
THE LITTLE BOOK OF

BY KARL SEGUIN
UPDATED FOR 6.0

 About This Book

 License
 The Little MongoDB Book is licensed under the Attribution-NonCommercial 3.0 Unported
 license. You should not have paid for this book.

 You are basically free to copy, distribute, modify or display the book. However, please always
 attribute the book to its original author - Karl Seguin - and do not use it for commercial
 purposes. You can see the full text of the license at:
 creativecommons.org/licenses/by-nc/3.0/legalcode

 About The Original Author
 Karl Seguin is a developer with experience across various fields and technologies. He's an
 expert .NET and Ruby developer. He's a semi-active contributor to OSS projects, a technical
 writer and an occasional speaker. With respect to MongoDB, he was a core contributor to the
 C# MongoDB library NoRM, wrote the interactive tutorial mongly as well as the Mongo Web
 Admin . Karl has since written The Little Redis Book .

 His blog can be found at http://openmymind.net , and he tweets via @karlseguin .

 About MongoDB Inc
 MongoDB Inc is the company behind the MongoDB database platform. From its first pull
 request by Dwight Merriman on October 19, 2007, MongoDB has grown into an international
 organization with a wide range of products and services. MongoDB Inc maintains and
 enhances MongoDB database platform, MongoDB drivers, provides MongoDB Atlas Database
 as a Service, and other products.

 Latest Version
 This version was updated for MongoDB 6.0 by Asya Kamsky. The latest source of this book is
 available at: github.com/mongodb-developer/the-little-mongodb-book .

 2

http://creativecommons.org/licenses/by-nc/3.0/legalcode
https://github.com/karlseguin/Mongo-Web-Admin
https://github.com/karlseguin/Mongo-Web-Admin
https://www.openmymind.net/2012/1/23/The-Little-Redis-Book/
http://openmymind.net/
http://twitter.com/karlseguin
http://github.com/mongodb-developer/the-little-mongodb-book

 Table of Contents

 Introduction 5

 Getting Started 6

 Chapter 1 - The Basics 7

 Chapter 2 - Updating 12

 Chapter 3 - Mastering Find 15

 Chapter 4 - Aggregating Data 17

 Chapter 5 - Data Modeling 19

 Chapter 6 - Performance 23

 Chapter 7 - Security and Backups 26

 Chapter 8 - When To Use MongoDB 28

 Conclusion 33

 3

 Introduction
 It is often said that technology moves at a blazing pace. It's true that there is an ever growing
 list of new technologies and techniques being released. However, I've long been of the opinion
 that the fundamental technologies used by programmers move slowly. One could spend years
 learning little yet remain relevant. What is striking though is the speed at which established
 technologies get replaced. Seemingly overnight, long-established technologies find themselves
 threatened by shifts in developer focus and advances in developer tooling.

 Nothing could be more representative of this sudden shift than the progress of NoSQL
 technologies. It almost seems like one day the web was being driven by a few RDBMSs, and
 the next, NoSQL solutions had established themselves as worthy alternatives.

 Even though these transitions seemed to happen overnight, the reality is that they can take
 years to become accepted practice. Initial enthusiasm is driven by a relatively small set of
 developers and companies. Solutions are refined, lessons learned and seeing that a new
 technology is here to stay, others slowly try it for themselves. Again, this is particularly true in
 the case of NoSQL where many solutions aren't replacements for more traditional storage
 solutions, but rather address a specific need in addition to what one might get from
 traditional o�erings.

 Having said all of that, the first thing we ought to do is explain what is meant by NoSQL. It's a
 broad term that means di�erent things to di�erent people. Personally, I use it very broadly to
 mean a system that plays a part in the storage of data. Put another way, NoSQL (again, for
 me), is the belief that your persistence layer isn't necessarily the responsibility of a single
 system. Where relational database vendors have historically tried to position their software as
 a one-size-fits-all solution, NoSQL leans towards smaller units of responsibility where the best
 tool for a given job can be leveraged. So, your NoSQL stack might still leverage a relational
 database, say MySQL, but it'll also contain Redis as a persistence lookup for specific parts of
 the system as well as Hadoop for your intensive data processing. Put simply, NoSQL is about
 being open and aware of alternative, existing and additional patterns and tools for managing
 your data.

 You might be wondering where MongoDB fits into all of this. As a document-oriented
 database, MongoDB is a generalized NoSQL solution. It should be viewed as an alternative or
 a companion to relational databases. MongoDB has advantages and drawbacks, which we'll
 cover in later parts of this book.

 4

 Getting Started
 Most of this book will focus on core MongoDB functionality. We'll therefore rely on the
 MongoDB shell. While the shell is useful to learn, your code will use a MongoDB driver.

 This does bring up the first thing you should know about MongoDB: its drivers. MongoDB has
 a number of o�cial drivers for various languages. These drivers can be thought of as the
 various database drivers you are probably already familiar with. On top of these drivers, the
 development community has built more language/framework-specific libraries. For example,
 Mongoose is a Node.js Object Document Mapper (ODM) and Spring Data MongoDB provides
 a POJO centric model for interacting with MongoDB collection in Java. Whether you choose to
 program directly against the core MongoDB drivers or some higher-level library is up to you. I
 point this out only because many people new to MongoDB are confused as to why there are
 both o�cial drivers and community libraries - the former generally focuses on core
 communication/connectivity with MongoDB and the latter with more language and
 framework-specific implementations.

 As you read through this, I encourage you to play with MongoDB to replicate what I
 demonstrate as well as to explore questions that you might come up with on your own. It's
 easy to get up and running with MongoDB, so let's take a few minutes now to set things up.
 You'll need to have a MongoDB server running somewhere, as well as a MongoDB client (CLI
 or GUI) running locally.

 For the client part, install either the MongoDB Shell from the o�cial page or if you prefer GUI
 to command line shell, you can use MongoDB Compass , an open source GUI for MongoDB.
 MongoDB Compass has the shell built-in so you can switch between using GUI and command
 line as you wish.

 To run the server, if you don't want to (or can't) install MongoDB server locally, you can sign up
 for a free hosted MongoDB cluster in MongoDB Atlas - follow the getting started directions
 there to connect to your cluster.

 If you can run MongoDB server locally and prefer to do that, follow instructions for your
 operating system on the o�cial installation manual page .

 Once you have mongod running locally or a connection string to your Atlas MongoDB cluster,
 connect to it from your MongoDB Shell or Compass.

 Try entering db.version() at the prompt to make sure everything's working as it should.
 Hopefully you'll see the server version number you connected to.

