
Drivers, Connectors and the 
Ecosystem

Google Slide deck available here 

LESSON

This work is licensed under the Creative Commons 
Attribution-NonCommercial-ShareAlike 3.0 Unported License 

(CC BY-NC-SA 3.0)

https://docs.google.com/presentation/d/1gX_kqBykzVieh9tZMnOyxdzThiiMemOcMkYw8NYDRQ0/edit?usp=sharing
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/


MongoDB Drivers
Common CRUD capabilities but idiomatic to each language and uniform high availability and failover 

capabilities.

As all of the drivers implement the same specifications they all provide:

• Common CRUD capabilities but idiomatic to each language
• Uniform High Availability & Failover capabilities

MongoDB offers a wide range of drivers for various programming languages. They 
are all built to meet various driver specifications, these specifications are available on 
Github at https://github.com/mongodb/specifications and you can find more details at 
https://docs.mongodb.com/drivers/specs on the various drivers directly supported by 
MongoDB. There are more programming languages with community supported 
drivers.

https://github.com/mongodb/specifications
https://docs.mongodb.com/drivers/specs


Connecting to 
MongoDB

Let’s look now at some of the aspects involved in connecting a program to a 
MongoDB database, many of these issues and concerns are common across any 
kind of database.



Applications use drivers to connect to the database server as the 
first stage:

Safely connect to MongoDB

Use a URI string to locate the database server and 
authenticate to it

Handle any connection requests (TLS/SSL, server selection, 
etc.)

Sending Instructions: Retrieve and Update 

Applications use drivers to connect to the database and via the drivers they issue 
data manipulation requests. Applications are the components that most people know 
about - the mobile apps, the websites, etc. Inside the code that runs the application, 
whatever language that application is written in, there's a library imported to connect 
to and issue requests to MongoDB. This is the driver which actually performs the 
connection and issues the data manipulation requests.

In order to safely connect to MongoDB, you will firstly need the uniform resource 
indicator (URI) string which the driver will use to firstly locate the database and then 
as part of connecting to it, it includes authenticate details to allow you pass the 
necessary security checks.

The driver also needs to handle other aspects of the connections including the 
encryption of the connection communications using Transport Layer Security / Secure 
Socket Layer (TLS/SSL). It also must choose which of the database instances to 
direct the requests to (typically this will be the Primary but this can be configured). 
The driver will also handle how to handle connections if there is a network error or 
indeed if there was an election within the MongoDB replica set.



Once connected, drivers issue data manipulation requests to 
database and pass the results back to the applications:

Issue DML requests to MongoDB

Format language-specific requests for the BSON protocol

Satisfy read/write concerns, transactions, and sessions

Sending Instructions: Retrieve and Update 

After connecting and managing the connections to the database, the driver’s other 
main purpose is to issue data manipulation (DML) requests.

Well, that's the real beauty of the driver. At the end of the day, MongoDB data is 
stored in BSON - this is not JSON, and it's definitely not human readable. It's a 
storage format that's been optimized for data types and disk usage. This means that 
the driver will translate any programming language specific requests into the 
appropriate BSON.

This idea is one of the key aspects behind the driver, why does a developer need to 
know the details of how data is stored on the server?

Building off this, if the developer doesn't need to know any of this stuff, why not just let 
them write code in their application's native language?

The driver must also satisfy other aspects such as read/write concerns, transactions, 
and sessions to ensuring requests sent to the database match these aspects as 
defined within the application.

This is an Important Point to reiterate:
Any of the complexities involved with connecting should be handled by the client, 
which is created by the driver. Any details around write concerns, transactions and 
server selection are abstracted away from the developer by the driver. If the 
developer needs a TLS/SSL connection, they just express this desire in Python, and 



the driver handles the rest.



Exceptions 
Managed by the 
Driver

The driver must manage errors or exceptions that occur whether in terms of a network 
interruption or some other error or issue.



Operational Failures Network Failures Server Errors

Schema validation error, 
transaction failure, 
duplicate key error, 
execution timeout

Server selection 
timeout, network 
timeout, write concern 
timeout

Configuration error, 
not primary error, 
exceeded max 
waiters

Handling Exceptions in the Application Code

The driver does a lot of work - it provides an interface between the application and the 
MongoDB server. But there are some things the driver can't do, and in some cases it 
actually shouldn't do anything - these are raised in the form of exceptions.

Operation failures can cover everything from schema validation errors, to transaction 
failures, to duplicate key errors, to execution timeouts as a few of the examples. 
These are related to some exception being raised by the database based on the 
request made by the application via the driver.

Network failures cover a range of problems from server selection timeout, to network 
timeout, to write concern timeouts as a few examples of the possible problems.

Server errors cover yet another set of problems from configuration errors, to issues 
with the node selection like it not being the primary when the request needs to be 
performed against the primary, to storage errors where WiredTiger may flag it has too 
many waiting requests.

As you can see, there's a few different types, because there's more than a few 
situations where the driver needs the application to decide what to do. For example, 
the driver can't decide what to do if the operation fails a Duplicate Key error - this 
exception is thrown when a unique field, such as the _id field, receives two of the 
same values. The driver doesn't know if you want to generate a new ObjectId(), or a 
new integer, or what. So it throws its hands up, and gives the application a chance to 
decide what to do.



The same concept applies to when your new document fails the collection's JSON 
schema, or when your requested Write Concern is not satisfied. The driver just punts 
it over to the application. It is up to the developer to decide what is the most 
appropriate course of action for these errors.



Driver Specification

MongoDB Drivers all conform to the same specification. This 
mandates that all drivers handle the same requests and 
operations.

All MongoDB Drivers must conform to the same specification and ensures that they 
handle requests and operations in the same way.

Let’s look at the specification for the ObjectID, the link for the URL is 
https://github.com/mongodb/specifications/blob/master/source/objectid.rst and we’ll 
look at some aspects of the specification in the next slides.



ObjectID Specification
The ObjectID BSON type is a 12-byte value consisting of three different 
portions (fields):

A 4-byte value representing the seconds since the Unix epoch in the 
highest order bytes,

A 5-byte random number unique to a machine and process,

A 3-byte counter, starting with a random value.

Firstly the ObjectID is a BSON type itself. It is a 12-byte value which consists of three 
different parts or fields.

The first part is a 4-byte value which represents the seconds since the Unix epoch in 
the highest order bytes.

The second field is a 5-byte random number which is unique the machine and the 
process (the mongod instance).

The third part is a 3-byte counter which starts with a random value.

Together, these three parts make up the complete ObjectID.



ObjectID Specification
This 4-byte big endian field represents the seconds since the Unix epoch 
(Jan 1st, 1970, midnight UTC). 

Drivers MUST create ObjectIDs with this value representing the number of 
seconds since the Unix epoch.

