
Web Applications

© SANS Institute

1. W3Techs Web Technology Surveys (March 1, 2021) Retrieved from https://w3techs.com/ on 4/1/21.

2. Ashbel, A. (June 9, 2015). “Node.js: Successful, exciting...and bares security risks.” SANS Webcast. Retrieved 3/16/21.

3. Gugleta, Lazar (Feb. 18, 2020) “Why is Python so Powerful Today?” Medium.com. Retrieved 4/15/21.

4. Retrieved from python.org on 3/16/21.

5. “Digging for Security Bugs/Vulnerabilities in Python Applications” (July 22, 2018). Tripwire.com. Retrieved 3/16/21.

6. Liu, S. (June 11, 2020) “Most widely utilized programming languages among developers worldwide 2020.”

 Retrieved from https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/ on 4/1/21.

7. Retrieved from SANS DEV541: Secure Coding in Java/JEE: Developing Defensible Applications brochure at

 https://www.sans.org/brochure/course/secure-coding-java-jee-developing-defensible-applications/306 on 3/16/21.

8. Retrieved from SANS DEV544: Secure Coding in .NET: Developing Defensible Applications brochure on 3/16/21 at

 https://www.sans.org/brochure/course/secure-coding-net-developing-defensible-applications/2252

9. Retrieved from php.net on 3/16/21.

10. “Understanding PHP Vulnerabilities & How They Originate”. (January 4, 2019). Wordfence.com. Retrieved 3/16/21.

Citations:

When producing secure code for web applications, developers often use one of
these five popular modern programming languages. Here’s how these languages can
be impacted by the Top 10 OWASP vulnerabilities and how to mitigate the risks:

Each of these programming languages has its own individual “flavor” and uses, but
they all have some commonalities as well. When learning a new programming
language, it is important to look at the common vulnerabilities and best practices in
secure code implementation to avoid security flaws. Use the OWASP Top 10 Web
Application Security Risks list when developing with any of these coding languages.

A powerful, flexible, and general-purpose coding language that has been around
since the 1990s, Python has become one of the most popular programming languages
today. The most up-to-date version is the 3.x branch. Python can be used for web
development, back-end development, software development, data science, and
automation/scripting.4 Potential Python vulnerabilities include SQL injection,
cross-site scripting (XSS), and command injection.5

PYTHON is reported to be one of the best tools for data science,
data analysis, and machine learning3

A very popular programming language for enterprises, Java is backward compatible
and runs on the Java Virtual Machine (JVM), making the case for platform
independence. Java is rich in features and widely used for back-end development
projects including big data and Android development. It can also be used for desktop
computing, mobile computing, and games. Applications built with Java can be
vulnerable to application layer attacks.7

JAVA is utilized by 40.2% of software developers globally.6

NODE.JS is used by at least 20 million websites¹

This coding language debuted in 2010 and is an open-source, cross-platform,
runtime environment for server-side applications written in JavaScript. Node.js
runs on the V8 engine and is commonly used for traditional websites and back-end
API services. Applications built on top of the Node.js language may be vulnerable to
application layer DDoS attacks, authentication bypass, and business logic attacks.2

SECURELY DEVELOP

INSECURE CODE SECURE CODE

app.use(session({
 path: /location,
 signed: true,
 program: ‘string’
 secret: '63ca39e0-2511-434e-8e80-f3530772a5de',
 key: 'cookieToken',
 cookie: { secure: true, httpOnly: true, path:
'/user', sameSite: true}
}));

OWASP TOP 10 EXAMPLE

OWASP TOP 10 VULNERABILITY THE INSECURE CODE CREATES A RISK FOR:

C# is used by over 31% of software developers worldwide6

Microsoft debuted C# in 2000 as part of their .NET initiative1. C# is a multi-paradigm
programming language that can run on Windows, iOS/Android, and Linux platforms.
C# can be used in the creation of mobile or desktop apps, cloud-based services,
websites, enterprise software, and games. The most prevalent vulnerabilities when
using C# code are XSS, SQL Injection, Open Redirects, and Parameter Manipulation.8

PHP powers a significant majority of the web 1

A popular general-purpose programming language that is particularly suited to web
development, PHP powers almost 80% of websites on the entire Internet today.1,9
Vulnerabilities in PHP code are commonly caused by a mistake made while writing
the original code that is then exploited by bots once the code is published.10