 5

https://www.mongodb.com/docs/drivers/
https://mongoosejs.com/
https://spring.io/projects/spring-data-mongodb
https://www.mongodb.com/docs/mongodb-shell/
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/cloud/atlas
https://docs.atlas.mongodb.com/getting-started/
https://www.mongodb.com/docs/manual/administration/install-community/

 Chapter 1 - The Basics
 We begin our journey by learning the basics of working with MongoDB. Obviously this is core
 to understanding MongoDB, but it should also help us answer higher-level questions about
 where MongoDB fits.

 To get started, there are six simple concepts we need to understand.

 1. MongoDB has the same concept of a database with which you are likely already
 familiar (or a schema for you Oracle folks). Within a MongoDB instance you can have
 zero or more databases, each acting as high-level containers for everything else.

 2. A database can have zero or more collections . A collection shares enough in
 common with a traditional table that you can safely think of the two as the same
 thing.

 3. Collections are made up of zero or more documents . Again, a document can safely be
 thought of as analogous to a row .

 4. A document is made up of one or more fields , which you can probably guess are
 somewhat like columns .

 5. Columns in MongoDB function mostly like their RDBMS counterparts.
 6. Cursors are like relational database cursors, but they are important enough, and

 often overlooked, that I think they are worthy of their own discussion. The important
 thing to understand about cursors is that when you ask MongoDB for data, it returns a
 pointer to the result set called a cursor, which we can do things to, such as counting or
 skipping ahead, before actually pulling down data.

 To recap, MongoDB is made up of databases which contain collections . A collection is
 made up of collections . Each document is made up of fields . Collections can be
 indexed , which improves query and sorting performance. Finally, when we get data from
 MongoDB we usually do so through a cursor whose actual execution is delayed until
 necessary.

 Why use new terminology (collection vs. table, document vs. row, and field vs. column)? Is it
 just to make things more complicated? The truth is that while these concepts are similar to
 their relational database counterparts, they are not identical. The core di�erence comes from
 the fact that relational databases define columns at the table level whereas a
 document-oriented database defines its fields at the document level. That is to say that
 each document within a collection can have its own unique set of fields . As such, a
 collection is a dumbed down container in comparison to a table , while a document has a
 lot more information than a row .

 Although this is important to understand, don't worry if things aren't yet clear. It won't take
 more than a couple of inserts to see what this truly means. Ultimately, the point is that a
 collection isn't strict about what goes in it (its schema is flexible/dynamic). Fields are tracked

 6

 with each individual document. The benefits and drawbacks of this will be explored in a future
 chapter.

 Let's get hands-on. If you don't have it running already, go ahead and start the mongod server
 as well as a mongo shell or Compass. The shell runs JavaScript. There are some global
 commands you can execute, like help or exit . Commands that you execute against the
 current database are executed against the db object, such as db.help() or db.stats() .
 Commands that you execute against a specific collection, which is what we'll be doing a lot of,
 are executed against the db.COLLECTION_NAME object, such as db.unicorns.help() or
 db.unicorns.count() .

 Go ahead and enter db.help() , you'll get a list of commands that you can execute against
 the db object.

 A small side note: Because this is a JavaScript shell, if you execute a method and omit the
 parentheses () , you'll see the method body rather than executing the method. I only mention it
 so that the first time you do it and get a response that starts with [Function: ... you
 won't be surprised. For example, if you enter db.stats (without the parentheses), you'll see
 the details of implementation of the stats method.

 First we'll use the global use helper to switch databases, so go ahead and enter use learn . It
 doesn't matter that the database doesn't exist yet. The first collection that we create will also
 create the actual learn database. Now that you are inside a database, you can start issuing
 database commands, like db.getCollectionNames() . If you do so, you should get an
 empty array ([]) . Since collections don't have schema, we don't usually need to explicitly
 create them. We can simply insert a document into a new collection. To do so, use the insert
 command, supplying it with the document to insert:

 db.unicorns.insertOne({name: 'Aurora', gender: 'f', weight: 450})

 The above line is executing insert against the unicorns collection, passing it a single
 document. Internally MongoDB uses a binary serialized JSON format called BSON. Externally,
 this means that we use JSON a lot, as is the case with our parameters. If we execute
 db.getCollectionNames() now, we'll see a unicorns collection.

 You can now use the find command against unicorns to return a list of documents:

 db.unicorns.find()

 Notice that, in addition to the data you specified, there's an _id field. Every document must
 have a unique _id field. You can either generate one yourself or let MongoDB generate a
 value for you which has the type ObjectId . Most of the time you'll probably want to let
 MongoDB generate it for you. By default, the _id field is indexed. You can verify this through
 the getIndexes command:

 7

 db.unicorns.getIndexes()

 What you're seeing is the name of the index and the fields included in the index.

 Now, back to our discussion about "schemaless" collections. Insert a totally di�erent
 document into unicorns , such as:

 db.unicorns.insertOne({name: 'Leto', gender: 'm', home: 'Arrakeen',
 worm: false})

 And, again use find to list the documents. Once we know a bit more, we'll discuss this
 interesting behavior of MongoDB, but hopefully you are starting to understand why the more
 traditional terminology wasn't a good fit.

 Mastering Selectors
 In addition to the six concepts we've explored, there's one practical aspect of MongoDB you
 need to have a good grasp of before moving to more advanced topics: query selectors or
 predicates. A MongoDB query predicate is like the WHERE clause of an SQL statement. As such,
 you use it when finding, counting, updating or removing documents from collections. A
 selector is a JSON object, the simplest of which is {} which matches all documents. If we want
 to find all female unicorns, we use {gender:'f'} .

 Before delving too deeply into selectors, let's set up some data to play with. First, remove what
 we've put so far in the unicorn s collection via: db.unicorns.remove({}) . Now, copy and
 paste following inserts to get some data we can play with:

 db.unicorns.insertMany([
 {name: 'Horny', dob: ISODate("1992-03-13T07:47"), weight: 600,

 loves: ['carrot','papaya'], gender: 'm', vampires: 63},
 {name: 'Aurora', dob: ISODate("1991-01-24T13:00"), weight: 450,

 loves: ['carrot', 'grape'], gender: 'f', vampires: 43},
 {name: 'Unicrom', dob: ISODate("1973-02-09T22:10"), weight: 984,

 loves: ['energon', 'redbull'], gender: 'm', vampires: 182},
 {name: 'Roooooodles', dob: ISODate("1979-08-18T18:44"), weight: 575,

 loves: ['apple'], gender: 'm', vampires: 99},
 {name: 'Solnara', dob: ISODate("1985-07-04T02:01"), weight:550,

 loves:['apple', 'carrot', 'chocolate'], gender:'f', vampires:80},
 {name:'Ayna', dob: ISODate("1998-03-07T08:30"), weight: 733,

 loves: ['strawberry', 'lemon'], gender: 'f', vampires: 40},
 {name:'Kenny', dob: ISODate("1997-07-01T10:42"), weight: 690,

 loves: ['grape', 'lemon'], gender: 'm', vampires: 39},

 8

 {name: 'Raleigh', dob: ISODate("2005-05-03T00:57"), weight: 421,
 loves: ['apple', 'sugar'], gender: 'm', vampires: 2},