Drivers MUST interpret this value as an unsigned 32-bit integer when 
conversions to language specific date/time values are created, and when 
converting this to a timestamp.

Drivers SHOULD have an accessor method on an ObjectID class for 
obtaining the timestamp value.

Looking at a little more detail in the specification, we find a number of pointers and 
aspects that if we were coding a driver we would need to support. Let’s look at the 
timestamp specification aspect of the ObjectID.

It indicates that the Unix epoch is Jan 1st, 1970, midnight UTC.

“Drivers MUST” means that this is a required part of the specification and must be 
implemented. The “Drivers SHOULD” means that this is an optional requirement.

In the case of the ObjectID Specification regarding the timestamp.

It requires that a driver must create ObjectIDs with the timestamp value only being 
since the Unix epoch.

It requires drivers to interpret this value only as an unsigned 32-bit integer when 
converting it to or from other variables/types.

It indicates that best practice for a driver is to allow an accessor method on the 
ObjectID class to allow the timestamp value to be programmatically obtained.



ObjectID Specification

Other fields

Test Plan

Motivation for Change

Design Rationale

Backwards Compatibility

Reference Implementation

Changelog

The ObjectID specification goes to similar depth in other aspects including:

The other fields, specifically the random number and the counter are covered in 
similar depth.

It outlines how this (the ObjectID) should be tested and the plan around this.

It highlights the motivation for change (the ObjectID) as this occurred for this type. 
The ObjectID once was absolutely unique and now it is mostly but not guaranteed to 
be unique on a single machine.

The specification details the design rationale, the backwards compatibility as well as 
providing a reference implement. The specification also includes a changelog of the 
various changes to it.

This is only one of tens of different specifications that a driver must comply with to 
interact with MongoDB. The provision of these specifications ensures that it is 
possible to develop drivers that will interact with any MongoDB, indeed there are a 
number of open source drivers written by community members for various 
programming languages beyond those supported directly by MongoDB as a 
company.



Writing applications is really, really difficult. MongoDB drivers seek to 
remove the complexities of the database from an application's code.

The entire database is stored in BSON, but the application doesn't need to 
know that
● The application's native code shouldn't need to change due to 

MongoDB
Driver does the heavy lifting, but the application isn't useless
● Application logic needs to handle exceptions, transactions, and any other 

complex features that require additional input

Drivers and Applications

Writing an application is really, really difficult. The MongoDB drivers remove some of 
the database complexities and abstract/remove these from an application code. The 
goal is to help the developer write their code rather than having them code large 
chunks of essentially common functionality that other applications would similarly 
need/use.

The entire database is actually stored in BSON, the driver hides this and related 
storage details from the application and from the developer. An application doesn’t 
need to know or deal with those storage details.

Changes in MongoDB, for instance when a new version is released, should not 
require changes in the application code for the most part. Obviously if a new feature is 
introduced this is different but in general, applications written once with a MongoDB 
driver shouldn’t require any major changes unless to take advantage of new features 
within MongoDB.

So just to recap, the driver is meant to be an application's interface to the database. 
All the complexities around connecting to the server, and interacting with data that's 
natively in BSON are handled by the driver.

However, there are still responsibilities held by the code in the application. 

All the transaction and session logic still needs to be handled on the application side, 
and any client-side encryption needs to be configured correctly.



Quiz



Quiz
Which of the following are true for any MongoDB Driver? More than 
one answer choice can be correct.

A. Provides functionality to application to connect to the 
database 

B. Issues DML requests to the MongoDB database 

C. Handles the exceptions within the driver 

D. Must comply with Driver Specifications



Quiz
Which of the following are true for any MongoDB Driver? More than 
one answer choice can be correct.

A. Provides functionality to application to connect to the 
database 

B. Issues DML requests to the MongoDB database 

C. Handles the exceptions within the driver 

D. Must comply with Driver Specifications

CORRECT: Provides functionality to application to connect to the database - This is 
one of the two key features of the drivers, abstracting away complexity from 
developers so they can focus on easily connecting to the database.
CORRECT: Issues DML requests to the MongoDB database - This is the second main 
feature or function of a driver which is to create and manage any requests made from 
the application to the database. 
INCORRECT: Handles the exceptions within the driver. - This is incorrect as the 
application must handle the exceptions passed from the driver.
CORRECT: Must comply with Driver Specifications. - This is correct as otherwise the 
functionality will not operate in the expected manner with the database and in all 
likelihood won’t be accepted for processing by the database or could result in data 
corruption.



Quiz
Which of the following are true for any MongoDB 
Driver? More than one answer choice can be correct.

A. Provides functionality to application to connect 
to the database 

B. Issues DML requests to the MongoDB database 

C. Handles the exceptions within the driver 

D. Must comply with Driver Specifications

This is correct. 
This is one of the 
two key features 
of the drivers, 
abstracting away 
complexity from 
developers so 
they can focus on 
easily connecting 
to the database.

CORRECT: Provides functionality to application to connect to the database - This is 
one of the two key features of the drivers, abstracting away complexity from 
developers so they can focus on easily connecting to the database.



Quiz
Which of the following are true for any MongoDB 
Driver? More than one answer choice can be correct.

A. Provides functionality to application to connect 
to the database 

B. Issues DML requests to the MongoDB database 

C. Handles the exceptions within the driver 

D. Must comply with Driver Specifications

This is correct. 
This is the second 
main feature or 
function of a 
driver which is to 
create and 
manage any 
requests made 
from the 
application to the 
database.

CORRECT: Issues DML requests to the MongoDB database - This is correct. This is 
the second main feature or function of a driver which is to create and manage any 
requests made from the application to the database. 



Quiz
Which of the following are true for any MongoDB 
Driver? More than one answer choice can be correct.

A. Provide functionality to application to connect to 
the database 

B. Issues DML requests to the MongoDB database 

C. Handles the exceptions within the driver 

D. Must comply with Driver Specifications

This is incorrect. 
An application 
must handle the 
exceptions 
passed from the 
driver.

CORRECT: Issues DML requests to the MongoDB database - This is correct. This is 
the second main feature or function of a driver which is to create and manage any 
requests made from the application to the database. 



Quiz
Which of the following are true for any MongoDB 
Driver? More than one answer choice can be correct.

A. Provide functionality to application to connect to 
the database 

B. Issues DML requests to the MongoDB database 

C. Handles the exceptions within the driver 

D. Must comply with Driver Specifications

This is correct. 
Otherwise the 
functionality will 
not operate in the 
expected manner 
with the database 
and in all 
likelihood won’t 
be accepted for 
processing by the 
database.

CORRECT: Must comply with Driver Specifications. - This is correct as otherwise the 
functionality will not operate in the expected manner with the database and in all 
likelihood won’t be accepted for processing by the database or could result in data 
corruption.



