with this paradigm

The approach means the code written is asynchronous code

Reactive system are an architectural style to build responsive
distributed systems, they are built using reactive programming

Reactive programming is concerned with data streams and change propagation

Events, messages, and calls can all be programmed with this paradigm

The approach means the code written is asynchronous code

Reactive system are an architectural style to build responsive distributed systems,
they are built using reactive programming

In MongoDB, we use change streams in a number of other products, specifically
charts, triggers, and kafka. We’ll look at Kafka briefly at the end of this lesson and it is
covered in more depth in the Connectors lesson.

What are Change Streams?

Change Streams allow your application to access real-time data
changes, through a dedicated API.

Change Streams do not rely on complex oplog tailing commands.

Provides resumable mechanisms.

Can be combined with data versioning and schema versioning to
provide continuous delivery of data changes to applications.

Changes Streams allow you to access real-time data changes through a dedicated
API.

They were designed to replace ad-hoc custom scripting which used oplog tailing
commands to provide a subset of similar functionality. Many customers and users
developed these solutions, however they tended to be error prone and less secure.
They did flag the need for change streams and helped see this function added to the
core MongoDB database.

Change streams can be resumed and support a number of resumption mechanisms.

Change Streams use the concept of the document and pass the changes/events in a
document. This allows them to be combined with the concepts of data versioning and
schema versioning, we cover these in greater depth in our data modelling and
schema design patterns lesson. This allows for the continuous delivery of data
changes to applications.

What Do Change Streams Add to My Application?

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

5. Security

6. Ease of use

7. Idempotence

Change streams allow you to manage targeted changes in the data.

Why should I care about change streams or more specifically what do change
streams add to my application?

Firstly, Change streams allow for the tracking in real time of targeted changes so you
can filter and pass only the relevant changes to any listening applications using
change streams.

What Do Change Streams Add to My Application?

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

5. Security

6. Ease of use

7. Idempotence

Firstly, Change streams allow for the tracking in real time of targeted changes so you
can filter and pass only the relevant changes to any listening applications using
change streams.

What Do Change Streams Add to My Application?

5. Security

6. Ease of use

7. Idempotence

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

They allow for resumability so your application does not need to be always connected
and in the case of a temporary network blip, you can easily continue. Resumability
has been expanded in recent versions to allow you to resume after events that delete
or drop data. We’ll learn more about the various types of events shortly.

What Do Change Streams Add to My Application?

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

5. Security

6. Ease of use

7. Idempotence

Thirdly, you can get changes in an ordered fashion. The use of a cluster wide logical
clock means that you can now be guaranteed as to the sequencing of events.

What Do Change Streams Add to My Application?

5. Security

6. Ease of use

7. Idempotence

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

Durability and specifically that only majority-committed changes are sent means that
in many failure scenarios (e.g. the loss of a Primary and re-election of a new Primary)
the data passed by the change stream is resilient and not impacted by these events.

What Do Change Streams Add to My Application?

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

5. Security

6. Ease of use

7. Idempotence

Security is a major concern in many applications and change streams supports using
MongoDB’s existing authentication and authorization mechanisms to ensure all the
potential security aspects are covered.

5. Security

6. Ease of use

7. Idempotence

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

What Do Change Streams Add to My Application?

Ease of use refers specifically to well defined API calls that sit within the existing
MongoDB Drivers so are already both language idiomatic and familiar to developers.
It also refers to the fact that in the past the only approach to achieve this functionality
was to write custom error prone code to tail the oplog. This API is a far superior
replacement to this earlier hand crafted scripting approach.

What Do Change Streams Add to My Application?

1. Targeted changes

2. Resumability

3. Total ordering

4. Durability

5. Security

6. Ease of use

7. Idempotence

Idempotence as the events can be resumed and the ordering is guaranteed such that
even when a change stream is resumed the changes will still reach the same
consistent state. This is a similar result to oplog entries which are similarly
idempotent.

What Can I Build with Change Streams?

Internet of Things (sensors)

Updating UI or live
notification systems

Analytical systems and
dashboards

Financial data (stocks)

Reactive systems Data pipelines to other
systems

Internet of Things (sensors) are one of the wider variety of applications and use cases
that can be supported with change streams.

