
MongoDB 101: 
Non-Relational for 
Beginners

This work is licensed under the Creative Commons 
Attribution-NonCommercial-ShareAlike 3.0 Unported License 

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1b_4GoeSsdtL-B4Qvm6Bo1Ml9G4IIEkRxbZq4Wa6f7O4/edit?usp=sharing


Overview of 
Non-Relational 
Databases



A table uses columns to define 
the information being stored and 
rows for the actual data. 

Where it Began: Relational

Key features of relational databases

Related data is stored in 
rows and columns in one 
table.

SQL (Structured Query 
Language)

To understand non-relational databases, or “NoSQL” databases, we first need to look 
at SQL or relational databases. 

Key features of relational databases:

● Modeled similarly to an excel spreadsheet with related data being stored in 
rows and columns in one table.

● SQL (Structured Query Language) is the most common way of interacting with 
relational database systems. Developers can write SQL queries to perform 
CRUD (Create, Read, Update, Delete) operations. 

● A table uses columns to define the information being stored and rows for the 
actual data. Each table will have a column that must have unique 
values—known as the primary key. This column can then be used in other 
tables, if relationships are to be defined between them. When one table’s 
primary key is used in another table, this column in the second table is known 
as the foreign key.



Filling in the Gap

Relational Databases
SQL was developed by IBM as a 

way to interact with the new 

relational databases

World Wide Web
Need for data storage 

explodes 

1970s

NoSQL
Unstructured data storage to 

mitigate costs and increase 

efficiency

1990s 2000s

When traditional relational databases were introduced, they were able to handle the 
growth of the data size by running on bigger machines. 

With the emergence of the web came a huge data explosion that made it difficult to 
scale with hardware. You could not scale the database by running it on a bigger 
server, so companies were left to horizontally scale by distributing data across 
multiple servers or by running on more powerful servers. However, these scaling 
options were often complex and costly to maintain.

1. Relational Databases: To mitigate the cost of the first navigational databases 
and allow for searching, E.F Codd released his paper on a new way of storing 
data, relational. SQL was added to the field.

2. World Wide Web: The invention of the web fueled the demand for client-server 
database systems and high efficiency. Companies forced to scale use more 
servers at a high cost.

3. NoSQL: NoSQL (non-relational) databases were created to allow for faster 
processing of larger, more varied datasets. Emphasis on flexibility.



To fix the problem, various technology and 
software companies introduced new databases 
referred to as NoSQL or non-relational. 



What is a 
non-relational 
database? 

 
● Polymorphic data 

structures

● Flexible schemas

● Easy to scale large 
workloads

Non-relational databases differ from relational databases in that they do not store data 
in a tabular form. 

Instead, non-relational databases might be based on data structures like documents, 
graphs, or dictionaries. NoSQL databases also come in a variety of types based on 
their data model. 

They provide flexible schemas and scale easily with large amounts of data and high 
user loads. They were designed when it was expected that data would be partitioned 
across multiple machines to scale, in contrast to relational databases which assumed 
the data would stay on a single machine. 



Non-Relational 
Database Types



Non-Relational Database Types

DocumentColumnKey/Value Graph

There are four main types of non-relational databases: key/value, graph, column, and 
document, and we’ll investigate each in this lesson.



Key/Value Database

Structure

● A unique key is paired with a 

collection of values, where the 

values can be anything from a 

string to a large binary object 

Strength

● Simple data model

Key-value databases use a very simple schema: a unique key is paired with a 
collection of values, where the values can be anything from a string to a large binary 
object. 

One way that databases using this structure gain in performance is that there are no 
complex queries. The system knows on which server the data is located and sends 
the request to just that server.

Example: Redis is one of the most popular examples of a key/value store database. .



Key Value

Name Sherlock Holmes

Age 40

Address 221B Baker Street

Key/Value: Example

As the simplest of the non-relational databases, key/value is exactly as it sounds, 
data is organized based on an identifying key and its corresponding value. This 
simplicity makes it beneficial for large datasets, but not when complex relationships 
are at play. 



Graph Database

Structure

● Captures connected data

● Each element is stored as a 

node

● Connections between nodes 

are called links or relationships

Strength

● Traverses the connections 

between data rapidly

Graph databases are another type within the non-relational family of databases.