 {name: 'Leia', dob: ISODate("2001-10-08T14:53"), weight: 601,
 loves: ['apple', 'watermelon'], gender: 'f', vampires: 33},

 {name: 'Pilot', dob: ISODate("1997-03-01T05:03"), weight: 650,
 loves: ['apple', 'watermelon'], gender: 'm', vampires: 54},

 {name: 'Nimue', dob: ISODate("1999-12-20T00:16:15"), weight: 540,
 loves: ['grape', 'carrot'], gender: 'f'},

 {name: 'Dunx', dob: ISODate("1976-07-18T18:18"), weight: 704,
 loves: ['grape', 'watermelon'], gender: 'm', vampires: 165}]);

 Now that we have data, we can master selectors. {field: value} is used to find any
 documents where field is equal to value . {field1: value1, field2: value2} is how
 we do an and statement. The special $lt , $lte , $gt , $gte and $ne are used for less than,
 less than or equal, greater than, greater than or equal and not equal operations. For example,
 to get all male unicorns that weigh more than 700 pounds, we could do:

 db.unicorns.find({gender: 'm', weight: {$gt: 700}})
 // or similar but not quite the same:
 db.unicorns.find({gender: {$ne: 'f'}, weight: {$gte: 701}})

 The $exists operator is used for matching the presence or absence of a field, for example:

 db.unicorns.find({vampires: {$exists: false}})

 should return a single document. The $in operator is used for matching one of several values
 that we pass as an array, for example:

 db.unicorns.find({loves: {$in:['apple','orange']}})

 This returns any unicorn who loves 'apple' or 'orange'.

 Multiple conditions separated by , are implicitly connected by AND . If we want to OR rather
 than AND several conditions on di�erent fields, we use the $or operator and assign to it an
 array of selectors we want to OR :

 db.unicorns.find({gender:'f',$or:[{loves:'apple'},{weight:{$lt:500}}]})

 9

 The above will return all female unicorns which either love apples or weigh less than 500
 pounds.

 There's something pretty neat going on in our last two examples. You might have already
 noticed, but the loves field is an array. MongoDB supports arrays as first class objects. This is
 an incredibly handy feature. Once you start using it, you wonder how you ever lived without it.
 What's more interesting is how easy selecting based on an array value is: {loves:
 'watermelon'} will return any document where watermelon is a value of loves .

 There are more available operators than what we've seen so far. These are all described in the
 Query Selectors section of the MongoDB manual. What we've covered so far though is the
 basics you'll need to get started. It's also what you'll end up using most of the time.

 We've seen how these selectors can be used with the find command. They can also be used
 with the remove command which we've briefly looked at, the count command, which we
 haven't looked at but you can probably figure out, and the update command which we'll
 spend more time with later on.

 The ObjectId which MongoDB generated for our _id field can be selected like so:

 db.unicorns.find({_id: ObjectId("TheObjectIdString")})

 In This Chapter
 We haven't looked at the update command yet, or some of the fancier things we can do with
 find . However, we did get MongoDB up and running, looked briefly at the insert and
 remove commands (there isn't much more than what we've seen). We also introduced find
 and saw what MongoDB selectors were all about. We've had a good start and laid a solid
 foundation for things to come. Believe it or not, you actually know most of what you need to
 know to get started with MongoDB - it really is meant to be quick to learn and easy to use. I
 strongly urge you to play with your local copy before moving on. Insert di�erent documents,
 possibly in new collections, and get familiar with di�erent selectors. Use find , count and
 remove . After a few tries on your own, things that might have seemed awkward at first will
 hopefully fall into place.

 10

http://docs.mongodb.org/manual/reference/operator/query/#query-selectors

 Chapter 2 - Updating
 In chapter 1 we introduced three of the four CRUD (create, read, update and delete)
 operations. This chapter is dedicated to the one we skipped over: update . Update has a few
 surprising behaviors, which is why we dedicate a chapter to it.

 Update: Replace Versus $set
 In its simplest form, update command takes two parameters: the selector (where) to use and
 what updates to apply to fields. If Roooooodles had gained a bit of weight, you might expect
 that we should execute:

 db.unicorns.update({name: 'Roooooodles'}, {weight: 590});
 db.unicorns.find({name: 'Roooooodles'});

 Now, when we look at the updated record, we should discover the first surprise of update . No
 document is found because the second parameter we supplied didn't have any update
 operators, and therefore it was used to replace the original document. In other words, the
 update found a document by name and replaced the entire document with the new document
 (the second parameter). There is no equivalent functionality to this in SQL's update command.
 In some situations, this is ideal and can be leveraged for some truly dynamic updates.
 However, when you want to change the value of one, or a few fields, you must use MongoDB's
 $set operator. Go ahead and run this update to reset the lost fields:

 db.unicorns.update({weight: 590}, {$set: {name: 'Roooooodles',
 dob: ISODate("1979-08-18T18:44"), loves: ['apple'], gender: 'm',

 vampires: 99}})

 This won't overwrite the new weight since we didn't specify it. Now if we execute:

 db.unicorns.find({name: 'Roooooodles'})

 We get the expected result. Therefore, the correct way to have updated the weight in the first
 place is:

 db.unicorns.updateOne({name: 'Roooooodles'}, {$set: {weight: 590}})

 Stick to using shell helper updateOne to prevent accidental replacement operations, and use
 replaceOne to replace the entire document.

 11

 Update Operators
 In addition to $set we can leverage other operators to do some nifty things. All update
 operators work on fields - so your entire document won't be wiped out. For example, the $inc
 operator is used to increment a field by a certain positive or negative amount. If Pilot was
 incorrectly awarded a couple vampire kills, we could correct the mistake by executing:

 db.unicorns.updateOne({name: 'Pilot'}, {$inc: {vampires: -2}})

 If Aurora suddenly developed a sweet tooth, we could add a value to her loves field via the
 $push operator:

 db.unicorns.updateOne({name: 'Aurora'}, {$push: {loves: 'sugar'}})

 The Update Operators section of the MongoDB manual has more information on the other
 available update operators.