A common use for change streams is passing changes in collections which are
storing IoT sensor data. The sensor write their updates to the database and the
change streams pass these changes to the listening applications.

Similarly, financial data such as stock data is passed to a MongoDB collection and
then the changes / updates are sent using change streams to listening applications.

Reactive systems are applications that await and then act upon the receipt of data.
This is different to applications that request or poll for data. Change streams support
the reactive programming style.

A variety of analytical and dashboard systems can be built to utilise change streams
allowing changes to the database to be reflected in real time to these systems.

We mentioned Kafka and we’ll look to it later in this lesson but it’s a good example of
how data in MongoDB can be passed using change streams as a data pipeline to
other systems (such as Kafka).

Applications that are continuous updating their user interface or provide live
notification can use change streams to provide the mechanism to transmit the change
from the database to the UI/notification system.

Change Streams Requirements
Replica Set or Sharded Cluster

A collection, a database, or an entire replica set which
will be monitored

Support up to 100 concurrent streams

Notification only occurs after the data is persisted to
the majority of the data-bearing members

In sharded clusters, change stream must be opened
against as ‘mongos’ to see all the changes

At the core of change streams, the technology is built on the MongoDB replication
mechanism so this means that change streams are only available to replica sets or
sharded clusters.

A collection, a database, or an entire replica set can be monitored.

There is a recommended limit of approximately 100 concurrent streams. Beyond this
and the performance may vary so this should be factored into their system design.

A key aspect of change streams is that the data will only be sent as a notification after
it has already been persisted to the majority of data bearing members in the
deployment.

In terms of sharded cluster, you must open a change stream against a mongos
routing process to ensure all the changes across the deployment are captured. If you
only open it against a primary in a sharded cluster, only that shard’s changes are
visible and it is not recommended to do this for sharded clusters.

For reference, change streams can be opened against all non-system collections
across all databases except for *admin*, *local*, and *config*.

Quiz

Quiz

Which of the following is true for Change Streams in MongoDB?
More than one answer choice can be correct.

A. Require a replica set or sharded cluster

B. Recommended to use with 30 or less continuous Change
Streams

C. Can monitor a collection only

D. Require majority committed data

Quiz

Which of the following is true for Change Streams in MongoDB?
More than one answer choice can be correct.

A. Require a replica set or sharded cluster

B. Recommended to use with 30 or less continuous Change
Streams

C. Can monitor a collection only

D. Require majority committed data

CORRECT: Requires Replica Set or Sharded Cluster - Change streams require the
oplog as such either a replica set or a sharded cluster is necessary.
INCORRECT: Recommend to use with 30 or less continuous Change Streams - The
recommendation is for approximately 100 continuous change streams
INCORRECT: Can monitor a collection only - Change Streams can monitor a
collection, a database, or an entire deployment.
CORRECT: Requires majority committed data - This is correct, only data which has
been committed to the majority of data bearing members will be sent in a change
stream as an event.

Quiz

Which of the following is true for Change Streams in
MongoDB? More than one answer choice can be correct.

A. Require a replica set or sharded cluster

B. Recommended to use with 30 or less continuous
Change Streams

C. Can monitor a collection only

D. Require majority committed data

This is correct. Change
streams require the oplog as
such either a replica set or a
sharded cluster is necessary.

CORRECT: Require a Replica Set or Sharded Cluster - Change streams require the
oplog as such either a replica set or a sharded cluster is necessary.

Quiz

Which of the following is true for Change Streams in
MongoDB? More than one answer choice can be correct.

A. Require a replica set or sharded cluster

B. Recommended to use with 30 or less continuous
Change Streams

C. Can monitor a collection only

D. Require majority committed data

This incorrect. The
recommendation is for
approximately 100
continuous change streams.

INCORRECT: Recommended to use with 30 or less continuous Change Streams -
This is incorrect. The recommendation is for approximately 100 continuous change
streams

Quiz
Which of the following is true for Change Streams in
MongoDB? More than one answer choice can be correct.