They have been designed to deal with problems around relationships with and 
focuses on connected data. This type of model does capture the richness of the 
relationships, however many problems are not naturally modelled as connected data 
or relationship problems. This makes this database well matched to these problems 
but as these are niche, it does not have a wider or broader applicability to other 
problems.

This databases stores information as a collection of nodes and edges, where the 
edges represent the relationships between the nodes.

Storing the relationships between data means that related data can often be retrieved 
in a single operation. The concept of relationships between data and this 
interconnectedness is the key principle behind this type of non-relational database. 
This approach counters the approach required in SQL/Relational Databases where many 
joins on several attributes in a number of tables would often be required to retrieve these 
kinds of relations in the data.

The most popular example of a graph database is Neo4J. 



Sherlock 
Holmes

:frie
nds 

with

John 
Watson

:posted

Post 
1

:posted

Post 
3

Post 
2

:po
st

ed

:friends 
with

Irene 
Adler

:friends with

:posted

Post 
1

:liked

:liked

221B 
BakerS
t.

:address

:a
dd

re
ss

Graph: Example

This is a rudimentary example of how data could be stored in a graph database. As 
you will see, this type of store is useful for social media applications where multiple 
objects will have multiple relationships or links. 



Column Oriented
or Wide Column

Structure

● Data is stored using key rows 

that can be associated with 

one or more dynamic 

columns

Strengths

● Highly performant queries 

● Designed for analytics

A column oriented or wide column non-relational database is primarily designed for 
analytics.  Today, Cassandra is a commonly used column oriented database. The 
advantage of column versus record/row oriented databases is that column oriented 
databases return data in columns making the query much more performant as it will 
not return many irrelevant fields that are not required for the query being serviced. 
The primary key in a column oriented database is the data / value which is then 
mapped to row keys. This is the inverse, or opposite, of how the primary key works in 
a relational database.

The structure of the column data is flexible and can vary from row to row. Associated 
with storing large amounts of data: billions of rows with millions of columns

This does not necessarily require a separate database and can be implemented as 
indexes on existing data structures to add this type of functionality to a database.



Name ID

Sherlock 001

John 002

Irene 003

Age ID

40 001

45 002

43 003

Height ID

6’2 001

5’9 002

5’7 003

Column Oriented Example

Here we see an example of what data might look like in a column-oriented database. 
Though at first glance it might seem similar to the known relational tabular format, it is 
very different in that the data is sorted via column IDs. Therefore the relationships 
between data are identified via the column key. 



Document Database

Structure

● Polymorphic data models

● Each document contains markup 

that identifies fields and values

Strengths

● Obvious relationships using 

embedded arrays and 

documents

● No complex mapping

Document databases, such as MongoDB, store data in a single document which can 
have different shapes within the single collection or table that stores the documents.

It provides a clear means of capturing relationship using sub-documents and 
embedded arrays within a single document.

The document is a close analogy to the object in object oriented programming and 
provides a clear natural representation of a ‘thing’ and it’s data.

This clear representation often means that there is no requirement for object mapping 
between the database and the application/programming language. The document is 
often the exact match for the object that the programmer wishes to use. The flexibility 
of the document to hold many shapes or multiple parallel schemas at any point in time 
gives great flexibility for modeling with documents when compared to relational 
database tables.



{
  "_id": 
ObjectId("5ef2d4b45b7f11b6d7a"
),
  "user_id": "Sherlock 
Holmes",
  "age": 40,
  "address": 

{
  “Country: “England”
  “City”: “London”,
  “Street”: “221B Baker 
St.”
},

  “Hobbies”:[ violin, 
crime-solving ]
}

{
  "_id": 
ObjectId("6ef8d4b32c9f12b6d4a")
,
  "user_id": "John Watson",
  "age": 45,
  "address": 

{
  “Country: “England”
  “City”: “London”,
  “Street”: “221B Baker 
St.”
},

  “Medical license”: “Active”
}

Document Model Example

The key thing to understand about the document model is that data that is accessed 
together is stored together. It is also important to note that just because one 
document has one field does not mean another related document has to have the 
same field when stored together. We will discuss this more in the lesson when we talk 
about collections. 



The Document Model

For general purpose use, the 
document model prevails as 
the preferred model by 
developers and database 
administrators.

Due to the fact that the document model implements data structures using 
programming languages, it is the preferred model by developers as it most closely 
matches the way they think and work already. 