 Upserts
 One of the more pleasant surprises of using update is that it fully supports upserts . An
 upsert updates the document if found or inserts it if not. Upserts are handy to have in certain
 situations and when you run into one, you'll know it. To enable upserting, we pass a third
 parameter to update {upsert:true} .

 A mundane example is a hit counter for a website. If we wanted to keep an aggregate count
 in real time, we'd have to see if the record already existed for the page, and based on that
 decide to run an update or insert. With the upsert option omitted (or set to false), executing
 the following won't do anything:

 db.hits.updateOne({page: 'unicorns'}, {$inc: {hits: 1}});
 db.hits.find();

 However, if we add the upsert option, the results are quite di�erent:

 db.hits.updateOne({page:'unicorns'}, {$inc:{hits:1}}, {upsert:true});
 db.hits.find();

 Since no documents exist with a field page equal to unicorns , a new document is inserted. If
 we execute it a second time, the existing document is updated and hits is incremented to 2.

 12

http://docs.mongodb.org/manual/reference/operator/update/#update-operators

 db.hits.updateOne({page:'unicorns'}, {$inc:{hits:1}}, {upsert:true});
 db.hits.find();

 Multiple Updates
 The final surprise update has to o�er is that, by default, it'll update a single document, which
 is why the shell helper is called updateOne . For the examples we've looked at so far, this might
 seem logical. However, if you have an update like this:

 db.unicorns.updateOne({}, {$set:{vaccinated:true}});

 you might want to find all of your precious unicorns to be vaccinated. To get that behavior, use
 updateMany helper which executes the update command with the multi option set to true:

 db.unicorns.updateMany({}, {$set:{vaccinated:true}});
 db.unicorns.find({vaccinated: true});

 In This Chapter
 This chapter concluded our introduction to the basic CRUD operations available against a
 collection. We looked at update in detail and observed three interesting behaviors. First, if you
 pass it a document without update operators, MongoDB's update will replace the existing
 document. Because of this, normally you will use the $set operator (or one of the many other
 available operators that modify the document). Secondly, update supports an intuitive
 upsert option which is particularly useful when you don't know if the document already
 exists. Finally, by default, update updates only the first matching document, so use
 updateOne helper if you want to update one document, and use updateMany when you want
 to update all matching documents.

 13

 Chapter 3 - Mastering Find
 Chapter 1 provided a superficial look at the find command. There's more to find than
 understanding selectors though. We already mentioned that the result from find is a
 cursor . We'll now look at exactly what this means in more detail.

 Field Selection
 Before we jump into cursors , you should know that find takes a second optional parameter
 called "projection". This parameter is the list of fields we want to retrieve or exclude. For
 example, we can get all of the unicorns' names without getting back other fields by executing:

 db.unicorns.find({}, {name: 1});

 By default, the _id field is always returned. We can explicitly exclude it by specifying
 {name:1, _id: 0} .

 Aside from the _id field, you cannot mix and match inclusion and exclusion. If you think about
 it, that actually makes sense. You either want to select or exclude one or more fields explicitly.

 Cursors
 A few times now I've mentioned that find returns a cursor whose execution is delayed until
 needed. However, what you've no doubt observed from the shell is that find executes
 immediately. This is a behavior of the shell only which automatically iterates over the cursor
 and returns documents. In drivers, you would have to use getNext() method to fetch
 documents from the cursor yourself.

 Ordering
 We can chain various methods to the cursor returned from find . The first that we'll look at is
 sort . We specify the fields we want to sort on as a JSON document, using 1 for ascending
 and -1 for descending. For example:

 //heaviest unicorns first
 db.unicorns.find().sort({weight: -1})

 //by gender and then vampire kills:
 db.unicorns.find().sort({gender: 1, vampires: -1})

 As with a relational database, MongoDB can use an index for sorting. We'll look at indexes in
 more detail later on. However, you should know that MongoDB limits the size of your sort

 14

 without an index. That is, if you try to sort a very large result set which can't use an index,
 you'll get an error. Some people see this as a limitation. In truth, I wish more databases had
 the capability to refuse to run unoptimized queries. (I won't turn every MongoDB drawback
 into a positive, but I've seen enough poorly optimized databases that I sincerely wish they
 had a strict-mode.)

 Limiting Results
 Limiting results can be accomplished via the limit cursor method. To get the top three
 heaviest unicorn, we could do:

 db.unicorns.find().sort({weight: -1}).limit(3)

 Using limit can be a way to avoid running into problems when sorting on non-indexed fields.

 Count
 The shell makes it possible to execute a count directly on a collection, such as:

 db.unicorns.countDocuments({vampires: {$gt: 50}})

 In reality, countDocuments is actually a special method that translates into an aggregation.
 We will learn more about aggregations in the next chapter. All drivers provide the same helper
 methods for such common operations.

 In This Chapter
 Using find and cursors is a straightforward proposition. There are a few additional
 commands that we'll either cover in later chapters or which only serve edge cases, but, by now,
 you should be getting pretty comfortable working in the mongo shell and understanding the
 fundamentals of MongoDB.

 15

 Chapter 4 - Aggregating Data

 Aggregation Pipeline
 Aggregation pipeline gives you a way to transform and combine documents in your collection.
 You do it by passing the documents through a pipeline that's somewhat analogous to the Unix
 "pipe" where you send output from one command to another to a third, etc.

 The simplest aggregation you are probably already familiar with is the SQL group by
 expression. We already saw the simple countDocuments() method which turns out to be
 equivalent to grouping all documents to get their count, but what if we want to see how many
 unicorns are male and how many are female?

 db.unicorns.aggregate([{$group:{_id:'$gender', total: {$sum:1}}}])

 In the shell we have the aggregate helper which takes an array of pipeline operators that are
 called "stages". For a simple count grouped by something, we only need one such stage and
 it's called $group . This is the exact analog of GROUP BY in SQL where we create a new
 document with _id field indicating what field we are grouping by (here it's gender) and other
 fields usually getting assigned results of some aggregation, in this case we $sum 1 for each
 document that matches a particular gender. You probably noticed that the _id field was
 assigned ' $gender ' and not ' gender ' - the ' $ ' before a field name indicates that the value
 of this field from the incoming document will be substituted.

 What are some of the other pipeline operators or stages that we can use? The most common
 one to use before (and frequently after) $group would be $match - this is exactly like the find
 method and it allows us to aggregate only a matching subset of our documents, or to exclude
 some documents from our result.

 db.unicorns.aggregate([{$match: {weight:{$lt:600}}},
 {$group: {_id:'$gender',total:{$sum:1},avgVamp:{$avg:'$vampires'}}},
 {$sort:{avgVamp:-1}}])

 Here we introduced another pipeline operator $sort which does exactly what you would
 expect, along with it we also have stages $skip and $limit . We also used a $group operator
 $avg along with $sum which we already saw in the first example.