A. Require a replica set or sharded cluster

B. Recommended to use with 30 or less continuous
Change Streams

C. Can monitor a collection only

D. Require majority committed data

This incorrect. Change
Streams can monitor a
collection, a database, or an
entire deployment.

INCORRECT: Can monitor a collection only - This is incorrect. Change Streams can
monitor a collection, a database, or an entire deployment.

Quiz

Which of the following is true for Change Streams in
MongoDB? More than one answer choice can be correct.

A. Require a replica set or sharded cluster

B. Recommended to use with 30 or less continuous
Change Streams

C. Can monitor a collection only

D. Require majority committed data

This is correct. Only data
which has been committed
to the majority of data
bearing members will be sent
in a change stream as an
event.

CORRECT: Require majority committed data - This is correct. Only data which has
been committed to the majority of data bearing members will be sent in a change
stream as an event.

Architecture &
Concepts

Change Streams and the Oplog
Change Streams query the oplog and sometimes query the collection being
watched.

The namespace identifies the resource being watched.

The clusterTime identifies the time from the specific oplog entry globally
across the deployment.

The txnNumber (transaction number) and the lsid (logical session id) are
used if the operation is part of a transaction.

Change Streams use the oplog mostly but they can also query the collection being
watched.

The namespace is what explicitly identifies the resource being watched by the change
stream.

The clusterTime uses the global cluster time to specifically identify the time for an
event and it’s taken from the oplog entry.

The transaction number (txnNumber) and the logical session identifier (lsid) are used
additionally if the operation involves a transaction to further identify it.

Change Stream Architecture and Concepts

Change Events Change Stream CursorAggregation Framework

There are three core components within the Change Stream architecture.

Firstly, there are change events. These are the various event types and related
information that are sent from Change Streams to the listening applications.

Secondly, the Aggregation Framework is a key element to the processing and filtering
aspects of Change Streams. This allows for changes to be passed through an
aggregation pipeline and further modified before being set to the listening applications
if required.

Thirdly and finally, the Change Stream Cursor is the cursor which holds the
connection from the database to the listening application.

We’ll cover each of these in a little more depth in the coming slides.

For more details see:
https://www.mongodb.com/blog/post/an-introduction-to-change-streams

Change Events

insert

delete

replace

update

drop

rename

dropDatabase

invalidate

CRUD EventsInvalidate
Events

There are eight distinct change events that are tracked by change streams.

You can track insertion events, delete events, replace events and update events.
These first four change events are typically categorised as CRUD events.

You can also track drop events, rename events, dropDatabase events, and invalidate
events.
These are typically categorised as Invalidate Events. Specifically the drop, the
rename, and the dropDatabase event types are always followed by an invalidate e

Aggregation Framework

Enables change streams to allow
applications to filter for specific
changes or transformation
notifications.

The Aggregation Framework powers the filtering and data change capabilities within
Change Streams. This is a well known feature within MongoDB which helps
developers more easily develop code that performs filters or changes as it doesn’t
require any new or additional learning.

Let’s look at how to use Change Streams with Python to monitor inserts to a
collection.

How to Monitor Inserts on a Collection

try:
 with db.collection.watch(

 [{'$match': {'operationType': 'insert'}}]) as stream:

 for insert_change in stream:

 print(insert_change)

except pymongo.errors.PyMongoError:

 # The ChangeStream encountered an unrecoverable error or the

 # resume attempt failed to recreate the cursor.

 logging.error('...')

In this example, we’ve left out the connection and other aspects of typical scaffolding
for your Python application but the code illustrates the main functionality we are
interested in, that is configuring monitoring on a collection to watch for insertion
events.

Let’s look at this more deeply in the next slide.

For more details see: https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html

https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html

How to Monitor Inserts on a Collection

try:
 with db.collection.watch(

 [{'$match': {'operationType': 'insert'}}]) as stream:

 for insert_change in stream:

 print(insert_change)

except pymongo.errors.PyMongoError:

 # The ChangeStream encountered an unrecoverable error or the

 # resume attempt failed to recreate the cursor.

 logging.error('...')

We are just going to focus on configuring our change stream cursor to only match
insert events.

We use the ‘watch’ command on a collection to configure the change stream.