We will take a closer look at the document model and understand how it functions. 



The Document 
Model and 
MongoDB

For more information watch: MongoDB in Five Minutes 
https://www.youtube.com/watch?v=EE8ZTQxa0AM 

https://www.youtube.com/watch?v=EE8ZTQxa0AM


Key Features

API query or 
query language

Object 
mapping

Flexible 
schema

Distributed and 
resilient

Querying through an API or query language: Document databases have an API or 
query language that allows developers to execute the CRUD operations on the 
database. Developers have the ability to query for documents based on unique 
identifiers or “field values.”

Distributed and resilient: Document databases are distributed, which allows for 
horizontal scaling (typically cheaper than vertical scaling) which distributes the data 
across multiple machines rather than making one machine bigger as the data 
increases. This system also allows for data to achieve high availability and resiliency 
as the data lives in replica sets which creates redundancy, so if one machine fails the 
secondary machine will take over and keep the data alive. This system is also 
referred to as sharding.  

Object mapping: Documents easily map to objects, the most frequently used data 
structure in the most popular programming languages. This allows developers to 
rapidly develop their applications as it is an intuitive process.

Flexible schema: Document databases have a flexible schema, meaning that not all 
documents in a collection need to have the same fields. Note that some document 
databases support schema validation, so the schema can be both mandatory or 
defined.



{

  "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Sean",

  "age": 29,

  "Status": "A"

}

The Document Model: 
Structure and Syntax

To the left is an example of a 
document representing a user 
details including user_id, age, 
and a status category.

In order to better understand a document, let’s take an example in MongoDB. This 
document represents a user, their id in the system, their age, and their status. You 
can also note the “_id” field which holds the ObjectID for the document. The _id is 
used as a primary key; its value must be unique in the collection, it is immutable, and 
may be of any type other than an array. In this example, it uses a number but typically 
these will be automatically generated ObjectIDs. An ObjectID is a small, likely unique, 
fast to generate, and ordered 12 byte value. An ObjectID’s 12 bytes consist of a 
4-byte timestamp value, representing the ObjectID creation time, measured in 
seconds since the Unix epoch, a 5-byte random value, and a 3-byte incrementing 
counter, initialized to a random value.



{

  "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Sean",

  "age": 29,

  "Status": "A"

}

The Document Model: 
Structure and Syntax

A document in MongoDB 
uses the JavaScript Object 
Notation (JSON) format. 

This format uses curly brackets 
to mark the start and the end of 
the document.

In order to better understand a document, let’s take an example in MongoDB. This 
document represents a user, their id in the system, their age, and their status. You 
can also note the “_id” field which is holds the ObjectID for the document. The _id is 
used as a primary key; its value must be unique in the collection, it is immutable, and 
may be of any type other than an array. In this example, it uses an number but 
typically these will be automatically generated ObjectIDs. An ObjectID is a small, likely 
unique, fast to generate, and ordered 12 byte value. An ObjectID 12 bytes consist of a 
4-byte timestamp value, representing the ObjectId creation time, measured in 
seconds since the Unix epoch, a 5-byte random value, and a 3-byte incrementing 
counter, initialized to a random value.



{

  "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Sean",

  "age": 29,

  "Status": "A"

}

The Document Model: 
Structure and Syntax

MongoDB refers to keys 
as fields.

The field-values within a 
pair in a document are 
separated by colons (:).

In order to better understand a document, let’s take an example in MongoDB. This 
document represents a user, their id in the system, their age, and their status. You 
can also note the “_id” field which is holds the ObjectID for the document. The _id is 
used as a primary key; its value must be unique in the collection, it is immutable, and 
may be of any type other than an array. In this example, it uses an number but 
typically these will be automatically generated ObjectIDs. An ObjectID is a small, likely 
unique, fast to generate, and ordered 12 byte value. An ObjectID 12 bytes consist of a 
4-byte timestamp value, representing the ObjectId creation time, measured in 
seconds since the Unix epoch, a 5-byte random value, and a 3-byte incrementing 
counter, initialized to a random value.



{

  "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Sean",

  "age": 29,

  "Status": "A"

}

The Document Model: 
Structure and Syntax

Each field must be enclosed 
within quotation marks. 
String values are often 
quoted as good practice.