Connectors

Beyond the database itself, there may be requirements to have interoperability with 
other software systems. MongoDB has developed a number of software connectors to 
enable this interoperability.



A Spectrum of Connectors for Various 
Tasks

Streaming and 
Ingestion

Enterprise 
Reporting & BI

Big Data & 
Machine Learning

Cloud Service 
Integrations

MongoDB Kafka Connector MongoDB BI Connector MongoDB Spark Connector MongoDB Functions

MongoDB provides a range of connectors to various other software or platforms. 

These connectors allow for integrations with popular tools for moving, transforming, 
and analyzing data.

We’ll look at just four of the available connectors in this lesson.

Firstly, we’ll look at the Kafka tool which is used for streaming and ingesting data.

Secondly, we’ll look at the MongoDB BI Connector which allows MongoDB to connect 
to a wide variety of Business Intelligence tools.

Thirdly, we’ll look at the MongoDB Spark Connector which provides a means to 
connect MongoDB to Spark and the wider Hadoop ecosystem.

Fourthly and finally, we’ll look at MongoDB Functions which allow for connections to 
the MongoDB serverless platform, which includes server-side processing for 
applications as well as triggers for real-time response with serverless functions that 
can transform data and integrate with third party and ecosystem tools.



Kafka Connector



Introduction to
Apache Kafka

Apache Kafka is a data streaming 
platform, similar to a messaging 
system. 

Kafka is run as a cluster on one or 
more servers that can span multiple 
datacenters. 

The Kafka cluster stores streams of 
records in categories called topics. 
A topic is a category or feed name 
to which records are published. 

Each record consists of a key, a 
value, and a timestamp.

Apache Kafka is a popular and widely used data streaming system, it has similarities 
to a messaging system. The project’s web page is https://kafka.apache.org/

It is run on a cluster and can span multiple datacenters.

It processes streams of records in categories know as topics. Each topic is the 
category or feed name to which records are published.

Each record consists of a key, a value and a timestamp.



● Allows easy building of robust and reactive data pipelines that take advantage of stream 
processing between datastores, applications, and services in real-time.

● Eliminates the need for writing boilerplate integration code and ensures end-to-end data 
exchange between any source and sink.

● Developers can focus their time on efficient querying, data enrichment, and analytics.

● The connector enables MongoDB deployments to easily interface with other data 
technologies via Kafka topics and messages.

Why Connect to Kafka

Kafka allows data pipelines to be built. Allows to easily build robust and reactive data 
pipelines that take advantage of stream processing between datastores, applications 
and services in real-time. These pipeline that allow for real-time streaming processing 
between datastores (such as MongoDB), applications, and other services. 

The MongoDB Kafka Connector avoids the need for developers  to write boilerplate 
integration code. It further ensures end-to-end data exchange between any source 
and any sink.

This allows developers to focus on more efficient querying, data enrichment, and 
analytics of the data being processed. This means that rather than writing integration 
code developers are instead focusing on important business problems that provide 
real value.

The connector is the key piece of software that supports the interoperability between 
MongoDB and Kafka and as well as other data technologies downstream from Kafka.



MongoDB Kafka Connector

MongoDB 
Connector

MongoDB 
Connector

MongoDB Database

MongoDB Database
Kafka Cluster

Kafka Cluster

SINK

SOURCE

Receive events from 
Kafka Topic(s)

Writes documents 
to DB collection

Receive documents 
from DB collection

Writes events to 
Kafka Topic(s)

Change Streams

The MongoDB Kafka Connector was mentioned in our Change Streams lesson. We 
mentioned how it can be useful to highlight how we use change streams in a real 
product.

Let’s look at Kafka itself and specifically at the MongoDB Kafka Connector. There are 
two main functionalities that it supports in conjunction with Kafka.

Firstly, it can be a SINK. A sink means that it will receive data from Kafka into the 
database.

Alternatively, it can be a SOURCE. A source means that MongoDB will send data to 
Kafka from the database.

The MongoDB Kafka Connector is integrated with the Confluent Kafka product 
through their Kafka Connect API. This allows Kafka users to easily integrate 
MongoDB into their workflows.



Apache Kafka uses a sink connector to consume records from a topic and save the data 
to a datastore such as MongoDB.

Load events from Kafka topics directly into MongoDB collections to support queries and 
analytics.

Kafka can be used as both a source and a sync in different parts of your application 
architecture:

● Data can be consolidated from sources

● Data can then be stored in MongoDB (sink) for analysis

Kafka Sink

Apache Kakda uses a sink connector to consume records from a topic and then save 

them to another data store such as MongoDB. The connector will convert the value in 

the Kafka Connector’s Sink Record firstly to a MongoDB document and it will then 

perform either an insert or an upsert deping on the configuration that has been 

chosen.

This loading of events from Kafka helps support queries and analytics use cases. 
Specifically, by moving the event data into MongoDB it opens the full ecosystem of 
tooling that supports MongoDB to help with querying the data or visualising it.

Kafka can be used as both a sink and a source, for example some customers use 
Kafka to write data from multiple sources and consolidate it as Kafka sources. They 
then use MongoDB as a Kafka sink to store the consolidated data and analyse it.



MongoDB Source: Writing a Topic 

Connector

MongoDB Database

1. Offset to message to 
read

2. Bulk write to 
Database

3. On successful write (of 
batch), moves offset to 
next batch

Kafka Topic

collection {}

Let’s look at how a MongoDB Sink works with Kafka to read messages from a topic.

Firstly it reads the messages from the topic using a pointer to a specific message in 
the topic.

Secondly, it then writes this message back into the MongoDB collection.

Thirdly, it moves the pointer to the next message in the topic in Kafka so it’s ready to 
read the next message in the topic.

Let’s recap that in the diagram.

It reads the message based on the offset in the topic.
It writes using the bulk write API to add this message to the MongoDB collection.
If it is successfully written to the MongoDB collection, the offset is moved to the next 
batch in Kafka to be read.



The number of messages written in a batch can be controlled by the maximum 
batch size variable

The number of retries and retry timeout can be specified to control how often on 
a error the sink should retry and how long to wait between these retries.

Field renaming, key and value deny lists as well as allow lists can also be 
configured as part of the post processing performed by the MongoDB Sink.

MongoDB Sink: Advanced Options

There are a number of advanced options that can be configured with the Kafka 
Connector when it is operating as a MongoDB Sink.

Firstly, the number of message written in a single batch is configurable by the 
maximum batch size variable.

Secondly, the number retries and retry timeout can be configured to control how often 
on a error the sink should retry and how long to wait between those retries.