 MongoDB arrays are powerful and they don't stop us from being able to aggregate on values
 that are stored inside of them. We do sometimes need to be able to "flatten" them to properly
 count everything:

 16

 db.unicorns.aggregate([{$unwind:'$loves'},
 {$group:{_id:'$loves',total:{$sum:1},unicorns:{$addToSet:'$name'}}},
 {$sort:{total:-1}}, {$limit:1}])

 Here we will find out which single food item is loved by the most unicorns and we will also get
 the list of names of all the unicorns that love it. $sort and $limit in combination allow you to
 get answers to "top N" types of questions.

 There are other powerful pipeline operator which allow you to transform values of fields as well
 as add (or remove) fields. Aggregation stages can use many di�erent expressions which
 allows you to create or calculate new fields based on values in existing fields. For example, you
 can use math operators to add together values of several fields before finding out the
 average, or you can use string operators to create a new field that's a concatenation of some
 existing fields. There are even expressions that allow you to execute nearly arbitrary
 Javascript - though doing so would be less performant than sticking to native server
 expressions and operators.

 This just barely scratches the surface of what you can do with aggregations. Aggregation is
 how you can do limited joins in MongoDB via the $lookup stage, as well as transitive closure
 expressions via recursive lookup called $graphlookup . You can also combine data from
 multiple pipelines using $unionWith - somewhat analogous with SQL UNION .

 Aggregation Output
 Aggregate command returns either a cursor to the result set (which you already know how to
 work with from Chapter 3) or it can write your results into a new collection using the $out
 pipeline operator. Using $merge pipeline stage you can output to an existing collection with
 powerful controls that let you specify exactly how the new output is merged with existing
 documents. You can see a lot more examples as well as all of the supported pipeline and
 expression operators in the MongoDB manual . For a more extensive collection of examples,
 take a look at the Practical MongoDB Aggregations eBook . Keep in mind that both Compass
 GUI and the Atlas web-based UI include an aggregation pipeline builder to help you write and
 debug powerful pipelines, and that often MongoDB drivers include aggregation builder helpers
 (Java and .Net/C# driver, for example).

 In This Chapter
 In this chapter we covered MongoDB's aggregation capabilities . Aggregation Pipeline is
 relatively simple to write once you understand how it's structured and it's a powerful way to
 group and analyze data. With the addition of user defined functions, its capabilities can be as
 boundless as any code you can write in JavaScript.

 17

http://docs.mongodb.org/manual/core/aggregation-pipeline/
https://www.practical-mongodb-aggregations.com/
https://www.mongodb.com/docs/manual/aggregation/

 Chapter 5 - Data Modeling
 Let's shift gears and have a more abstract conversation about MongoDB. Explaining a few
 new terms and some new syntax is a trivial task. Having a conversation about modeling with a
 new paradigm isn't as easy. The truth is that most of us are still finding out what works and
 what doesn't when it comes to modeling with these new technologies. It's a conversation we
 can start having, but ultimately you'll have to practice and learn on real code.

 Out of all NoSQL databases, document-oriented databases are probably the most similar to
 relational databases - at least when it comes to modeling. However, the di�erences that exist
 are important.

 Limited Joins
 The first and most fundamental di�erence that you'll need to get comfortable with is
 MongoDB's minimal support of joins. I don't know the specific reason why some all types of
 joins aren't fully supported in MongoDB, but I do know that joins are generally seen as
 non-scalable. That is, once you start to split your data horizontally, you end up performing
 your joins on the client (the application server) anyway. Regardless of the reasons, the fact
 remains that if your data is fully normalized, MongoDB won't perform as well as RDBMS.

 Without knowing anything else, to live in a world with fewer joins, we have to do some joins
 ourselves within our application's code. Essentially we need to issue a second query to find
 the relevant data in a second collection. Setting our data up isn't any di�erent than declaring
 a foreign key in a relational database. Let's give a little less focus to our beautiful unicorns
 and a bit more time to our employees . The first thing we'll do is create an employee (I'm
 providing an explicit _id so that we can build coherent examples)

 db.employees.insertOne({_id: 485, name: 'Leto'})

 Now let's add a couple employees and set their manager as Leto :

 db.employees.insertMany([
 {_id: 698, name: 'Duncan', manager: 485},
 {_id: 703, name: 'Moneo', manager: 485}]);

 (It's worth repeating that the _id can be any unique value. You will frequently use an
 ObjectID in real life, but here we will use numeric _id .)

 Of course, to find all of Leto's employees, one simply executes:

 db.employees.find({manager: 485})

 18

 There's nothing magical here. In the worst cases, most of the time, not using a join will merely
 require an extra query (likely indexed). Having said all that, MongoDB does provide $lookup
 stage in its aggregation framework which we saw in the previous chapter.

 Arrays and Embedded Documents
 Just because MongoDB doesn't have extensive support for joins doesn't mean it doesn't have
 a few tricks up its sleeve. Remember when we saw that MongoDB supports arrays as first
 class objects of a document? It turns out that this is incredibly handy when dealing with
 many-to-one or many-to-many relationships. As a simple example, if an employee could have
 two managers, we could simply store these in an array:

 db.employees.insertOne({_id: 811, name: 'Siona', manager:[485, 698]})

 Of particular interest is that, for some documents, manager can be a scalar value, while for
 others it can be an array. Our original find query will work for both:

 db.employees.find({manager: 485})

 You'll quickly find that arrays of values are much more convenient to deal with than
 many-to-many join-tables.

 Besides arrays, MongoDB also supports embedded documents. Go ahead and try inserting a
 document with a nested document, such as:

 db.employees.insertOne({_id: 501, name: 'Ghanima',
 family: {mother: 'Chani', father: 'Paul', brother: 485}})

 In case you are wondering, embedded documents can be queried using a dot-notation:

 db.employees.find({'family.mother': 'Chani'})

 We'll briefly talk about where embedded documents fit and how you should use them.

 Combining the two concepts, we can even embed arrays of documents:

 db.employees.insertOne({_id: 502, name: 'Chani',
 family: [{relation:'mother', name: 'Chani'},

 {relation:'father', name: 'Paul'},
 {relation:'brother', name: 'Duncan'}]})

 19

 Denormalization
 Yet another alternative to using joins is to denormalize your data. Historically, denormalization
 was reserved for performance-sensitive code, or when data should be snapshotted (like in an
 audit log). However, with the ever-growing popularity of NoSQL databases, many of which
 don't have any support for joins, denormalization as part of normal modeling is becoming
 increasingly common. This doesn't mean you should duplicate every piece of information in
 every document. However, rather than letting fear of duplicate data drive your design
 decisions, consider modeling your data based on what information belongs to what
 document.