Each field in a MongoDB document must be enclosed within quotation marks. String 
values are often quoted as good practice.



{

  "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Sean",

  "age": 29,

  "Status": "A"

}

The Document Model: 
Structure and Syntax

Each field-value pair is 
separated within the 
document by commas.

Each of the field-value pairs in the document are separated by a comma from the next 
record. The final field-value pair doesn’t require a comma as the final curly brace 
indicates the end of the document.



Collections in the 
Document Model



Document

A way to organize and store data 
as a set of field-value pairs in 

MongoDB.

Collection

An organized store of documents 
in MongoDB, usually with 
common fields between 

documents

Another way data is stored in MongoDB’s document model is through collections. A 
collection is a group of documents. Collections typically store documents that have 
similar contents. In MongoDB, these usually have common fields between documents 
but this is not a requirement unless you are using schema validation to enforce 
specific common fields. 
A document is a way to organize and store data as a set of field-value pairs in 
MongoDB.
A collection is an organized store of documents in MongoDB, these usually have 
common fields between documents but this is not a requirement unless you are using 
schema validation to enforce specific common fields.



MongoDB does not 
enforce a single schema 
on a collection. 
Documents can have 
common fields, but they 
are not required to by 
default.

{

  "_id": ObjectId(

"5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Daniel",

  "age": 25,

  "Status": "A",

  "Country": "USA"

}

Example

{

  "_id": ObjectId(

 "5f4f7fef2d4b45b7f11b6d7a"),

  "user_id": "Sean",

  "age": 29,

  "Status": "A"

}

Two documents in the same collection but with different fields

MongoDB collections do not by default enforce a single schema on a collection so 
whilst documents can have common fields, they are not required to have the same 
fields. There is no issue having two documents where the first document has a 
“country” field and the second document does not have the “country” field.



Collections and Schema Validation

The document model used by MongoDB can enforce a schema if 
required, the recommended approach is to do so using JSON 
Schema. 

JSON Schema

● Allows a prescribed document structure to be configured 

on a per collection basis.

● Can tune schema validation according to use case.

● Can be used by any query to inspect document structure 

and content.

MongoDB can enforce a schema if required, the recommended approach is to 
do so using JSON Schema. This allows a prescribed document structure to be 
configured on a per collection basis.

Document validation allows restrictions to be made when new content is 
added, it allows for the presence, the type, and the values to be validated as 
part of this process as well.

Schema validation in MongoDB has tunable controls. Administrators have the 
flexibility to tune schema validation according to use case – for example, if a 
document fails to comply with the defined structure, it can either be rejected, or 
still written to the collection while logging a warning message. Structure can be 
imposed on just a subset of fields – for example, requiring a valid customer 
name and address, while others fields can be freeform, such as the social 
media handle and cell phone number. And, validation can be turned off 
entirely, allowing complete schema flexibility

The schema definition can be used by any query to inspect document 
structure and content. For example, DBAs can identify all documents that do 
not conform to a prescribed schema.

This avoids having to implement this validation logic in your application or in 



middleware.

Data modeling is critical to setting up any database to meet the needs of an 
application, but in a document based non-relational database, such as 
MongoDB, there is great flexibility on how to model the data. How do you know 
which way to store your data? 

We will cover some best practices when it comes to modeling data in 
MongoDB. 



Data Modeling  and 
MongoDB



Schema Design 

The design comes from the 
needs of the application first. 
Therefore, the schema should 
evolve as the application 
changes.

At the core of all database models are their schemas. Schema design refers to the 
organization of data into separate entities, determining how to create relationships 
between the organized entities, and how to apply constraints on the data. Designers 
create database schemas to give other database users, such as programmers and 
analysts, a logical understanding of the data.

Schema design is defined at the application level and it is likely it will change over the 
application’s lifetime.

The design comes from the needs of the application first. Therefore, the schema 
should evolve as the application changes. One of the advantages of using a 
document model database is that the schema is able to be flexible, meaning if a 
developer or database designer needs to make changes to it they can do so with 
minimal to no downtime. 

30



Data Modeling and the Document Model

The core of data modeling in the document model is to understand what data 
is needed by your queries. Once that information is known, can you begin 
designing the schema.  

When designing data models, always consider the application usage of the data (i.e. 
queries, updates, and processing of the data) as well as the inherent structure of the 
data itself.

