
Welcome to Cyber Aces Online, Module 1 - Linux! This module provides a brief
introduction to the Linux command on our CentOS VM.

Content in this session has been developed by Tom Hessman, Tim Medin, Mark
Baggett, Doug Burks, Michael Coppola, Russell Eubanks, Ed Skoudis, and Red Siege.

This training material was originally developed to help students, teachers, and
mentors prepare for the Cyber Aces Online Competition. This module focuses on the
basics of what an operating systems is as well as the two predominant OS's, Windows
and Linux. This session is part of Module 1, Introduction to Operating Systems. This
module is split into two sections, Linux and Windows. In this session, we will continue
our examination of Linux.

The three modules of Cyber Aces Online are Operating Systems, Networking, and
System Administration.

For more information about the Cyber Aces program, please visit the Cyber Aces
website at https://CyberAces.org/.

In this session we will cover the Linux's core commands.

The difference between Linux distributions can be significant. New users to Linux
distributions often struggle with the fact that the command they just learned in one
Linux variant may be completely different in the next. However, by memorizing just a
few commands, such as "man -k", "apropos", "find", "locate", and "cat", along with
the basic directory structure, you will be able to quickly adapt to the changes in these
variants.

Many Linux commands perform operations similar to those of Windows commands,
such as creating, viewing, and deleting directories and files, and some even share
similar names. For instance, the command "cd" is used to change directory on both
operating systems. The web site https://redsiege.com/ca/guide is a valuable
resource, offering exemplified references of basic Linux commands to beginners. If
you ever need help understanding a new command, simply type "man
newcommandname"!

ls (list directory contents): Lists files in a directory. The directory to list can be
specified as a parameter, otherwise it lists the current directory.

cd (change directory): Change the current working directory to the one specified. You
can specify either an absolute path (such as cd /home/centos/) or a relative path
(such as cd centos or cd ..).

pwd (print working directory): Print the current working directory (the directory you
are currently in).

cp (copy): Copy files or directories. To copy many files at once, specify them each as
a parameter or use a wildcard (such as *.txt), and specify the destination directory as
the final parameter. To copy a directory and its contents, use the "-R" (recursive)
option, as in: cp -R dir1/ dir2/

mv (move): Move or rename files or directories. Like "cp", you can move multiple
files at once by specifying each one or using a wildcard and then specifying the
destination directory as the final parameter. "mv" is also used to rename files or
directories by moving them from their old name to their new name.

rm (remove): Remove (delete) a file.

mkdir (make directories): Create a directory. The "-p" option can be used to create
any parent directories needed to create the final directory in one command. For
example, mkdir -p /dir1/dir2/dir3 will create "/dir1" if it does not already exist, then
create "/dir1/dir2" if it does not already exist, and finally create "/dir1/dir2/dir3" if it
does not already exist. If any of them did exist, no errors will be returned.

cat (concatenate): Print one or more files and print to STDOUT (normally the screen).
It's called "concatenate" because it can be used to combine multiple files into one
stream, such as: cat *.log > combined-log.

grep (global regular expression print): Searches for text within a file or STDIN. It is
commonly used as part of a pipeline instead of directly on a file. For example, to
search for established network connections, you could run netstat -nat |
grep ESTABLISHED. It can be used to search for a regular expression pattern
instead of simple text, which is beyond the scope of this introduction.

file: Identifies the file type by inspecting the file's contents, particularly its header
information. It has a database of "magic numbers" that correspond to various file
types.

head: Displays the first X lines of a file, where X is ten by default. The number of lines
can be specified using the "-n" option, and "-c" can be used to specify a number of
bytes to display instead of lines.

tail: Displays the last X lines of a file, where X is ten by default. The number of lines
can be specified using the "-n" option, and "-c" can be used to specify a number of
bytes to display instead of lines. tail also has a "follow" option ("-F") which outputs
new data as it is appended to the end of a file. This is convenient for watching log
files in real-time.

less: Display text from STDIN or a file one screen at a time, making it easier to read.
less is commonly used to pipe the output of commands into, particularly commands
with a lot of output. The name "less" is a joke on the pager "more", which less is an
improved version of (less is more).

ps: Display information about running processes. The "aux" options indicate to list all
running processes in the system, instead of only processes from the current shell.
Output from "ps" is often piped into grep to search for instances of a particular
program.