 For example, say you are writing a forum application. The traditional way to associate a
 specific user with a post is via a userid column within posts . With such a model, you can't
 display posts without retrieving (joining to) users . A possible alternative is simply to store the
 name as well as the userid with each post . You could even do so with an embedded
 document, like user : {id: ObjectId('Something'), name: 'Karl'} . Yes, if you let
 users change their name, you may have to update each document (which is one
 multi-update).

 Adjusting to this kind of approach won't come easy to some. In a lot of cases, it won't even
 make sense. Don't be afraid to experiment with this approach though. It's not only suitable in
 some circumstances, but it can also be the best way to do things.

 Which Should You Choose?
 Arrays of ids can be a useful strategy when dealing with one-to-many or many-to-many
 scenarios. But more commonly, new developers are left deciding between using embedded
 documents versus doing "manual" referencing.

 First, you should know that an individual document is currently limited to 16 megabytes in size.
 Knowing that documents have a size limit, though quite generous, gives you some idea of how
 they are intended to be used. At this point, it seems like most developers lean heavily on
 manual references for most of their relationships. Embedded documents are frequently
 leveraged, but mostly for smaller pieces of data which we want to always pull with the parent
 document. A real world example may be to store an addresses array of documents with each
 user, something like:

 db.users.insert({name: 'leto', email: 'leto@dune.gov', addresses: [
 {street:"1633 Broadway", city:"New York", state:"NY",zip:"10019"},
 {street:"499 Hamilton", city:"Palo Alto", state:"CA",zip:"94301"}

]})

 20

 This doesn't mean you should underestimate the power of embedded documents or write
 them o� as something of minor utility. Having your data model map directly to your objects
 makes things a lot simpler and often removes the need to join. This is especially true when you
 consider that MongoDB lets you query and index fields of embedded documents and arrays.

 Few or Many Collections
 Given that collections don't enforce any schema, it's entirely possible to build a system using a
 single collection with a mishmash of documents but it would be a very bad idea. Most
 MongoDB systems are laid out somewhat similarly to what you'd find in a relational system,
 though with fewer collections. In other words, if it would be a table in a relational database,
 there's a chance it'll be a collection in MongoDB (many-to-many join tables being an
 important exception as well as tables that exist only to enable one to many relationships with
 simple entities).

 The conversation gets even more interesting when you consider embedded documents. The
 example that frequently comes up is a blog. Should you have a posts collection and a
 comments collection, or should each post have an array of comments embedded within it?
 Setting aside the 16MB document size limit for the time being (all of Hamlet is less than
 200KB, so just how popular is your blog?), most developers prefer to separate things. It's
 simply cleaner, gives you better performance and is more explicit. MongoDB's flexible schema
 allows you to combine the two approaches by keeping comments in their own collection but
 embedding a few comments (maybe the first few) in the blog post to be able to display them
 with the post. This follows the principle of keeping together data that you want to get back in
 one query.

 There's no hard rule (well, aside from 16MB). Play with di�erent approaches and you'll get a
 sense of what does and does not feel right.

 In This Chapter
 Our goal in this chapter was to provide some helpful guidelines for modeling your data in
 MongoDB - a starting point, if you will. Modeling in a document-oriented system is di�erent,
 but not too di�erent, than in a relational world. You have more flexibility and one constraint,
 but for a new system, things tend to fit quite nicely. The only way you can go wrong is by not
 trying.

 21

 Chapter 6 - Performance
 In this chapter, we look at a few performance topics as well as some of the tools available to
 MongoDB developers. We won't dive deeply into these topics, but we will examine the most
 important aspects of each.

 Indexes
 At the very beginning we discussed the getIndexes command which shows information on all
 the indexes in a collection. Indexes in MongoDB work a lot like indexes in a relational
 database: they help improve query and sorting performance. Indexes are created via

 createIndex:
 // where "name" is the field name
 db.unicorns.createIndex({name: 1});

 And dropped via dropIndex :

 db.unicorns.dropIndex({name: 1});

 A unique index can be created by supplying a second parameter and setting unique to true :

 db.unicorns.createIndex({name: 1}, {unique: true});

 Indexes can be created on embedded fields (again, using the dot-notation) and on array
 fields. We can also create compound indexes:

 db.unicorns.createIndex({name: 1, vampires: -1});

 The direction of your index (1 for ascending, -1 for descending) doesn't matter for a single key
 index, but it can make a di�erence for compound indexes when you are sorting on more than
 one indexed field.

 The indexes page has additional information on indexes. You can create indexes in the shell, or
 use the UI provided by Compass or Atlas.

 Explain
 To see whether or not your queries are using an index, you can use the explain method:

 db.unicorns.explain().find()

 22

https://www.mongodb.com/docs/manual/indexes/

 The output includes a field telling us what "plan" the optimizer used, COLLSCAN means the
 query was not indexed, how many objects were scanned, how long it took, and if the plan was
 IXSCAN what index was used as well as a few other pieces of useful information.

 If we change our query to use an index, we'll see that the winning plan used IXSCAN , as well as
 which index was used to fulfill the request:

 db.unicorns.explain().find({name: 'Pilot'})

 The explain() method can be used with any command that could use an index, like
 aggregate , update , etc.

 Stats
 Obtain statistics on a MongoDB database by typing db.stats() . Most of the information
 deals with the size of your database. Statistics are also available per collection - for a
 collection named unicorns , typing db.unicorns.stats() will do the trick. Most of this
 information will relate to the size of your collection and its indexes. If you are using Atlas,
 there are multiple metrics screens showing you the same stats data in graphical format over
 time.

 Profiler
 MongoDB also has database profiling functionality - the output tells us what was run and
 when, and how many documents were scanned versus returned. You can enable the MongoDB
 profiler by executing:

 db.setProfilingLevel(2);

 With it enabled, we can run a command:

 db.unicorns.find({weight: {$gt: 600}});

 And then examine the profiler collection:

 db.system.profile.find()

 You disable the profiler by calling setProfilingLevel again but changing the parameter to
 0 . Specifying 1 as the first parameter will profile queries that take more than 100 milliseconds.

 23

 100 milliseconds is the default threshold, you can specify a di�erent minimum time, in
 milliseconds, with a second parameter:

 //profile anything that takes more than 1 second
 db.setProfilingLevel(1, 1000);

 You can specify that only a sampling of all operations should be profiled, but even with
 sampling enabled, database profiling should be used very cautiously in production. More
 details about profiling and how to use it are in the MongoDB Documentation .