The data model in MongoDB is:

● Document-oriented: MongoDB stores data as documents that tend to have all 
data for a given record in a single document.

● Flexible: You can store and combine any type of data while benefiting from 
sophisticated data access and rich indexing features.

● Dynamic: Having a predefined schema or structure for your data is not 
necessary with MongoDB. You can create documents without first defining the 
data structure (e.g., fields, types of their values) and you can easily change 
the structure of documents by adding new fields or deleting existing ones.



Data Modeling with MongoDB

Improve the 
Application

Improve the Data 
Model/Schema

Several design possibilities

Design for the usage pattern

Evolving the schema is easy

No migrations or downtime 
required for a new version of the 

schema

MongoDB supports the iterative and rapid development of an application.

This opens out many design possibilities or options. MongoDB is designed for the 
application’s usage pattern.

Evolving a schema in MongoDB is easy, you just add or remove the field(s) and 
continue. This evolution doesn’t require a migration or a downtime where the 
database is taken offline while the new schema is created or updated.



Schema Design: Considerations
Your queries and the specific data your application requires.

How your application reads the data (read patterns).

How your application writes the data (write patterns).

What are the relationships between your data (linked or 
embedded).

There are a number of considerations you should focus on designing your schema in 
the document model.

33



Schema Design - Link or Embed?
Embedded vs Linked relationship in the Post-Comment example

blog post

_id: 123d456
text: “This is my 
post”

comments

text: comment 1
author: <string>

text: comment 2
author: <string>

text: comment 3
author: <string>

blog post

_id: 123d456
text: “This is my 
post”

comments

Embedded
Linked

blog_id: 123d456
text: comment 1
author: <string>

blog_id: 123d456
text: comment 2
author: <string>

blog_id: 123d456
text: comment 3
author: <string>

The question of whether to link or to embed your data is a critical factor to modeling in 
a document-oriented database.  

Embedding: 
Embedded documents capture relationships between data by storing related data in a 
single document structure. MongoDB documents make it possible to embed 
document structures in a field or array within a document. These denormalized data 
models allow applications to retrieve and manipulate related data in a single database 
operation.

Linking: 
Linking stores the relationships between data by including links or references from 
one document to another. Applications can resolve these references to access the 
related data. Broadly, these are normalized data models.

In general, the rule of thumb is to favour embedding over linking. This typically allows 
for the required data to be retrieved with a single query. It is also a better design when 
data that will be deleted exists together. 

This all depends on the situation and if there is a large amount of unused data in the 
document or say only the last 20 comments are required then it might be good to 

35



consider an alternative design. 



Schema Design - Link or Embed? Cont.

Do I want most of the data’s information embedded?

Do I need to search within the embedded data?

How frequently will the embedded data change?

Is the embedded data shared or private?

The questions here should all be answered when you are creating your schema 
design as they can help ensure you fully consider all aspects of the design.

Firstly, Do I want most of the data’s information embedded? In this case, if all the 
information is present in a single document then retrieval will be faster than if it is in 
two documents or across two or more collections. The frequency of the specific data 
and the size of the data must also be considered as very large documents will not be 
retrieved as fast as tiny documents even if those documents are in two separate 
collections.

A second important question to ask is “Do I need to search within the embedded 
data?” You might also want to follow up to determine what you are searching for and if 
it is only a fraction of the embedded data, should only some of it be embedded and 
the rest linked.

Finally, you should determine whether the embedded data can be shared or whether it 
is private. Indeed, this should be double checked with all stakeholders to ensure there 
are no doubts on this question which is increasingly important in the age of both data 
and digital privacy.
An important set of questions that should be answered when designing your schema 
is whether you should link to other documents with the data or whether the data 
should be embedded in a single document. This should also be considered in terms of 
the different users of the database as this might not be the same answer depending 
on the specific user.





Example: Movies and Reviews 

movies

title: <string>

actors

name: <string>
role: <string>

financials 

salaries: 
<decimal>
meal: <decimal>

Last_update: 
<date>

reviews

date: <date>
publisher: <string>
stars: <int>

Embedded Linked

Let’s look at an application where we store details on movies and reviews related to 
those movies.

