
What is a Modern General
Purpose Database?

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1cW7zoLtTslIzD8A4Op4u9or3qgx-HQPrHlyuZOLBKdM/edit?usp=sharing

What is a
general
purpose
database?

Designed to meet the needs
of as many applications as
possible

Not designed to manage any
specific type of data or
workload

Influenced the design of
many relational databases
such as Oracle, MySQL, and
Postgres

General purpose databases as a concept have been around since the 1960s. They
are designed to meet the needs of a wide variety of applications. They are not just
designed for a specific type of workload (e.g. analytics) or type of data (e.g. graphs).

The requirement to support a wide variety of applications has influenced the design of
most relational databases including Oracle, MySQL, and Postgres.

MongoDB and the majority of non-relational databases were influenced by the
requirement to support a variety of workloads, additionally they also were built to
better scale horizontally as this was a known problem for relational databases during
the time that non-relational databases were first being developed.

Let’s look at one of the larger factors in any database, the data size and what growing
data has meant in terms of the database.

Growing
Data Sizes

General purpose databases were
designed to run on a single server
and host the associated data on
that server

Exponential growth in data
occurred with availability of both
the Internet and of smart devices

Scaling and managing that scaling
became a genuine problem for
databases as data volumes
increased

A major change occurred in the last three decades in computing and that is the size of
data being stored. Over a relatively short period of time, the field of computing saw
exponential growth in the size of data needing storage.

General purpose databases were originally designed to run and serve data from a
single server, this relates back to the design origins in the 1960’s and more recently
as there were performance benefits to locate data on a single machine.

The growth of the Internet and indeed the massive numbers of smart devices all of
which have one or more applications generating or consuming data or indeed both
have added to this data growth.

Vertical scaling is where the
resources on a single machine
are increased. Resources refer to
machine hardware such as the
CPU, the disk capacity, or the
memory.

In Atlas this equates to moving
up to the next cluster tier to
provide more disk capacity,
more CPU, and more memory.

Vertical scaling is where you incrementally increase the resources on a given
machine such as CPU, disk, or memory to help scale. In Atlas this equates with
moving to the next cluster tier.

In general, vertical scaling will have a finite limit as there will be a point where you can
no longer keep adding resources on a single machine to solve the scaling problem.
This can be addressed by horizontal scaling (which can also be done in conjunction
with vertical scaling).

Horizontal scaling is where
the resources are increased
by providing more
machines.

Sharding in MongoDB is a
type of horizontal scaling
with data partitioning
where portions of the data
are assigned to specific
machines.

Horizontal scaling is where the data in the database is spread across many machines.
In the case of MongoDB, this is achieved by sharding where the data is partitioned
and each portion of the data is assigned to a specific shard, typically each shard will
be backed in production by a replica set.

Software as a
Service (SaaS)

SaaS is centrally hosted
and paid in a subscription
fashion.

Pioneered by Salesforce,
this system had a major
impact on software
where previously enterprise
software companies were
the main providers of
software.

Database as a Service
(DBaaS)

An example of a DBaaS is
MongoDB’s Atlas.

SaaS is where software is hosted centrally and you as a consumer/user of the
software pays a subscription to use it. You don’t have to run it on your machines as
the SaaS provider deals with the hosting, maintenance, and general running of the
software.

Salesforce is the noted pioneer in the space of SaaS. This delivery model has
significantly changed the software industry where once enterprise software
companies would have major versions released on an annual or longer period, SaaS
companies now deliver new releases in days or weeks rather than in years.

In the database space, SaaS software that is focused on the provision of database
and related hosting is often called DBaaS or Database as a Service.

This delivery velocity has changed the mindset in many software companies,
including MongoDB which started as a enterprise software company and has moved
increasingly into the SaaS space with it’s database offering, Atlas. We’ll discuss more
on Atlas later.

What is a
modern
database?

Designed to support a single unified API

Supports polymorphic data

Supports many different types of
workload (transactional, operational, and
analytical)

Cloud-native and/or with DBaaS/SaaS
offering

Easy mapping of the data to/from
programming languages

Supports wide range of programming
languages

There are several aspects to classifying a database as a modern database.

Firstly, it needs to support a single unified Application Programming Interface or API
for short.

Next, it should support polymorphic data or data which can have many different
shapes but which is still stored together.

A modern database should be able to support a variety of workloads whether
analytical, operational, or transactional.

The changing infrastructure landscape and particularly that of the public cloud,
whether cloud-native or DBaaS/SaaS are supported by a modern database.

It should also support the easy (seamless) mapping of data to and from programming
languages.