 In This Chapter
 In this chapter we looked at various commands, tools, and performance details of using
 MongoDB. We haven't touched on everything, but we've looked at some of the common ones.
 Indexing in MongoDB is similar to indexing with relational databases, as are many of the
 tools. However, with MongoDB, many of these are to the point and simpler to use.

 24

https://www.mongodb.com/docs/manual/tutorial/manage-the-database-profiler/

 Chapter 7 - Security and Backups

 Security
 When it was first released, MongoDB did not have security enabled by default. Rather, it relied
 on the individual performing installation to follow security best practices to lock down the data
 from malicious actors. A lot has changed, and many default settings now only allow open
 access to the data from localhost after installation. You should follow documented best
 practices to set up appropriate roles, users and permissions.

 If you're not using MongoDB Atlas, you will need to follow these steps:

 ● enable access control and specify an authentication mechanism
 ● configure role based access-control
 ● encrypt communication (TLS/SSL)
 ● encrypt and protect data
 ● limit network exposure
 ● (optionally) audit system activity
 ● always run the latest version of MongoDB and the driver(s) to be sure any known issues

 are fixed

 When using Atlas, security is already enforced for you, so fewer steps are required. You still
 must create an admin user and password, and then allow access to your data from specific IP
 addresses.

 Backup and Restore
 When you have production data, you want to make sure that you back it up on a regular basis
 (as well as restoring it). There are several approaches to doing backups with MongoDB, all
 described here . In production you will likely use disk level snapshots, but the simplest method
 for a small amount of data is using mongodump and mongorestore executables that are part
 of the MongoDB Tools package . Simply executing mongodump will connect to localhost or any
 connection string you pass to it, then backup all of your databases to a dump subfolder. You
 can type mongodump --help to see additional options. Common options are to backup only a
 specific database or collection. You can then use the mongorestore executable to restore a
 previously made backup. Both mongodump and mongorestore operate on BSON, which is
 MongoDB's native format.

 To demonstrate, we could backup our learn database to a backup folder, by executing (this
 is its own executable which you run in a command/terminal window, not within the mongo
 shell itself):

 mongodump -d learn -out backup

 25

https://www.mongodb.com/docs/manual/security/
https://www.mongodb.com/docs/manual/security/
https://www.mongodb.com/docs/manual/core/backups/
https://www.mongodb.com/try/download/database-tools

 To restore only the unicorns collection, we could then do:

 mongorestore -d learn -c unicorns backup/learn/unicorns.bson

 It's worth pointing out that mongoexport and mongoimport are two other executables which
 can be used to export and import data to/from JSON or CSV. For example, we can get a
 JSON output by doing:

 mongoexport -d learn -c unicorns

 And a CSV output by doing:

 mongoexport -d learn -c unicorns --csv --fields name,weight,vampires

 Note that mongoexport and mongoimport cannot always represent your data fully. Only
 mongodump and mongorestore should ever be used for actual backups. You can read more
 about your backup options in the MongoDB documentation.

 In This Chapter
 In this chapter we very briefly listed security best practices and reviewed some basic options
 for backups.

 26

https://www.mongodb.com/docs/manual/core/backups/

 Chapter 8 - When To Use MongoDB
 By now you should have a feel for where and how MongoDB might fit into your existing
 system. There are enough new and competing storage technologies that it's easy to get
 overwhelmed by all of the choices.

 For me, the most important lesson, which has nothing to do with MongoDB, is that you no
 longer have to rely on a single solution for dealing with your data. No doubt, a single solution
 has obvious advantages, and for a lot of projects - possibly even most - a single solution
 works. The idea isn't that you must use di�erent technologies, but rather that you can . Only
 you know whether the benefits of introducing a new solution outweigh the costs.

 With that said, I'm hopeful that what you've seen so far has made you see MongoDB as a
 general solution. It's been mentioned a couple times that document-oriented databases share
 a lot in common with relational databases. Therefore, rather than tiptoeing around it, let's
 simply state that MongoDB should be seen as a direct alternative to relational databases.
 Where one might see Lucene as enhancing a relational database with full text indexing, or
 Redis as a persistent key-value store, MongoDB is a central repository for your data.

 Notice that I didn't call MongoDB a replacement for relational databases, but rather an
 alternative . It's a tool that can do what a lot of other tools can do. Some of it MongoDB does
 better, some of it MongoDB does worse. Let's dissect things a little further.

 Flexible Schema
 An oft-touted benefit of document-oriented databases is that they don't enforce a fixed
 schema. This makes them much more flexible than traditional database tables. I agree that
 flexible schema is a nice feature, but not for the main reason most people mention.

 People talk about "schema-less" as though you'll suddenly start storing a crazy mishmash of
 data. There are domains and data sets which can really be a pain to model using relational
 databases, but I see those as edge cases. Schema-less is cool, but most of your data is going
 to be highly structured. It's true that having an occasional mismatch can be handy, especially
 when you introduce new features, but in reality it's nothing a nullable column probably
 wouldn't solve just as well.

 For me, the real benefit of dynamic schema is the lack of setup and the reduced friction with
 OOP. This is particularly true when you're working with a static language. I've worked with
 MongoDB in both C# and Ruby, and the di�erence is striking. Ruby's dynamism and its
 popular ActiveRecord implementations already reduce much of the object-relational
 impedance mismatch. That isn't to say MongoDB isn't a good match for Ruby, it really is.
 Rather, I think most Ruby developers would see MongoDB as an incremental improvement,
 whereas C# or Java developers would see MongoDB as o�ering a fundamental shift in how
 they interact with their data.

 27

 Think about it from the perspective of a driver developer. You want to save an object? Serialize
 it to JSON (technically BSON, but close enough) and send it to MongoDB. There is no property
 mapping or type mapping. This straightforwardness definitely flows to you, the end developer.

 Do keep in mind that MongoDB provides the ability to optionally enforce full or partial
 schemas via schema validation . This feature is powerful and lets you specify everything from
 types of fields, required and optional, ranges of values, and many other document constraints.

 Writes
 MongoDB allows you to control write behavior with respect to data durability. These settings,
 in addition to specifying how many servers should get your data before being considered
 successful, are configurable per-connection, per-collection, or per-write, giving you a great
 level of control over the trade-o� between write latency and data durability. Since MongoDB
 5.0, w:majority is the default write setting as it is considered a general best practice.

 Special Collections and Indexes
 MongoDB also supports many di�erent types of special collections and indexes.

 You can create read-only views by defining an aggregation pipeline on an existing collection
 or view.

 If you have data that represents time series, MongoDB supports a special time series
 collection type which stores sequences of measurements over a period of time.