In this example, we have a movie document where the actors and the financials are 
embedded in a single document whilst reviews are linked. You can use both 
embedding and linking in your schema. Here is an example where both are used. In 
terms of movies, the number of actors with their details and the financial details of the 
movie will be limited and typically bound to relative small size. In contrast, reviews are 
definitely unbounded data where we don't know how many may be written for the 
movie so it makes sense to only link to this data. An aggregated stars field for all 
reviews might be embedded in the movie document but not the 'raw' reviews for again 
similar reasons.



Relationships



Relationships
 and 

Data Modeling
Many to many (N-N)

One to one ( 1-1)

One to many (1-N)

It is a common misconception that just because a database is labeled “non-relational” 
then the data within it has no defined relationships. In fact, the relationships between 
data is a key component to designing the schema of a non-relational database and 
deciding whether to link or embed the data. 



One-to-One (1-1)
A one-to-one relationship is represented and stored in a single 
document, this would typically be data like a person's name 
and the customer id. 

Relationships

customers

name
customer_id

In designing this relationship, if you only consider one side of the relationship you may 
classify it as a “one” or as a “many” if you don’t consider both sides. The best advice 
is to ensure you ask the question of associativity from both directions and that you 
review your model a few times, especially for less apparent relationships.

All these fields have a one-to-one relationship with each other. More clearly, a user in 
our system has one and only one name, and is associated with one and only one 
customer id.

Embedding is the preferred way to model a 1:1 relationship as it’s more efficient to 
retrieve the document.



One to One (1-1) 

You have to map patron and address relationships. In this example, 
you’ll need to view one data entity in context of the other. 

Scenario: 

In this one-to-one relationship between [patron] and [address] data, the [address] 
belongs to the [patron]. If the [address] data is frequently retrieved with the [name] 
data, then with referencing (or linking), your application would need to issue multiple 
queries. The better data model would be to embed the [address] data in the [patron] 
data. 



One-to-Many (1-N)
A one-to-many relationship can be considered when an object 
of a given type is associated with N objects of a second type.

Relationships

customers

name
customer_id

invoices

invoice_id
customer_id
products[]

A one-to-many relationship can be considered as that when an object of a given type 
is associated with N objects of a second type.

In this type of relationship, the customer can have many invoices. It can be modelled 
by either linking the data (as shown) or by embedding the data (where the invoices 
are within the customer documents).

There is an additional technical called bucketing which is a combination of both linking 
and embedding. Bucketing works best when you can split your documents into 
batches, it can speed up document retrieval. Time based data (IOT) or where there 
are a number of entries (e.g. like comments pagination). 



One to Many (1-N) 

Scenario (Link): 

You have to map publisher and book relationships. Suppose you 
had the same publisher data for the same book. Embedding the 
[publisher] document inside the [book] document would lead to 
repetition of publisher information. 

Instead of embedding in this scenario, we can use references (or links) to keep the 
publisher information in a separate collection entirely from the book collection. This 
avoids the issue of repetition. 



One to Many (1-N) 

Scenario (Embed): 

You have to map a patron with multiple address relationships. 
In this one-to-many relationship between [patron] and 
[address] data, the [patron] has multiple [address] entities.

If the [address] data is frequently retrieved with the [name] data, then with 
referencing, your application would need to issue multiple queries. A more 
optimal schema would be to embed the [address] data entities in the [patron] 

data.If the [address] data is frequently retrieved with the [name] data, 
then with referencing, your application would 
need to issue multiple queries. A more optimal 
schema would be to embed the [address] data 
entities in the [patron] data.



Many-to-Many (N-N) customers

name
customer_id

invoices

invoice_id
customer_id
products[]

products

product_id
description

Relationships

A Many-to-Many relationship 
between two entities where 
they both might have many 
relationships between each 
other. 

Documents on the first side can be associated with many documents on the second 
side. 

In terms of documents on the second side, it equally means that these documents 
can be associated with many documents on the first side. 

To reiterate an important modelling point about designing relationships, if you only 
consider one side of the relationship you may classify it as a “one” or as a “many” if 
you don’t consider both sides. The best advice is to ensure you ask the question of 
associativity from both directions and that you review your model a few times, 
especially for less apparent relationships.

There are several strategies but the 1-way embedding strategy optimises the read 
performance of a N:N relationship by embedding the references in one side of the 
relationship. The key step in this strategy is establishing the relationship balance and 
choosing the side which has one or two orders magnitude of difference in the number 
of entities. If the relationships are close to an even ratio then 2-way embedding is 
probably a better strategy.