lsof (list open files): Displays a list of open files on the system. The list includes
details on which user and which process has the file open. lsof also has a "-i" option
that will display a list of programs that are listening for network traffic, similar to the
output of netstat -na | grep LISTEN.

netstat: Displays information about TCP and UDP connections on the system,
including established connections and ports that have services listening for incoming
connections. The "-t" and "-u" options can be used to show only TCP or UDP
information, respectively.

ifconfig (interface config): Displays information about your network interfaces, such
as your IP address (similar to "ipconfig" on Windows). ifconfig can also be used to set
the IP address for an interface.

su (substutute user): Temporarily switch to a different user (most commonly root).
The "-" option makes the shell a login shell, causing it to inherit the target user's
environment.

chmod (change mode): Change the permissions (mode) of a file or directory. More
information on chmod and permissions can be found in an upcoming section.

stat: View detailed information about a file, including its name, size, last modified
date, and permissions.

ping: Send ICMP ECHO_REQUEST packets to a network host and wait for responses to
test network connectivity. The "ping6" program can be used for IPv6 addresses.

whoami: Display the current username (the username the "whoami" program is
running as, normally the user who invoked it).

passwd: Change a password. With no options, it is used to change your own
password. The root user can specify a username as a parameter to change that user's
password.

kill: Terminate or send a signal (such as "HUP") to a running process. This is most
commonly used to kill a running process by PID, but can also be used to send
arbitrary signals to a process. The "HUP" signal is commonly used to restart a
process.

ln (link): Create a hard or symbolic link to a file. A hard link is a separate file listing
that points to the same data on the disk. A symbolic link is a special file that contains
the path to the file the link is pointing to. A symbolic link can point to a directory, but
a hard link cannot. To create a symbolic link, use the "-s" option.

These special characters have special meaning in the shell:

/ (forward slash): Directory separator (used between directory names in a file path).

\ (backslash): This is the escape character, which is used to reference other special
characters literally. In other words, if you need to use a special character as itself in a
command, put a backslash in front of it to cause the shell to interpret it literally.

. (single dot): This represents the current directory. It is also used as the first
character of a file or directory name to mark it as hidden.

.. (two dots): This represents the parent directory, one level up from the current
directory.

~ (tilde): This represents the current user's home directory, and can be used as
shorthand for it. For example, cd ~/Desktop could be used as shorthand for cd
/home/username/Desktop. The tilde can also have a username immediately
after it to substitute that user's home directory instead of your own, such as cd
~otheruser/Desktop.

& (ampersand): This is used to execute a command in the background as a job.
When you run a command in the background, you will get a shell prompt back right
away instead of having to wait for the command to finish.

* (asterisk): A wildcard used to represent zero or more characters in a filename. For
example, ls *.txt will list the names of any files ending in ".txt", such as
"file1.txt" and "file23.txt".

? (question mark): A wildcard used to represent a single character in a filename. For
example, running ls pic?.jpg would match "pic1.jpg" and "pic2.jpg", but not
"pic23.jpg" or "pic.jpg".

[] (square brackets): These are used to specify a range of values to match. For
example, "[0-9]" would match any digit 0 through 9, and "[a-z]" would match any
lowercase letter.

; (semicolon): A command separator that can be used to run multiple commands on
a single line, unconditionally.

&& (double ampserand): A command separator, which will only run the second
command if the first command is successful (does not return an error). This is
commonly used in shell scripts.

|| (double pipe): A command separator, which will only run the second command if
the first command failed (had errors). This is commonly used in shell scripts, such as
to terminate the script if an important command fails.

Linux uses the standard set of I/O (input/output) streams to send data in and out of
programs. STDIN (Standard Input) is the standard stream to direct data into a
program, typically from the keyboard by default. STDIN has file descriptor 0. STDOUT
(Standard Output) is the standard stream to direct data out of a program, typically to
the screen by default. STDOUT has file descriptor 1. STDERR (Standard Error) is used
for errors and other diagnostic information, and has file descriptor 2. STDERR works
the same as STDOUT, but is a separate stream to prevent contamination data being
passed through the pipeline to another program or to a file. All three streams can be
piped or redirected elsewhere.