Finally, a modern database supports a wide range of programming languages that
can interface with it.

What is a modern general
purpose database? Combines all the previous features

from both a modern database and
from a general purpose database

In addition:

Can be containerized

Can be provisioned and run in multi
cloud provider environments

Can support the geolocation of data

If we combine the concepts of a modern database and a general purpose database,
we can find a few additional aspects that complete the definition for a modern general
purpose database.

Building on the Cloud-native aspect, a modern general purpose database should be
runnable in a container (as previously happened with virtual images in the era of
virtualization for servers). It should also run in multiple cloud provider environments (it
should not be tied to a specific provider or locked-in to a specific provider). A
container or more specifically, a container image is ready-to-run software package,
containing everything needed to run an application: the code and any runtime it
requires, application and system libraries, and default values for any essential
settings.

A final aspect is that it should be possible to locate the data or portions of the data
within the database to specific machines (which can be located in specific locales).
This ability is increasingly important with data privacy and legislation around data
handling. In the US, the California Privacy Act (CCPA) is a good example whilst in
Europe (specifically in the EU) the General Data Protection Regulation (GDPR) is a
similar law. These laws require more thought when designing systems where users
and data may be created/consumed/service a global audience.

Quiz

Quiz

Fill in the blanks to complete the sentences.

A modern general purpose database should provide a single unified
_________.

A modern general purpose database should support _________ data
or many types of data.

A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

In this quiz, you should fill in the blank for the three questions:
1. A modern general purpose database should provide a single unified …….?
2. A modern general purpose database should support _________ data or many

types of data?
3. A modern general purpose database should be _____-native or provide a

__aaS or _aaS offering.

Quiz

Fill in the blanks to complete the sentences.

A modern general purpose database should provide a single unified
_________.

A modern general purpose database should support _________ data
or many types of data.

A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

Fill in the blank - A modern general purpose database should provide a single unified
_________.

Quiz

Fill in the blanks to complete the sentences.

A modern general purpose database should provide a single unified
application programming interface (API).

A modern general purpose database should support _________ data
or many types of data.

A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

Modern general purpose databases should provide a unified API or application
programming interface to allow the database to be effectively and programmatically
used by software engineers and developers.

Quiz

Fill in the blanks to complete the sentences.

A modern general purpose database should provide a single unified
application programming interface (API).

A modern general purpose database should support _________ data
or many types of data.

A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

Fill in the blank - A modern general purpose database should support _________
data.

Quiz

Fill in the blanks to complete the sentences.

A modern general purpose database should provide a single unified
application programming interface (API).

A modern general purpose database should support polymorphic data
or many types of data.

A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

A modern general purpose database should support polymorphic data where many
schemas can co-exist. A single schema can limit developer velocity and add hurdles
when iteratively developing as schema migration is a requirement of normal
development. The static nature of a single schema and the processes required in
relational databases make schema migration a lengthy process that can add
substantially to development time. Polymorphic data avoids this additional overhead
as a key underpinning of this category of database is to enable the developer and
their development velocity.

Quiz

Fill in the blank words to complete the sentences.

A modern general purpose database should provide a single unified
application programming interface (API).

A modern general purpose database should support polymorphic data
or many types of data.

A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

Fill in the blank - A modern general purpose database should be _____-native or
provide a __aaS or _aaS offering.

Quiz

Fill in the blank words to complete the sentences.

A modern general purpose database should provide a single unified
application programming interface (API).

A modern general purpose database should support polymorphic data
.or many types of data.

A modern general purpose database should be Cloud-native or provide
a DBaaS or SaaS offering.

A modern general purpose database should be Cloud-native or provide a
Database-as-a-Service or a Software-as-a-Service to effective support modern
development approaches which use public cloud infrastructure. In the past, hosting
your database and your own infrastructure was the only approach, now with public
cloud infrastructure and the related tooling which enabled developers to more easily
build and deploy their applications. This is a key differentiator of ‘modern’ general
purpose databases.

MongoDB as an
Example of a
Modern General
Purpose Database

In the next slides, we will focus on MongoDB and highlight how it fulfills the various
aspects of a modern general purpose database.

Cloud-Native & Self-Service Distributed Data Infrastructure

Unified
API

Unified
API

Unified
API

Operational
View

Analytical
View

OLTP Mobile

Real time
Analytics

Data Lake
Analytics

Real time
Analytics

OLTP

Operational
Analytics

OLTP Edge

Real time
Analytics

Data Lake
Analytics

API
endpoint

API
endpoint

New Application

Unified
API

API Gateway

Federated
SQL

SQL-based
Application

New Application

Unified
API

Microservice Microservice Microservice

Application data Application data Application data

Search Search

API Gateway

API
endpoint

Streaming

Unified API supports a wide range of application and analytics workloads

An application programming interface (API) is a feature of modern databases.
MongoDB has a single standardised API, it allows for the database, Atlas Search and
Atlas Data Lake to be programmatically accessed with the same calls and syntax.