Finally, the field name, key and value lists as well as allow lists can be configured for 
the post processing for security.

https://docs.mongodb.com/kafka-connector/current/kafka-sink-properties/ 

https://docs.mongodb.com/kafka-connector/current/kafka-sink-properties/


The MongoDB Kafka source connector moves data from MongoDB  
into Kafka topics.

You can publish data changes from MongoDB into Kafka topics for 
streaming to consuming apps. 

Data is captured via Change Streams within the MongoDB cluster.

Kafka Source

The second type of functionality offered by the MongoDB Kafka connector is to 
operate as a Kafka source. This is where data is sent from MongoDB to a Kafka topic.

The source connector functionality allows you to publish changes from MongoDB into 
Kafka and it is setup to support streaming of these changes to Kafka.

It streams the changes and data from MongoDB using Change Streams.

https://docs.mongodb.com/kafka-connector/current/kafka-sink-properties/ 

https://docs.mongodb.com/kafka-connector/current/kafka-sink-properties/


MongoDB Source: Writing a Topic

Connector

MongoDB Database
write to topic ->

collection {}

Change Stream

pipeline {}

[topic.prefix].database-name.collection-name

● Writes to topic based on database and collection name
● Optionally specify pipeline to manage change stream events to watch
● Optionally set a topic.prefix in the connector configuration

The MongoDB Connector when used as a source allows for changes in MongoDB 
based on their database and collection name to be written to Kafka. This is achieved 
using the Change Stream functionality in MongoDB.

You can optionally specify the pipeline that controls the change stream events being 
watched.

You can also define a topic prefix in the connector configuration to control the 
destination for the data in Kafka.



It is possible to subscribe to changes from entire cluster, single 
database, or single collection with configuring MongoDB as a source to 
Kafka.

The MongoDB Source connector can be configured to:

Include the full document with the message

To copy existing data from source collections

MongoDB Source: Advanced Options

It is possible to configure that the changes from an entire cluster, a single database or 
indeed just a single collection can be configured by the MongoDB Connector to be 
sent to Kafka.

The MongoDB Source connector can be configured to include the full document with 
the message and it can also copy existing data from source collections in MongoDB 
to Kakfa.

There are more details on this web page for these options 
https://docs.mongodb.com/kafka-connector/current/kafka-source/ 

https://docs.mongodb.com/kafka-connector/current/kafka-source/


Quiz



Quiz
Which of the following are true for the MongoDB Kafka Connector? 
More than one answer choice can be correct.

A. Supports sending data from MongoDB to Kafka 

B. Supports sending data from Kafka to MongoDB 

C. Uses MongoDB Change Streams for the source functionality 

D. The source functionality only passes the change event 
document and cannot send the full document to Kafka 
Distribution 



Quiz
Which of the following are true for the MongoDB Kafka Connector? 
More than one answer choice can be correct.

A. Supports sending data from MongoDB to Kafka 

B. Supports sending data from Kafka to MongoDB 

C. Uses MongoDB Change Streams for the source functionality 

D. The source functionality only passes the change event 
document and cannot send the full document to Kafka 
Distribution 

CORRECT: Supports sending data from MongoDB to Kafka. This is correct. There is 
bi-directional communication from and to MongoDB with Kafka. MongoDB has 
implement source connector functionality to provide this functionality.
CORRECT: Supports sending data from Kafka to MongoDB. This is correct.There is 
bi-directional communication from and to MongoDB with Kafka. MongoDB has 
implement sink connector functionality to provide this functionality.
CORRECT: Uses MongoDB Changes Streams for the source functionality. This is 
correct. Changes Streams allow for changes in real time to be sent to Kafka when 
changes occur.
INCORRECT: The source functionality only passes the change event document and 
cannot send the full document to Kafka. This is incorrect. The complete document can 
optionally be configured to be sent to Kafka.



Quiz
Which of the following are true for the MongoDB Kafka 
Connector? More than one answer choice can be correct.

A. Supports sending data from MongoDB to Kafka 

B. Supports sending data from Kafka to MongoDB 

C. Uses MongoDB Change Streams for the source 
functionality 

D. The source functionality only passes the change 
event document and cannot send the full 
document to Kafka Distribution 

This is correct. 
There is 
bi-directional 
communication 
from and to 
MongoDB with 
Kafka. MongoDB 
has implement 
source connector 
functionality to 
provide this 
functionality.

CORRECT: Supports sending data from MongoDB to Kafka. This is correct. There is 
bi-directional communication from and to MongoDB with Kafka. MongoDB has 
implement source connector functionality to provide this functionality.



Quiz
Which of the following are true for the MongoDB Kafka 
Connector? More than one answer choice can be correct.

A. Supports sending data from MongoDB to Kafka 

B. Supports sending data from Kafka to MongoDB 

C. Uses MongoDB Change Streams for the source 
functionality 

D. The source functionality only passes the change 
event document and cannot send the full 
document to Kafka Distribution 

This is correct. 
There is 
bi-directional 
communication 
from and to 
MongoDB with 
Kafka. MongoDB 
has implement 
sink connector 
functionality to 
provide this 
functionality.

CORRECT: Supports sending data from Kafka to MongoDB. This is correct.There is 
bi-directional communication from and to MongoDB with Kafka. MongoDB has 
implement sink connector functionality to provide this functionality.



Quiz
Which of the following are true for the MongoDB Kafka 
Connector? More than one answer choice can be correct.

A. Supports sending data from MongoDB to Kafka 

B. Supports sending data from Kafka to MongoDB 

C. Uses MongoDB Change Streams for the source 
functionality 

D. The source functionality only passes the change 
event document and cannot send the full 
document to Kafka Distribution 

This is correct. 
Change Streams 
allow for changes 
in real time to be 
sent to Kafka 
when changes 
occur.

CORRECT: Uses MongoDB Change Streams for the source functionality. This is 
correct. Change Streams allow for changes in real time to be sent to Kafka when 
changes occur.



Quiz
Which of the following are true for the MongoDB Kafka 
Connector? More than one answer choice can be correct.

A. Supports sending data from MongoDB to Kafka 

B. Supports sending data from Kafka to MongoDB 

C. Uses MongoDB Change Streams for the source 
functionality 

D. The source functionality only passes the change 
event document and cannot send the full 
document to Kafka Distribution 

This is incorrect. 
The complete 
document can 
optionally be 
configured to be 
sent to Kafka.

INCORRECT: The source functionality only passes the change event document and 
cannot send the full document to Kafka. This is incorrect. The complete document can 
optionally be configured to be sent to Kafka.



MongoDB 
Connector for BI

Let’s start by discussing the MongoDB Connector for BI.



What Does the BI Connector Do?