Redirection allows you to redirect the standard I/O streams to different locations,
such as to a file or a pipe. For example, you can redirect STDIN to read data from a
file instead of from the keyboard, redirect STDOUT to write to a file instead of the
screen, and redirect STDERR to hide its output (such as by sending it to /dev/null, a
black hole that discards any data it receives). Here are some examples:

Redirect STDIN from a file:
$ command < file

Redirect STDOUT to a file:
$ command > file

Redirect STDERR to a file (note the file descriptor "2"):
$ command 2> file

Append STDOUT to a file (write STDOUT to the end of an existing file):
$ command >> file

Redirect STDOUT and STDERR to a file (the "2>&1" sends 2 to file descriptor 1, which
is STDOUT):
$ command > file 2>&1

These operators can be combined, as in:
$ command < infile > outfile 2>> errorlog

The above command would receive input from "infile", save the output to "outfile"
(overwriting "outfile" if it already exists), and append any error messages to "errlog".

Pipes are used to connect the STDOUT of one program to the STDIN of another,
creating a pipeline for data to flow through a series of programs. To use pipes, place
the pipe character ("|", or shift-\) between commands. Pipes are often used to filter
the output of commands, such as to search for a particular string, or to sort a set of
data. The programs commonly used for these tasks (such as "grep", "sort", and
"uniq") are often referred to as filters.

For example, the following command will read in the list of users on the system,
search them for the string ":0:" (identifying users with UID or GID 0), and then sort
them alphabetically:

$ cat /etc/passwd | grep :0: | sort

Note that STDERR is still sent to the display unless it is redirected elsewhere. This
allows you to see any errors or warnings that may occur without them becoming part
of the pipeline. If you want to redirect STDERR into STDOUT you can use this syntax:

$ command 2>&1

In the above command STDERR (2) is redirected into (>) file descriptor 1, STDOUT
(&1).

"PATH" is an environment variable that determines where the shell looks for
executable programs. When a command is typed without a path to the executable,
the shell searches each directory in the PATH variable in order. For example, if the
PATH variable is set to "/usr/local/bin:/usr/bin:/bin" and you type the command "ls",
the shell will first check "/usr/local/bin" for the executable program "ls", then check
/usr/bin, and then check /bin, running whichever one it finds first.

Unlike Windows, Linux will not search the current directory for a command you type
unless "." (the current directory) is added to the PATH variable. This is not considered
good security practice since it could cause someone to be tricked into running a
malicious version of a program, so Linux systems do not include "." in the PATH
variable by default. This prevents a malicious user from putting a malicious
executable named "pwd" in a directory and causing another user to accidentally run it
when the user types pwd, as the pwd executable will be run from the path, not the
current directory.

If you do need to run an executable that is in the current directory, but not in the
path, precede it with "./".

$ ls

myprog

$ myprog

bash: myprog: command not found

$./myprog

Thank you for running myprog

Linux offers a very wide array of command line interpreters for users to choose from.
Referred to as command shells, each individual interpreter possesses different fortes
and offers different features in an attempt to provide the best user experience.
Scripting opportunities also vary from shell to shell. While many UNIX shells exist, the
default (and most popular) shell for most Linux distributions is known as Bash, which
is an acronym for "Bourne-again shell." The Bourne shell, known simply as "sh", is a
predecessor of sorts. The Bourne shell lacks many features contained in modern
shells like Bash, but is commonly used in scripts because it's always present on a
Unix-based system, and its features and syntax never change. The Almquist shell
(ash) and the Debian Almquist shell (dash) are more modern implementations of the
minimal Bourne shell.

A comprehensive comparison of UNIX shells (also including Windows and various
programming shells) is available at
https://en.wikipedia.org/wiki/Comparison_of_command_shells.

Which of the following commands can be used to read the manual for your
applications?

<command> help
help <command>
? <command>
man <command>

Which of the following commands is NOT used in the management of files and
directories?

ping
mkdir
touch
chmod

Which of the following commands can be used to read the manual for your
applications?

man <command>
The "man" command is used to access the system-wide manual.

Which of the following commands is NOT used in the management of files and
directories?

ping
The "ping" command is used for network testing and diagnostics.

Congratulations! You have completed the session covering the Linux core commands.

In the next session we will discuss Linux users and groups.