We can see how we use the standard Aggregation Framework syntax and pass this
as the pipeline parameter to the watch function to create and open the change stream
cursor.

It’s possible to watch every type of event by simply passing no parameters to the
watch() function.

For more details see: https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html

https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html

Valid Aggregation Stages for Change Streams

$addFields

$match

$project

$replaceRoot

$replaceWith

$redact

$set

$unset

They’re eight valid aggregation stages that can be used with change streams as of
MongoDB 4.4.

$addFields allows us to add fields to the document for the event type we are
watching.

$match as we saw on the last slide allows us to limit our change stream to certain
types of change events but it also allow us to limit it to certain values as we would
typically with the Aggregation Framework.

$project allows for certain fields to be selected and the other fields will not be included
in the output document.

$replaceRoot allows for the replacement of the entire document.

$replaceWith is an alias of $replaceRoot.

$redact can be used to restrict the contents of the documents based on information
stored in the documents themselves

$set is an alias for $addFields

$unset provides the functional to remove fields from the document.

Change Stream Cursor

Remains open until:

● It is explicitly closed, or
● An invalidation event occurs.

However, a new cursor can be open with a Resume Token to restart
after a specific event.

The third component to the change stream architecture is the concept of the change
stream cursor.

It’s similar to a normal database cursor with the exception it does not timeout rather it
will remain open until it is either explicitly closed or an invalidation event occurs.

In either case, you can resume the change stream using a resume token which we
will discuss later in next slide.

See: https://docs.mongodb.com/manual/changeStreams/#resume-a-change-stream

Resuming a Change Stream

resumeAfter

Types of Resume Token

startAfter

You can resume a change stream using a resume token, there are two kinds of
resume tokens.

The first, resumeAfter, which uses the _id value of the change stream event
document to indicate when it should restart from. The oplog must also be long enough
to support this timeframe. The resumeAfter token cannot be used after an
invalidateEvent.

The second type of resume token is a startAfter token. This can be used after an
invalidateEvent. It resumes notifications after an invalidate event by creating a new
change stream. It also uses the _id value of the change stream event document to
indicate when it should restart from. The oplog must also be long enough to support
this timeframe.

See: https://docs.mongodb.com/manual/changeStreams/#resume-a-change-stream

Change Stream Gotchas
MongoDB 16MB BSON document limit

Change steams need to be updated if collections/databases are dropped

Enough data bearing members must be available

High levels of activity can cause issues keeping up with changes, filter the
information (particularly in large sharded clusters)

In terms of using Change Streams there are a number of issues or gotchas to be
aware of.

The MongoDB 16MB BSON document limit still applies so change documents should
be kept relatively small.

If collections or databases are dropped then you may need to update your change
stream or code your application to handle this gracefully.

For change streams to work, you will need sufficient data bearing members to be
available. In terms of majority committed data, this means that your deployments
should always have sufficient (and more if possible) data bearing members available
to support the write concern of majority committed data. In cases with arbiters but
insufficient data bearing members, the change stream will not get any change data as
the precondition of majority committed cannot be satisfied.

Finally, for large active cluster with high levels of activity, particularly for large sharded
clusters, you should use filtering to limit the information rather than taking all the
information as the change stream may not be able to maintain the pace required to
transmit this information to your application before it befores swamped.

See
https://docs.mongodb.com/manual/administration/change-streams-production-recom
mendations/

Use Cases

Use Cases

Access Control Event Notifications Collation

Authentication and authorization can
be applied to a Change Stream

Notification only occur with
majority-committed changes

Can use an explicit collation or defaults
to a binary comparison

Change streams have three typical use cases:

Firstly, where you want additionally access controls on the data stream. In earlier
oplog tailing approaches, the security aspects of authentication and authorization
were not present. A pertinent example was a security issue with the MeteorJS
framework which used the earlier approach of oplog tailing scripts and leaked data
because it didn’t have the same security features as change streams
(https://forums.meteor.com/t/mongodb-oplog-tailing-and-security/32976).

The second use case here but the prime use for change streams is typically event
notification and this only occurs with majority-committed changed.