Consider a scenario where a book was written by 
multiple authors and similarly, one of the authors has 
written multiple books. How would we go about 
mapping these relationships? 

Many to Many (N-N) 

Scenario: 

When it comes to a true “many to many” relationship, such as this one, there are 
several ways this can be mapped. One way that would trick the system (so to speak) 
is to make the relationship into two “one to many” relationships. In this scenario, that 
would mean having a document for the book and its authors and a separate 
document for the author and its books, with each document having the other one 
embedded. However, in MongoDB you don’t have to do this option. The best option 
would be to embed an array of subdocuments on both many sides. That way the book 
document has all the authors and their subdocuments as well as the author document 
having all the books in a subdocument their other authors’ information. 



Link

When the "many" side is a huge 
number

For integrity on write operations on 
many-to-many

When a piece is frequently used, 
but not the other and memory is 

an issue

For integrity with read operations

For integrity with write operations

 On one-to-one and one-to-many

For data that is deleted together 
by default

Embed

Going back to our discussion on linking and embedding, the relationship between the 
documents is a factor in your modeling decisions. 

In order to help in the choice of relationship when you are modeling there are several 
helpful rules of thumb:

For embedding data, this should be favoured for read operations to support integrity 
as well as for write operations on one-to-one and one-to-many relationships.
Embedding is also recommended when data is going to be deleted together.
In the majority of modeling designs, embedding data should be the default approach 
or choice taken.

In terms of linking data, it is recommended that this is done where there is a very 
large number of objects on the “many” side in either a one-to-many or a 
many-to-many relationship.
It is also recommended for write operations on many-to-many relationships.
Finally, linkin is recommended where only a subset of the data is frequently used 
whilst the rest of the data is not and where memory may be an issue. We’ll flag the 
subset pattern which relates to this concept and which you can look up on the 
MongoDB documentation.

Finally, the most important factor to keep to the forefront when you are modelling is 
the frequency of all the queries. This will help you make a better and more informed 
decision as to how you should model any specific data or relationship.



Wrap-Up



When to Use Non-Relational?

Working with data 
that changes 
frequently

Cloud computing Promoting developer 
productivity 

A very common question when you are considering non-relational databases is when 
is it appropriate to use them?

Non-relational, particularly the document model, is well suited to polymorphic data 
that can change frequently. The document model allows for different shapes of data 
within the same collection, this means that documents with different fields can be 
present. It is sometimes described as holding multiple schema for the collection.

This is a key feature for enabling developer productivity as it provides rapid iteration 
of schema versions for data to co-exist within the same database and collection. This 
means that developers can rapidly change what fields are in a document and not 
worry about the impact or side effects that occur in the database. Essentially, the 
database is not a hurdle or an additional burden of work that must be additionally 
updated for example when a new field is added.

Another aspect of non-relational databases is that they often offer exact (or close to 
exact) mappings to what objects the developer desire to use in their application code. 
This means that the data can be transferred as-is directly to the application without 
requiring any additional mapping. This also enables  greater developer productivity as 
there is less code to translate between the database and the application.

51



Non-relational systems are typically cloud-native and designed as distributed 
systems. A known pain point for relational databases stems from the initial focus on 
scaling vertically, where additional resources were added to the machine or a large 
machine as used to support scaling the database.

Non-relational systems took this pain point and deliberately focused on scaling 
horizontally, where additional machines were added to the existing machine(s) when 
scaling the database. This scaling approach has simplified any changes required for 
these databases to support multiple public cloud providers. It has also focused 
non-relational systems, firstly on being virtualisation friendly, and more recently on 
being container friendly, as two key provisioning technologies that assist in deploying 
the database.



Continue Learning! Github Student 
Developer Pack

Sign up for the MongoDB Student Pack to 
receive $50 in Atlas credits and free 
certification!

MongoDB University has free self-paced 
courses and labs ranging from beginner 
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to 
learn about MongoDB and non-relational databases, and they are all free! Check out 
MongoDB’s University page to find free courses that go into more depth about 
everything MongoDB and non-relational. For students and educators alike, MongoDB 
for Academia is here to offer support in many forms. Check out our educator 
resources and join the Educator Community. Students can receive $50 in Atlas credits 
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