Business Intelligence 
Connector

MongoDB

Business 
Intelligence 

Tool

Schema

Responses Responses

Queries

Queries

The business intelligence connector sits between your BI tool and your MongoDB 
deployment. It’s purpose is to translate from MongoDB to BI and vice-versa to allow 
data in your database to be analysed or visualised easily in whatever BI tool you use.
The connector translates from SQL to MQL and vice versa.

The Business Intelligence tools provide a means for visualizing, for analyzing, and for 
reporting against a MongoDB database using SQL queries.

The BI Connector translates these queries from SQL to MQL. 

This opens a wide variety of such as Tableau, MS Excel, Power BI and allows them to 
operate smoothly with MongoDB data.

The connector translates from SQL to MQL and vice versa.
The Business Intelligence tools provide a means for visualizing, for analyzing, and for 
reporting against a MongoDB database using SQL queries.

The BI Connector translates these queries from SQL to MQL. 

This opens a wide variety of such as Tableau, MS Excel, Power BI and allows them to 
operate smoothly with MongoDB data.



The connector for BI has 2 main components:

● Schema definition utility: mongodrdl 

● Connector daemon: mongosqldI

There is also a related ODBC driver that provides connectivity 
between a SQL client and the MongoDB Connector for BI.

Components

The connector is made up of two major components.

The first is a schema definition utility,  mongodrdl. This utility program generates drdl 
(Document-Relation Definition Language) files from the databases and collections in 
a MongoDB deployment. It maps your documents to a simple relational schema.

The second is a daemon process, mongosqld. It runs as a server daemon and 
responds to incoming SQL queries. The BI Tool via the connector translates the SQL 
query and sends the MQL query to connected MongoDB deployment, using the 
schema in the .drdl file. It translates results from MongoDB back to a SQL format for 
the BI Tool.

In addition, there is an ODBC driver that is used to provide connectivity between a 
SQL client and the MongoDB BI Connector.

Additional, there is a component mongotranslate. This is used to translate SQL to 
MongoDB Aggregation Operations.



How a BI Query is Processed

BI Application MongoDB ODBC 
driver

Connector for BI Local or Atlas 
hosted

Tableau, Excel MongoDB BI Connector Local install or Atlas MongoDB Functions

Let’s look at how a query from a BI Application is processed.

Firstly, we execute the query within our BI Application (e.g. Tableau, Excel, etc.).

This is converted into SQL by the BI Application and then processed by the MongoDB 
ODBC driver which manages the connectivity between BI applications and the 
MongoDB Connector for BI.

The Connector for BI then translates this SQL from the ODBC driver  into MQL. It then 
executes the resulting MQL and processes the database results back into SQL. This 
SQL is passed back through the ODBC driver back to the BI Application.



BI Connector for Data Analysis
Use corporate BI tools to examine both MongoDB data and SQL data.

Analyze data generated by MongoDB's flexible data model alongside 
traditional data stored in relational databases.

Allows us to combine traditional SQL statements with MongoDB query 
expressions for data analysis.

Allows for data in MongoDB to be analyzed without the need for ETL 
processes.

The BI connector allows companies to use one set of analytical tooling for both their 
MongoDB databases and data in SQL/relational databases.

It provides a means to analyse both type of data despite the different in their 
schemas.

The ability to write traditional SQL and apply those queries against MongoDB is 
particularly useful for data analysts as they don’t then also need to learn how to query 
MongoDB.

A big advantage to this approach is the data within the MongoDB database does not 
need to be copied or moved to another system for analytics - there is no need for any 
additional ETL processes.



Quiz



Quiz
Which of the following are true for the MongoDB Connector for 
Business Intelligence? More than one answer choice can be correct.

A. Can translate from MQL to SQL and vice-versa 

B. Requires some additional software (e.g ODBC driver) and has 
an overhead cost in terms of memory and of I/O 

C. Encrypts the data in transit 

D. Requires no additional ETL processes



Quiz
Which of the following are true for the MongoDB Connector for 
Business Intelligence? More than one answer choice can be correct.

A. Can translate from MQL to SQL and vice-versa 

B. Requires some additional software (e.g ODBC driver) and has 
an overhead cost in terms of memory and of I/O 

C. Encrypts the data in transit 

D. Requires no additional ETL processes

CORRECT: Can translate from MQL to SQL and vice-versa: This is correct, the 
connector knows both SQL and MQL and maps between both.
CORRECT: Requires some additional software (e.g ODBC driver) and has an 
overhead cost in terms of memory and of I/O. This is correct, there are several 
components required including the ODBC driver, a schema definition utility which 
maps documents in MongoDB to a relational schema, a daemon process, as well as 
an optional SQL to aggregation mapping utility.
INCORRECT: Encrypts the data in transit by default. This is incorrect as the BI 
connector does not enable TLS by default but this can be configured to provide 
security for data in transit.
CORRECT: Requires no additional ETL processes. This is correct as the queries from 
the BI application are translated as are the results from running the query on the 
MongoDB database. Only the query and the result are sent so an extraction loading 
process is not required to move the data to another datastore for analysis.



Quiz
Which of the following are true for the MongoDB 
Connector for Business Intelligence? More than one 
answer choice can be correct.

A. Can translate from MQL to SQL and vice-versa 

B. Requires some additional software (e.g ODBC 
driver) and has an overhead cost in terms of 
memory and of I/O 

C. Encrypts the data in transit 

D. Requires no additional ETL processes

This is correct. 
The connector 
knows both SQL 
and MQL and 
maps between 
both.

CORRECT: Can translate from MQL to SQL and vice-versa: This is correct, the 
connector knows both SQL and MQL and maps between both.



Quiz
Which of the following are true for the MongoDB 
Connector for Business Intelligence? More than one 
answer choice can be correct.

A. Can translate from MQL to SQL and vice-versa 

B. Requires some additional software (e.g ODBC 
driver) and has an overhead cost in terms of 
memory and of I/O 

C. Encrypts the data in transit 

D. Requires no additional ETL processes

This is correct, 
there are several 
components 
required including 
the ODBC driver, a 
schema definition 
utility, a daemon 
process, as well as 
an optional SQL to 
aggregation 
mapping utility

CORRECT: Requires some additional software (e.g ODBC driver) and has an 
overhead cost in terms of memory and of I/O. This is correct, there are several 
components required including the ODBC driver, a schema definition utility which 
maps documents in MongoDB to a relational schema, a daemon process, as well as 
an optional SQL to aggregation mapping utility.



Quiz
Which of the following are true for the MongoDB 
Connector for Business Intelligence? More than one 
answer choice can be correct.

A. Can translate from MQL to SQL and vice-versa 

B. Requires some additional software (e.g ODBC 
driver) and has an overhead cost in terms of 
memory and of I/O 

C. Encrypts the data in transit 

D. Requires no additional ETL processes

This is incorrect 
as the BI 
connector does 
not enable TLS 
by default but 
this can be 
configured to 
provide security 
for data in 
transit.

