
Welcome to Cyber Aces, Module 3! This module provides an introduction to the Bash
Scripting. The discussion in this session will be about variables and parameters.

1

This training material was originally developed to help students, teachers, and
mentors prepare for the Cyber Aces Online Competition. This module focuses on the
basics of system administration and scripting. . This session is part of Module 3,
System Administration. This module is split into three sections, Bash, PowerShell, and
Python. In this session, we will continue our examination of Bash.

The three modules of Cyber Aces Online are Operating Systems, Networking, and
System Administration.

For more information about the Cyber Aces program, please visit the Cyber Aces
website at https://CyberAces.org/.

2

In this section, you will be introduced to variables, syntax, and script parameters.

3

Variables are representations of memory locations in which we can store arbitrary
values. For example, at a Bash prompt we can create a variable called "MESSAGE" and
assign it the value "Hello World" by typing the following:

$ MESSAGE="Hello World"

We can then retrieve the contents of that variable with the "echo" command:
$ echo $MESSAGE

Note that when assigning a variable, you do not prefix its name with a dollar sign, but
when accessing it you do. Also note that there is no whitespace between the variable
name, the equals sign, and the value.

We can also store the results of the executed programs in variables by using inline
process execution (aka Command Substitution). For example:

$ RESULT=`ping -c 1 192.168.100.1`
$ echo $RESULT
PING 192.168.100.1 (192.168.100.1): 56 data bytes
64 bytes from 192.168.100.1: icmp_seq=0 ttl=64
...trimmed for brevity...

4

As an alternative to inline commands, you could place your commands inside of
another Bash script and pass the output of one command to your new script.
Parameters in a BASH script are referred to by their position on the command line.
"$1" is the first parameter, "$2" is the second parameter, etc. "$@" is all of the
parameters that were passed on the command line.

The contents of our sample script, test.sh:
#!/bin/sh
echo "all parameters are: $@"
echo "number of parameters: $#"
echo "the first parameter is: $1"
echo "the second parameter is: $2"

A sample execution of our script:
$ sh test.sh aaa bbb ccc
all parameters are: aaa bbb ccc
number of parameters: 3
the first parameter is: aaa
the second parameter is: bbb

5

Environment variables are variables used by the system and applications to read
configuration settings from the system. The environment variables communicate
information such as the user's home directory, the current shell, the username, and
many other settings. This makes it easier for applications to interact with the system
in a consistent fashion.

To set an environment variable we use the command "export". This environment
variable will be set for all processes launched from the parent process. I.E. all
processes launched from the shell where the "export" command is used.

Some environment variables are predefined.

PWD: The current directory

HOME: The path to the user's home directory

SHELL: The path to the current shell (e.g. /bin/bash)

PATH: The directories the shell will search to look for executables

USER & USERNAME: The name of the current user

You can look at all the environment variables set in your shell by typing "env".

6

The "let" command allows you to do mathematic expressions in BASH. Without it,
variables are treated as text. For example:

$ A=44
$ echo $A
44
$ B=$A+1
$ echo $B
44+1

If you want to evaluate a mathematic expression, you use the "let" command.
$ A=44
$ echo $A
44
$ let B=$A+1
$ echo $B
45

7

The left column is pretty straightforward, but the right column is probably new to
you. These operators will modify the variable itself. The command A+=5 can be
written as A=A+5. Here are examples of the different operators in the right column:

$ A=20
$ let A+=5
$ echo $A
25
$ A=20
$ let A-=5
$ echo $A
15
$ A=20
$ let A/=5
$ echo $A
4
$ A=20
$ let A%=6
$ echo $A
2

8

What is the output from the following commands?
$ A=5
$ B=A+5
$ echo $B

a. 10

b. 5

c. A+5

d. 55

What is the output of the following commands?

$ DATA='some stuff'

$ /bin/sh

$ echo $DATA

a. some

b. stuff

9

c. some stuff

d. A blank line

9

What is the output from the following commands?
$ A=5
$ B=A+5
$ echo $B

Answer is C: A+5
The let command was not used so the input is treated as text "A" instead of
the value of the variable A

What is the output of the following commands?
$ DATA='some stuff'
$ /bin/sh
$ echo $DATA

Answer is D: A blank line
Variables are only available in the current process unless the export command
is used

10

Congratulations! You have completed the session on Bash variables and parameters.

11

In the next session we will examine flow control in Bash.

12