 There are capped collections, which you create with pre-defined size. These collections
 automatically truncate old data as new data is appended and once they reach the specified
 maximum size. Capped collections do have some limitations, so as an alternative, if you want
 to "expire" your data based on time, you can use TTL Indexes where TTL stands for
 "time-to-live".

 Durability
 Prior to version 1.8 (released in 2010), MongoDB did not have single-server durability. That is, a
 server crash would likely result in lost or corrupt data. The solution had always been to run
 MongoDB in a multi-server setup (MongoDB supports replication). Journaling was one of the
 major features added in 1.8. Since version 2.0, MongoDB enables journaling by default, which
 allows fast recovery of the server in case of a crash or abrupt power loss. As of version 4.0,
 you no longer even have the option of disabling journaling.

 Durability is only mentioned here because a lot has been made around MongoDB's previous
 lack of single-server durability. This may still show up in Google searches. Information you find
 about journaling being a missing feature is simply out of date.

 28

https://www.mongodb.com/docs/manual/core/schema-validation/
https://www.mongodb.com/docs/manual/core/views/
https://www.mongodb.com/docs/manual/core/timeseries-collections/
https://www.mongodb.com/docs/manual/core/timeseries-collections/
http://docs.mongodb.org/manual/tutorial/expire-data/

 Full Text Search
 True full text search capability is a relatively recent addition to MongoDB. Text indexes in the
 server support fifteen languages with stemming and stop words. In MongoDB Atlas, there's
 full text search built on top of the Apache Lucene open source search engine. With MongoDB's
 support for arrays and full text search, you will only need to look to other solutions if you need
 a more powerful and full-featured full text search engine.

 Transactions
 MongoDB added full support for ACID transactions in 4.0 (extending it to sharded clusters in
 4.2). Before that there were two alternatives, one which is great and still has its place, and the
 other that was cumbersome but flexible.

 The first is its many atomic update operations. These are great, so long as they actually
 address your problem. We already saw some of the simpler ones, like $inc and $set . There
 are also commands like findAndModify which can update or delete a document and return it
 atomically. When atomicity can be ensured this way, it's preferable to use transactions for
 speed and overall scalability of the system.

 The second, when atomic operations aren't enough, was to fall back to a two-phase commit. A
 two-phase commit is to transactions what manual dereferencing is to joins. It's a
 storage-agnostic solution that you do in code. Two-phase commits are actually quite popular
 in the relational world as a way to implement transactions across multiple databases. The
 general idea is that you store the state of the transaction within the actual document being
 updated atomically and go through the init-pending-commit/rollback steps manually. This is
 the case where using MongoDB multi-document transactions is a great option as they
 significantly simplify the application code.

 Using transactions in MongoDB is as straightforward as in relational databases. You start a
 transaction which later you can commit or abort. To simplify your code even further, drivers
 automatically provide retry functionality on retryable errors.

 Geospatial
 A particularly powerful feature of MongoDB is its support for geospatial indexes . This allows
 you to store either geoJSON or x and y coordinates within documents and then find
 documents that are $geoNear a set of coordinates or $geoWithin a box or circle.

 Replication
 MongoDB replication works in some ways similarly to how relational database replication
 works. All production deployments should be replica sets, which consist of ideally three or
 more servers that hold the same data. Writes are sent to a single server, the primary, from
 where it's asynchronously replicated to every secondary. You can control whether you allow
 reads to happen on secondaries or not, which can help direct some special queries away from

 29

https://www.mongodb.com/docs/manual/core/transactions/
http://docs.mongodb.org/manual/applications/geospatial-indexes/

 the primary, at the risk of reading slightly stale data. If the primary goes down, one of the
 secondaries will be automatically elected to be the new primary. Again, MongoDB replication
 is outside the scope of this book.

 Change Streams
 Change streams allow applications to subscribe to real-time data changes. Under the covers,
 change streams use MongoDB server replication and the aggregation pipeline. Applications
 can watch all data changes on a single collection, a database, or an entire deployment, and
 immediately react to them. Because change streams use the aggregation framework,
 applications can also filter for specific changes or transform the notifications at will.

 Sharding
 MongoDB supports auto-sharding. Sharding is an approach to scalability which partitions
 your data across multiple servers or clusters. A naive implementation might put all of the data
 for users with a name that starts with A-M on server 1 and the rest on server 2. Thankfully,
 MongoDB's sharding capabilities far exceed such a simple algorithm. Sharding is a topic well
 beyond the scope of this book, but you should know that it exists and that you should consider
 it, should your needs grow beyond a single replica set.

 While replication can help performance somewhat (by isolating long running queries to
 secondaries, and reducing latency for some other types of queries), its main purpose is to
 provide high availability. Sharding is the primary method for scaling MongoDB clusters.
 Combining replication with sharding is the prescribed approach to achieve scaling and high
 availability.

 Tools and Maturity
 You probably already know the answer to this, but MongoDB is obviously younger than most
 relational database systems. This is absolutely something you should consider, though how
 much it matters depends on what you are doing and how you are doing it. Nevertheless, an
 honest assessment simply can't ignore the fact that MongoDB is younger and the available
 tooling around isn't great (although the tooling around a lot of very mature relational
 databases is pretty horrible too!). As an example, support for base-10 floating point numbers
 was only added in version 3.4, and there is still no support for DATE without time - MongoDB
 only supports the equivalent of DATETIME and TIMESTAMP .

 On the positive side, drivers exist for a great many languages, the protocol is modern and
 simple, and development is happening at blinding speeds. MongoDB is in production at
 enough companies that concerns about maturity, while valid, have quickly become a thing of
 the past.

 30

 In This Chapter
 The message from this chapter is that MongoDB, in most cases, can replace a relational
 database. It's much simpler and straightforward; it's faster and generally imposes fewer
 restrictions on application developers. The addition of transactions addressed a legitimate
 and serious concern. So, when people ask where does MongoDB sit with respect to the new
 data storage landscape? the answer is simple: right in the middle .

 31

 Conclusion
 You should have enough information to start using MongoDB in a real project. There's more to
 MongoDB than what we've covered, but your next priority should be putting together what
 we've learned, and getting familiar with the driver you'll be using. The MongoDB website has a
 lot of useful information. The o�cial community site MongoDB Community Forums is a great
 place to ask questions.

 NoSQL was born not only out of necessity, but also out of an interest in trying new
 approaches. It is an acknowledgment that our field is ever-advancing and that if we don't try,
 and sometimes fail, we can never succeed. This, I think, is a good way to lead our professional
 lives.

 32

http://www.mongodb.com/
https://www.mongodb.com/community/forums/