The same application programming interface can be used to access/configure/or use
Atlas clusters, Atlas’s Data Lake or Atlas’s Search functionality.

All of the current products and services hosted by MongoDB are broadly covered in
the category of MongoDB Cloud. The purpose of this diagram is to highlight where
new features or products have been added to the MongoDB data platform. A key
realisation or takeaway is that for many SaaS/DBaaS companies that providing
hosting of the database is no longer sufficient in terms of competitive features when
developers are evaluating options in the DBaaS space.

Query data any way you
need

Point
Range
Geospatial
Rich Search
Aggregations
JOINs & UNIONs
Graph Traversals

All wrapped in a single API,
giving a consistent experience
for any workload

Documents
are universal
JSON documents are the modern standard in
today’s application stacks

Documents are for modeling and querying in the manner you want to perform them.

There are a variety of data types and structures that can be used to hold data.
Documents are a natural way to think about and model things, that’s why MongoDB
was created and why there is such a strong resonance with developers about how to
model with it.

This allows point, range, or other geospatial data to be easily queried using either
aggregations or rich search criteria. We’ll cover this in more depth in the MQL and in
the aggregation framework lessons.

In MongoDB, there are a range of data types in documents that can be supported.
These are all wrapped into a single API and ensure that it is a consistent experience
when designing applications for any kind of workload.

JSON documents are ubiquitous in modern development / application stacks and as a
modern standard are universal in terms of their familiarity to developers.

Workload Isolation

Designate read-only
nodes

Separate operational
and analytical queries
to different nodes

A great advantage of MongoDB’s distributed systems architecture is the ability to
bring analytical workloads right alongside transactional workloads in the same
scale-out cluster, providing fresher insights over vast data sets without all of the
complexity and cost of data movement to independent analytics systems

Being able to run operational workloads along with analytical workloads on the same
platform is a big advantage as it means you do not need to provision a separate
database or set of resources to service your analytical queries. This is done by
designating a specific set of nodes to be read-only and which will service the
analytical queries.

In the case of MongoDB, you can easily use tags to label nodes and use these tags
with your applications to direct traffic to analytical nodes so that both your normal
production traffic can be serviced as well as more ad-hoc analytical queries. The
isolation ensures that query performance on your primary is not impacted because
you are not changing the working set of data as the queries for any analytics are
made on the designated analytics nodes. MongoDB Atlas supports this.

MongoDB offers a wide range of drivers for various programming languages as
shown on the slide. The MongoDB Drivers are all built to meet various driver
specifications, these specifications are available on Github at
https://github.com/mongodb/specifications and you can find more details at
https://docs.mongodb.com/drivers/specs on the various drivers directly supported by
MongoDB. There are more programming languages with community supported
drivers.

As all of the drivers implement the same specifications they all provide:

• Common CRUD capabilities but idiomatic to each language
• Uniform High Availability & Failover capabilities

https://github.com/mongodb/specifications
https://docs.mongodb.com/drivers/specs

Deployment on Your Terms

MongoDB Community

MongoDB Community Operator

MongoDB Enterprise Advanced

MongoDB Enterprise Operator

MongoDB Ops Manager

MongoDB Atlas
AWS | GCP | Azure

MongoDB Atlas Operator

On-premises/private cloud Public cloud

Desktop Server & Mainframe Hybrid Cloud Self-hosted
Fully Managed
Cloud Service

Kubernetes

In order to facilitate being a modern database that supports containerization and
provisioning to public cloud providers MongoDB has a number of options. These
MongoDB’s Kubernetes integrations allow customers to run and scale clusters with
ease regardless of their chosen infrastructure topology. This is the approach
MongoDB has taken to support running cloud-native databases.

These operators allow you to seamlessly integrate MongoDB Atlas into your current
Kubernetes deployment pipeline for a consistent experience across different
deployment environments. Leave your workflow uninterrupted using the MongoDB
Atlas Operator to simplify deployment, management and scaling of your Atlas clusters
in Kubernetes.

With the Atlas Operator, developers can manage Atlas directly from the Kubernetes
API to allow for simple and quick cluster and database user configuration so they can
easily deploy and manage standardized clusters in any type of environment. The
Atlas Operator supports most resources available in the MongoDB Atlas API,
including projects, clusters, database users, IP access lists, network peerings, and
more. For a complete list, see the Atlas Operator documentation.