INSECURE CODE SECURE CODE

OWASP TOP 10 EXAMPLE

if sys.platform == "linux":
 # Is root?
 if os.geteuid() != 0:
 print_error("You need to be root")
 else:
 outlog = run_command(f"ls -l"
elif sys.platform == "win32":
 outlog = run_command(f"dir")

if sys.platform == "linux":
 # Is root?
 if os.geteuid() != 0:
 print_error("You need to be root")
 else:
 outlog = run_command(f"ls -l '{showr}'")
elif sys.platform == "win32":
 outlog = run_command(f"dir showr'")

INSECURE CODE SECURE CODE

OWASP TOP 10 EXAMPLE

//gen random string for $username
...
if ($_POST["submit"]) {
$sql = "SELECT COUNT(username) AS num FROM
account WHERE username = :username";
$stmt = $pdo->prepare($sql);
 $stmt->bindValue(':username, $username);
 $stmt->execute();
 $row = $stmt->fetch(PDO::FETCH_ASSOC);
 if($row['num'] > 0){
//regenerate random username string and
confirm its unique
}

if ($_POST["submit"]) {
$username = $_POST[username];
$sql = "SELECT COUNT(username) AS num FROM
account WHERE username = :username";
$stmt = $pdo->prepare($sql);
 $stmt->bindValue(':username, $username);
 $stmt->execute();
 $row = $stmt->fetch(PDO::FETCH_ASSOC);
 if($row['num'] > 0){
 echo 'This user already exists, please choose a
new name.';
}

INSECURE CODE SECURE CODE

OWASP TOP 10 EXAMPLE

 public string AccessSecret(string
strComp, string strTok)
System.Environment.SetEnvironmentVa
riable(variable, value [, Target])

 {
 byte[] tok = { };
 byte[] strToArr;
 try
 {
 tok = Encoding.UTF8.GetBytes(strTok);

public string AccessSecret(string strComp, string strTok)
 {
 byte[] tok = { };
 string APIKey =
"c7200ac5664879628d6b24f778672ab7c5b7134a97ea898
998fe6c3b20626bd1";
 byte[] strToArr;

 try
 {
 tok = Encoding.UTF8.GetBytes(strTok);

INSECURE CODE SECURE CODE

OWASP TOP 10 EXAMPLE

cipher.init(Algo.AES, ikey, vInit);
byte[] encryptedVal= new
byte[cipher.getOutputSize(input.length)];
int cipher_siz = cipher.update(input, 0, input.length,
encryptedVal, 0);
cipher_siz += cipher.doFinal(encryptedVal,
cipher_siz);

cipher.init(Algo.DES, ikey, vInit);
byte[] encryptedVal= new
byte[cipher.getOutputSize(input.length)];
int cipher_siz = cipher.update(input, 0,
input.length, encryptedVal, 0);
cipher_siz += cipher.doFinal(encryptedVal,
cipher_siz);

A6: Security Misconfiguration
Failing to set the secure flag on a cookie for HTTPS connections can leave user’s sessions
open to hijacking attacks.

OWASP TOP 10 VULNERABILITY THE INSECURE CODE CREATES A RISK FOR:
A1: Injection
Using user-provider input in an unsafe manner can lead to injection vulnerabilities.

OWASP TOP 10 VULNERABILITY THE INSECURE CODE CREATES A RISK FOR:
A6: Security Misconfiguration
Using insecure encryption ciphers and protocols can result in the exposure of sensitive information.

OWASP TOP 10 VULNERABILITY THE INSECURE CODE CREATES A RISK FOR:
A3: Sensitive Data Exposure
Hardcoding passwords, keys and other credentials is a poor coding practice that, when exposed,
can lead to the compromise of an application, system, network, and more.

OWASP TOP 10 VULNERABILITY THE INSECURE CODE CREATES A RISK FOR:
A2: Broken Authentication
Being overly verbose in providing messages to users is something attackers will focus on to take
advantage of your application.

app.use(session({
// reportUri:
 path: /location,
 signed: true,
 program: ‘string’
 secret:
'63ca39e0-2511-434e-8e80-f3530772a5de',
 key: 'cookieToken',
 cookie: { secure: false, httpOnly: true, path:
'/user', sameSite: true}
}));

sans.org/security-awareness-dev

https://www.sans.org/security-awareness-dev
https://owasp.org/www-project-top-ten/2017/A6_2017-Security_Misconfiguration
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/www-project-top-ten/2017/A6_2017-Security_Misconfiguration
https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
https://owasp.org/www-project-top-ten/2017/A2_2017-Broken_Authentication