INCORRECT: Encrypts the data in transit by default. This is incorrect as the BI 
connector does not enable TLS by default but this can be configured to provide 
security for data in transit.



Quiz
Which of the following are true for the MongoDB 
Connector for Business Intelligence? More than one 
answer choice can be correct.

A. Can translate from MQL to SQL and vice-versa 

B. Requires some additional software (e.g ODBC 
driver) and has an overhead cost in terms of 
memory and of I/O 

C. Encrypts the data in transit 

D. Requires no additional ETL processes

This is correct. Only 
the query and the 
result are sent so an 
extraction loading 
process is not 
required to move the 
data to another 
datastore for analysis.

CORRECT: Requires no additional ETL processes. This is correct as the queries from 
the BI application are translated as the results from running the query on the 
MongoDB database. Only the query and the result are sent so an extraction loading 
process is not required to move the data to another datastore for analysis.



Spark Connector

Let’s now explore the Spark connector for MongoDB.



Introduction to Spark
● Spark is an in-memory data processing engine.
● Based on Hadoop mapreduce.
● Spark has multiple libraries for machine learning, streaming, graph 

and other data processing algorithms. 
● Spark supports over 100 different operators and algorithms for 

processing data.
● Can be scaled out across multiple compute nodes for distributed 

computing.

Spark is an in-memory data processing engine. It performs its calculations in memory 
as well as holding the data to be processed in-memory. This offers a number of 
performance improvements as information need not be saved or retrieved from disk, 
avoid costly (in terms of performance) I/O.

Spark is an evolution of the Hadoop mapreduce concept where calculations are 
broken down and split across many different nodes, each of which performs a subset 
of the calculation.

Spark is used extensively in the data analysis and machine learning communities. It 
provides multiple different libraries for machine learning, streaming, graph processing 
and other data processing tasks.

Spark has over 100 different operators and algorithms to process data.

It is designed to easily scale out over multiple compute nodes providing a simple 
mechanism for distributing the computation.



Why use Apache Spark with MongoDB?
The MongoDB Spark connector allows you to stream data to 
and from your MongoDB cluster and a Spark deployment.

Many algorithms or libraries for machine learning  have been 
written for Spark, allows for the addition of the functionality 
into an application.

Developers can leverage existing skills and best practices to 
build analytics workflows on top of MongoDB.

The MongoDB Spark Connector allows for the streaming to and also from a 
MongoDB Cluster to a Spark deployment. This allows for applications to utilise the 
functionality in the Spark ecosystem within applications that are using MongoDB to 
store their data.

Spark is a very popular framework and the connector allows developers to leverage 
their knowledge of this framework to easily build analytics workflows atop of 
MongoDB.

The Connector allows MongoDB to utilise the vast number of algorithms in Spark for 
data analysis and for machine learning. 



Quiz



Quiz
Which of the following are true for the MongoDB Spark Connector? 
More than one answer choice can be correct.

A. Provides bi-directional access to Spark deployments 

B. Facilitates building analytic workflows / applications using 
Spark with MongoDB 

C. Processes the data on disk 

D. Requires complex configuration for additional compute nodes 
to be added



Quiz
Which of the following are true for the MongoDB Spark Connector? 
More than one answer choice can be correct.

A. Provides bi-directional access to Spark deployments 

B. Facilitates building analytic workflows / applications using 
Spark with MongoDB 

C. Processes the data on disk 

D. Requires complex configuration for additional compute nodes 
to be added

CORRECT: Provides bi-directional access to Spark deployments. This is correct, the 
MongoDB Spark connector allows for data to be sent to and from a MongoDB 
deployment to a Spark deployment.
CORRECT: Facilitates building analytic workflows / applications using Spark with 
MongoDB. This is correct, Spark offers a number of machine learning and data 
processing libraries and the MongoDB Spark Connector makes it easy to use these to 
add analytics capabilities to a MongoDB application.
INCORRECT: Processes the data on disk. This is incorrect, Spark use memory to 
perform its calculations. The results can be stored to disk but it’s high performance 
when compared to systems like Hadoop is its focus on in-memory data processing.
INCORRECT: Requires complex configuration for additional compute nodes to be 
added. This is incorrect. Spark does not require complex configuration to easily add or 
remove compute nodes to a deployment.



Quiz
Which of the following are true for the MongoDB Spark 
Connector? More than one answer choice can be correct.

A. Provides bi-directional access to Spark 
deployments 

B. Facilitates building analytic workflows / 
applications using Spark with MongoDB 

C. Processes the data on disk 

D. Requires complex configuration for additional 
compute nodes to be added

This is correct. The 
MongoDB Spark 
connector allows 
for data to be sent 
to and from a 
MongoDB 
deployment to a 
Spark deployment

CORRECT: Provides bi-directional access to Spark deployments. This is correct, the 
MongoDB Spark connector allows for data to be sent to and from a MongoDB 
deployment to a Spark deployment.



Quiz
Which of the following are true for the MongoDB Spark 
Connector? More than 1 answer choice can be correct.

A. Provides bi-directional access to Spark 
deployments 

B. Facilitates building analytic workflows / 
applications using Spark with MongoDB 

C. Processes the data on disk 

D. Requires complex configuration for additional 
compute nodes to be added

This is correct. Spark 
offers a number of 
machine learning and 
data processing 
libraries and the 
MongoDB Spark 
Connector makes it 
easy to use these to 
add analytics 
capabilities to a 
MongoDB application.

CORRECT: Facilitates building analytic workflows / applications using Spark with 
MongoDB. This is correct. Spark offers a number of machine learning and data 
processing libraries and the MongoDB Spark Connector makes it easy to use these to 
add analytics capabilities to a MongoDB application.



Quiz
Which of the following are true for the MongoDB Spark 
Connector? More than 1 answer choice can be correct.

A. Provides bi-directional access to Spark 
deployments 

B. Facilitates building analytic workflows / 
applications using Spark with MongoDB 

C. Processes the data on disk 

D. Requires complex configuration for additional 
compute nodes to be added

This is incorrect. 
Spark uses memory 
to perform its 
calculations. The 
results can be stored 
to disk but it’s high 
performance when 
compared to systems 
like Hadoop is its 
focus on in-memory 
data processing.

INCORRECT: Processes the data on disk. This is incorrect. Spark uses memory to 
perform its calculations. The results can be stored to disk but it’s high performance 
when compared to systems like Hadoop is its focus on in-memory data processing.



Quiz
Which of the following are true for the MongoDB Spark 
Connector? More than 1 answer choice can be correct.

A. Provides bi-directional access to Spark 
deployments 

B. Facilitates building analytic workflows / 
applications using Spark with MongoDB 

C. Processes the data on disk 

D. Requires complex configuration for additional 
compute nodes to be added

This incorrect. Spark 
does not require 
complex configuration 
to easily add or 
remove compute 
nodes to a 
deployment.