A unified API, support for both a range of workloads and a range of programming
languages with easy mapping are some of the core elements to a modern general
purpose database.

Secondary indexes and a range of specialised indexes are also key to being a
modern general purpose database as it allows flexibility in terms of performant
queries whether this be with TTL, Unique, Partial, Sparse or indeed case insensitive
indexes.

These are all elements to what constitutes a successful modern general purpose
database.

A unified API

Support for a variety of workloads

Support for a variety of programming languages

Support for natural modelling of the concepts/objects

An easy mapping to constructs in the programming language

Capability with a variety of data types

The ability to be containerized

Capability to be provisioned and run in multi cloud provider
environments

Ability to geo-locate data

TTL Indexes
Single Field indexes, when expired delete
the document

Unique Indexes
Ensures value is not duplicated

Partial Indexes
Expression based indexes, allowing indexes on
subsets of data

Case Insensitive Indexes
Supports text search using case insensitive
search

Sparse Indexes
Only index documents which have the given
field

A modern general purpose database
offers:

A modern
general
purpose
database
offers

A unified API

Support for a variety of workloads

Support for a variety of programming languages

Support for natural modelling of the
concepts/objects

An easy mapping to constructs in the
programming language

Capability with a variety of data types

The ability to be containerized

Capability to be provisioned and run in multi
cloud provider environments

Ability to geo-locate data

Recapping our earlier slide, let’s revisit the full list of features/functionality a modern
general purpose database should offer:

● A consistent application programming interface (API) across versions and the
platform/products

● The ability to handle a wide variety of workloads from analytical to
transactional

● The ability to be programmed by a wide variety of programming languages
● A natural mapping of the data in the database to the programming concepts
● Support for a wide number of data types to provide granular storage of data in

the most appropriate data type
● The ability for the database to be run in a container
● The ability for the database to be easily provisioned and run across the major

public cloud environments
● The ability for the database to ensure that specific data can be stored in

specific geographic locations/hardware

Quiz

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

CORRECT: Unified API - All modern general purpose databases should provide a
consistent API that unifies programmatic access to the various features and
functionality of the database.
CORRECT: Support for various workloads - Supporting analytical, transactional, and
other workloads are a key feature to support a wide variety of applications and use
cases.
CORRECT: Containerization - The ability for the database software to be
containerized is growing increasingly more important, it follows from the earlier trend
of virtualization. The requirement for a database to be easily run on multi tenant
hardware to allow effective utilise resources is the driving rationale behind this.
CORRECT: Data geo-location for where it is stored. - This is correct. This supports
many legal/data protection regulations but more importantly it can ensure that data is
closest to the users who need/use it.
INCORRECT: Structured data. - This is incorrect. Structured data is not a required key
feature of such a database as flexible data is the key to support general purpose
workloads and data.

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

This is correct. A modern
general purpose
databases should
provide a consistent API
that unifies
programmatic access to
the various features and
functionality of the
database.

CORRECT: Unified API - All modern general purpose databases should provide a
consistent API that unifies programmatic access to the various features and
functionality of the database.

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

This is correct.
Supporting analytical,
transactional, and other
workloads are a key
feature to support a wide
variety of applications
and use cases.

CORRECT: Various workloads - Supporting analytical, transactional, and other
workloads are a key feature to support a wide variety of applications and use cases.

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

This is correct. The ability
for the database
software to be
containerized is
important as it allows a
database to be easily run
on multi tenant hardware
for effective utilise
resources.

CORRECT: Containerization - The ability for the database software to be
containerized is growing increasingly more important, it follows from the earlier trend
of virtualization. The requirement for a database to be easily run on multi tenant
hardware to allow effective utilise resources is the driving rationale behind this.

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

This is correct. This
supports many
legal/data protection
regulations but more
importantly it can ensure
that data is closest to the
users who need/use it.

CORRECT: Data geo-location for where it is stored. - This is correct. This supports
many legal/data protection regulations but more importantly it can ensure that data is
closest to the users who need/use it.

Quiz

Which of the following are key features a modern general purpose
database should support? Select all that apply. More than one answer
choice can be correct.

A. Unified API

B. Various workloads

C. Containerization

D. Data geo-location for where it is stored

E. Structured data

This is incorrect. In
examples, documents are
often represented in
JSON, but under the
hood, MongoDB uses
BSON which offers more
data types and better
performance.

This is incorrect. In examples, documents are often represented in JSON, but under
the hood, MongoDB uses BSON which offers more data types and better
performance.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