The final use case for change streams is that it can more explicitly (for a general set
of spoken languages) compare with the collation feature. This expands beyond the
typical binary comparison more commonly available in this type of data streaming
functionality.

https://forums.meteor.com/t/mongodb-oplog-tailing-and-security/32976

MongoDB, Kafka
+ Change Streams

MongoDB Kafka Connector
MongoDB Database

MongoDB
Connector

topicA

topicB

topicC

Kafka Cluster Writes
documents to DB

collection

Receives events
from Kafka

Topic(s)

MongoDB Database

MongoDB
Connector

topicA

topicB

topicC

Kafka Cluster

Change
Streams

Receives
documents from

DB collection

Writes events to
Kafka Topics(s)

SINK:

SOURCE:

The MongoDB Kakfa Connector is covered in more depth in the Drivers, Connectors,
and Ecosystem lesson. We will focus in this slide on how it uses change streams.

It’s useful to highlight how we use change streams in a real product.

Change streams allow a MongoDB Database and the document changes to be
written to Kafka in real-time as they occur. In Kafka terminology the MongoDB
Database acts as a source to the Kafka cluster.

Equally, MongoDB’s Kafka Connector can take data from Kafka to a MongoDB
Database where the database then becomes a ‘sink’. It doesn’t use change streams.

Additionally, it is worth nothing that Atlas uses Change Streams for the Database
Trigger functionality it provides.

Quiz

Quiz

Which of the following are use cases for Change Streams in
MongoDB? More than one answer choice can be correct.

A. Access control

B. Event notification

C. Schema translation

D. Collation

Quiz

Which of the following are use cases for Change Streams in
MongoDB? More than one answer choice can be correct.

A. Access control

B. Event notification

C. Schema translation

D. Collation

CORRECT: Access control, Change streams provide the MongoDB authentication
and authorization access control mechanisms
CORRECT: Event notification, Change streams provide the ability for event
notifications of data changes in MongoDB in real-time.
INCORRECT: Schema translation, Change streams can provide schema translation
via the Aggregation Framework but it is not translated in the sense of an identified /
desired output and input schemas. It is possible with additional code to perform
schema translation but as it’s not a use case or a simple parameter/option to a
function we’ll consider it incorrect.
CORRECT: Collation, Change Streams do provide for comparisons in a number of
spoken languages so that it can offer a richer comparison than a binary comparison in
these cases.

Quiz
Which of the following are use cases for Change
Streams in MongoDB? More than one answer choice can
be correct.

A. Access control

B. Event notification

C. Schema translation

D. Collation

This is correct. Change
streams provide the
MongoDB authentication
and authorization access
control mechanisms.

CORRECT: Access control, Change streams provide the MongoDB authentication
and authorization access control mechanisms

Quiz
Which of the following are use cases for Change
Streams in MongoDB? More than one answer choice can
be correct.

A. Access control

B. Event notification

C. Schema translation

D. Collation

This is correct. Change
streams provide the
ability for event
notifications of data
changes in MongoDB in
real-time.

CORRECT: Event notification. - This is correct. Change streams provide the ability for
event notifications of data changes in MongoDB in real-time.

Quiz
Which of the following are use cases for Change
Streams in MongoDB? More than one answer choice can
be correct.

A. Access control

B. Event notification

C. Schema translation

D. Collation

This incorrect. Change streams can
provide schema translation via the
Aggregation Framework but it is not
translated in the sense of an
identified / desired output and input
schemas.

INCORRECT: Schema translation. - This is incorrect. Change streams can provide
schema translation via the Aggregation Framework but it is not translated in the sense
of an identified / desired output and input schemas.

Note: It is possible with additional code to perform schema translation but as it’s not a
use case or a simple parameter/option to a function.

Quiz
Which of the following are use cases for Change
Streams in MongoDB? More than one answer choice can
be correct.

A. Access control

B. Event notification

C. Schema translation

D. Collation

This is correct. Change Streams do
provide for comparisons in a
number of spoken languages so that
it can offer a richer comparison than
a binary comparison in these cases.

CORRECT: Collation. - This is correct. Change Streams do provide for comparisons
in a number of spoken languages so that it can offer a richer comparison than a
binary comparison in these cases.

Continue Learning! GitHub Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