INCORRECT: Requires complex configuration for additional compute nodes to be 
added. This is incorrect. Spark does not require complex configuration to easily add or 
remove compute nodes to a deployment.



MongoDB 
Functions

MongoDB Functions are another form of connector that provides additional 
functionality within the MongoDB Atlas platform.



Introduction to MongoDB Functions

Realm Functions
Atlas Triggers

When we talk about MongoDB Functions, we mean are talking about.

Realm Functions in Atlas, these allow for the definition and ability to execute 
server-side logic for your application within Atlas. You can call functions from your 
client applications as well as from other functions and in JSON expressions 
throughout Realm.

Atlas Triggers allow you to define server-side logic in Atlas that will execute in 
response to a database event or on a specified schedule.

Let’s look a little more at each of these to better understand what they can provide in 
terms of functionality.



Realm Functions

Modern JavaScript (ES6+)

Serverless execution

Can use/import external 
NodeJS modules

Synchronous, short lived 
function.

Realm Functions provide a means to add server side logic implemented in ES6+ 
Javascript which is executed in a serverless fashion (on-demand). These functions 
can further use the wide variety of NodeJS modules to add specific functionality to the 
server side logic.

It is best to view a Realm function as a synchronous, short-lived function. Specifically, 
the runtime will be limited to 90 seconds and the memory usage is limited at 256MB. 
If you need an asynchronous function then a promise is a better alternative to a 
Realm function.

Typically, Realm functions are aimed at use cases where there is some short lived 
connection logic and other related server-side interaction required. They offer a way 
to interact easily with third party services or APIs. Functions can hide details away 
from the client applications or just provide further dynamic functionality depending for 
instance on the current user.



Atlas Triggers

Responds to events 
or on a schedule

Trigger types

Database

Scheduled

We’ve previously covered Atlas Triggers in our lesson describing Atlas, however it is 
worth recapping them here.
Triggers provide server-side code that can respond to database events or according 
to a schedule.

Atlas has two kinds of triggers, database and scheduled.

A database trigger will execute server-side whenever a document is added, updated 
or removed in a cluster that is linked.
Database triggers use MongoDB change streams to listen for changes in watched 
collections and map these to database events. We’ll cover MongoDB change streams 
in more depth in a later lesson.

Scheduled triggers are very similar to traditional Unix/Linux CRON jobs, these are 
defined using the CRON temporal expressions to indicate when they should run. A 
CRON expression consists of five space-delimited fields minute, hour, dayOfMonth, 
month, weekDay. These can be set to a specific value or to an expression that 
evaluates to a set of values. Overall, these are quite similar to CRON jobs in 
Unix/Linux and this was a deliberate design choice to simplify the use of this feature 
but using the well-established CRON format and syntax.

The schedule trigger will then execute the server-side logic on that CRON schedule. 
This type of trigger functionality is suited to periodic work, such as nightly reporting, 
updating documents every minute/hour, or indeed generating weekly newsletters or 



offer emails.



Quiz



Quiz
Which of the following are true for the MongoDB Functions? More 
than one answer choice can be correct.

A. Only responds to events 

B. Designed as long lived asynchronous functions 

C. Uses modern JavaScript (ES6+) 

D. Allows NodeJS modules/libraries to be imported and used in 
the functions



Quiz
Which of the following are true for the MongoDB Functions? More 
than one answer choice can be correct.

A. Only responds to events 

B. Designed as long lived asynchronous functions 

C. Uses modern JavaScript (ES6+) 

D. Allows NodeJS modules/libraries to be imported and used in 
the functions

INCORRECT: Only responds to events. This is incorrect as MongoDB Functions as 
both Realm Functions and Atlas Triggers can be configured on a scheduled basis.
INCORRECT: Designed as long lived asynchronous functions. This is incorrect as 
MongoDB Functions are designed as short lived synchronous functions.
CORRECT: Uses modern JavaScript (ES6+). This is correct. MongoDB Functions, 
specifically Realm Functions uses modern Javascript.
CORRECT: Allows NodeJS modules/libraries to be imported and used in the 
functions. This is correct. MongoDB Functions, specifically Realm Functions allows 
developers to include existing third-party NodeJS modules/libraries to be imported 
and used.



Quiz
Which of the following are true for the MongoDB 
Functions? More than one answer choice can be 
correct.

A. Only responds to events 

B. Designed as long lived asynchronous 
functions 

C. Uses modern JavaScript (ES6+) 

D. Allows NodeJS modules/libraries to be 
imported and used in the functions

This is incorrect. MongoDB 
Functions as both Realm 
Functions and Atlas 
Triggers can be configured 
on a scheduled basis.

INCORRECT: Only responds to events. This is incorrect as MongoDB Functions as 
both Realm Functions and Atlas Triggers can be configured on a scheduled basis.



Quiz
Which of the following are true for the MongoDB 
Functions? More than one answer choice can be 
correct.

A. Only responds to events 

B. Designed as long lived asynchronous 
functions 

C. Uses modern JavaScript (ES6+) 

D. Allows NodeJS modules/libraries to be 
imported and used in the functions

This is incorrect. MongoDB 
Functions are designed as 
short lived synchronous 
functions.

INCORRECT: Designed as long lived asynchronous functions. This is incorrect as 
MongoDB Functions are designed as short lived synchronous functions.



Quiz
Which of the following are true for the MongoDB 
Functions? More than one answer choice can be 
correct.

A. Only responds to events 

B. Designed as long lived asynchronous 
functions 

C. Uses modern JavaScript (ES6+) 

D. Allows NodeJS modules/libraries to be 
imported and used in the functions

This is correct. MongoDB 
Functions, specifically 
Realm Functions uses 
modern Javascript.

CORRECT: Uses modern JavaScript (ES6+). This is correct. MongoDB Functions, 
specifically Realm Functions uses modern Javascript.



Quiz
Which of the following are true for the MongoDB 
Functions? More than one answer choice can be 
correct.

A. Only responds to events 

B. Designed as long lived asynchronous 
functions 

C. Uses modern JavaScript (ES6+) 

D. Allows NodeJS modules/libraries to be 
imported and used in the functions

This is correct. MongoDB 
Functions, specifically 
Realm Functions allows 
developers to include 
existing third-party 
NodeJS modules/libraries 
to be imported and used.

CORRECT: Allows NodeJS modules/libraries to be imported and used in the 
functions. This is correct. MongoDB Functions, specifically Realm Functions allows 
developers to include existing third-party NodeJS modules/libraries to be imported 
and used.



The Wider 
Ecosystem

We’ll finish this lesson with a few examples of developer tooling from the wider 
ecosystem.



Developer Tooling in the Wider Ecosystem

Visual Code 
Studio

JetBrains 
DataGrip

Hashicorp 
Terraform

In the wider tooling ecosystem, MongoDB has worked with a number of companies to 
provide or co-develop tooling related to MongoDB.

Visual Code Studio is a good example of where MongoDB built an extension that 
allows you to use your IDE to build MongoDB Application and easily connect to 
MongoDB Atlas. It also provides a feature, MongoDB Playgrounds which allow for 
CRUD operations and MongoDB commands to be executed within the IDE. This 
allows you to prototype queries and aggregations within the IDE, it further allows you 
to easily share these. The plugin also links to Hashicorp Terraform plugin that we’ll 
cover in a few moments.

Another useful tool is JetBrains DataGrip, which provides a IDE focused on working 
with databases. It allows you to explore your collection and documents via the IDE.

The last tool we’ll cover in this lesson is Hashicorp’s Terraform. We’ve covered this 
briefly in the MongoDB Atlas lesson, to briefly recap Terraform is a provisioning tool 
rather than a configuration management tool..

The full description and details on the MongoDB Atlas Terraform Provider can be 
found at the website on the slide https://www.mongodb.com/atlas/hashicorp-terraform

A provider in Terraform is used to create, manage, and update infrastructure 
resources. It is able to understand both Terraform’s API and the provider’s APIs (in 
this case MongoDB Atlas’s API) and expose the provider’s resources. Terraform 



allows you to describe your infrastructure using the declarative configuration, it can be 
versioned and treated in a similar fashion to how you manage software source code. 
It also allows these configurations to be easily shared and re-used.



Quiz



Quiz
Which of the following applications did MongoDB collaborate to 
develop functionality for? More than one answer choice can be 
correct.

A. Microsoft’s Visual Code Studio

B. JetBrains PyCharm

C. Studio 3T MongoDB interface 

D. Hashicorp Terraform MongoDB plugin



Quiz
Which of the following applications did MongoDB collaborate to 
develop functionality for? More than one answer choice can be 
correct.

A. Microsoft’s Visual Code Studio

B. JetBrains PyCharm

C. Studio 3T MongoDB interface 

D. Hashicorp Terraform MongoDB plugin

CORRECT: Microsoft Visual Code Studio. This is correct. MongoDB built an extension 
that allows you to use your IDE to build MongoDB Application and easily connect to 
MongoDB Atlas. It also built MongoDB Playgrounds which allow for CRUD operations 
and MongoDB commands to be executed within the IDE.
INCORRECT: JetBrains PyCharm. This incorrect. JetBrains did built MongoDB 
functionality into this IDE but they did so without assistance or collaboration from 
MongoDB. This work did lead to a later collaboration for JetBrains DataGrip product 
where collaboration did happen between both companies.
INCORRECT: Studio 3T MongoDB interface. This is incorrect. MongoDB did not 
collaborate with the develop of the 3T interface, it offers a competing product called 
MongoDB Compass.
CORRECT: Hashicorp Terraform MongoDB Atlas plugin. This is correct. MongoDB 
worked with Hashicorp to create a MongoDB plugin to allow Terraform/infrastructure 
as code to be used to deploy MongoDB Atlas clusters.



Quiz
Which of the following applications did MongoDB collaborate 
to develop functionality for? More than one answer choice can 
be correct.

A. Microsoft’s Visual Code Studio

B. JetBrains PyCharm

C. Studio 3T MongoDB interface 

D. Hashicorp Terraform MongoDB plugin

This is correct. MongoDB 
built an extension that 
allows you to use your 
IDE to build MongoDB 
Application and easily 
connect to MongoDB 
Atlas.

CORRECT: Microsoft Visual Code Studio. This is correct. MongoDB built an extension 
that allows you to use your IDE to build MongoDB Application and easily connect to 
MongoDB Atlas. It also built MongoDB Playgrounds which allow for CRUD operations 
and MongoDB commands to be executed within the IDE.

Note: It also built MongoDB Playgrounds which allow for CRUD operations and 
MongoDB commands to be executed within the IDE.



Quiz
Which of the following applications did MongoDB collaborate 
to develop functionality for? More than 1 answer choice can be 
correct.

A. Microsoft’s Visual Code Studio

B. JetBrains PyCharm

C. Studio 3T MongoDB interface 

D. Hashicorp Terraform MongoDB plugin

This is incorrect. 
JetBrains did built 
MongoDB functionality 
into this IDE but they 
did so without 
assistance or 
collaboration from 
MongoDB.

INCORRECT: JetBrains PyCharm. This incorrect. JetBrains did built MongoDB 
functionality into this IDE but they did so without assistance or collaboration from 
MongoDB. This work did lead to a later collaboration for JetBrains DataGrip product 
where collaboration did happen between both companies.



Quiz
Which of the following applications did MongoDB collaborate 
to develop functionality for? More than 1 answer choice can be 
correct.

A. Microsoft’s Visual Code Studio

B. JetBrains PyCharm

C. Studio 3T MongoDB interface 

D. Hashicorp Terraform MongoDB plugin

This is incorrect. 
MongoDB did not 
collaborate with the 
develop of the 3T 
interface, it offers a 
competing product 
called MongoDB 
Compass.

INCORRECT: Studio 3T MongoDB interface. This is incorrect. MongoDB did not 
collaborate with the develop of the 3T interface, it offers a competing product called 
MongoDB Compass.



Quiz
Which of the following applications did MongoDB collaborate 
to develop functionality for? More than 1 answer choice can be 
correct.

A. Microsoft’s Visual Code Studio

B. JetBrains PyCharm

C. Studio 3T MongoDB interface 

D. Hashicorp Terraform MongoDB plugin

This is correct. MongoDB 
worked with Hashicorp to 
create a MongoDB plugin 
to allow 
Terraform/infrastructure 
as code to be used to 
deploy MongoDB Atlas 
clusters.

CORRECT: Hashicorp Terraform MongoDB Atlas plugin. This is correct. MongoDB 
worked with Hashicorp to create a MongoDB plugin to allow Terraform/infrastructure 
as code to be used to deploy MongoDB Atlas clusters.



Continue Learning! GitHub Student 
Developer Pack

Sign up for the MongoDB Student Pack to 
receive $50 in Atlas credits and free 
certification!

MongoDB University has free self-paced 
courses and labs ranging from beginner 
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to 
learn about MongoDB and non-relational databases, and they are all free! Check out 
MongoDB’s University page to find free courses that go into more depth about 
everything MongoDB and non-relational. For students and educators alike, MongoDB 
for Academia is here to offer support in many forms. Check out our educator 
resources and join the Educator Community. Students can receive $50 in Atlas credits 
and free certification through the GitHub Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

