
Welcome to Cyber Aces, Module 2! A firm understanding of network fundamentals is
essential to being able to secure a network or attack one. This section provides a
broad overview of networking, covering the fundamental concepts needed to
understand computer attacks and defenses from a network perspective.

This training material was originally developed to help students, teachers, and
mentors prepare for the Cyber Aces Online Competition. This module focuses on the
basics of networking. This session is part of Module 2, Networking.

The three modules of Cyber Aces Online are Operating Systems, Networking, and
System Administration.

For more information about the Cyber Aces program, please visit the Cyber Aces
website at https://CyberAces.org/.

In this section, you'll learn about the Transport Layer. We'll cover the concept of
ports, as well as TCP and UDP, which are essential parts of any modern network.

With a reliable Network Layer in place, we now have a way of sending a stream of
packets back and forth between two machines. But there are significant limitations to
what we can do with just a networking layer. For example, if you want to access
multiple services such as Web, E-mail and SSH on a remote computer, the networking
layer doesn't provide a means of matching packets to a service. Also, if we send
several related (non-fragmented) packets between two hosts and they arrive out of
order, the Networking Layer doesn't provide a way to unscramble the message at the
destination. The Transport Layer solves both of these problems and more. TCP
(Transport Control Protocol) is the king of the Transport Layer, but there are several
important protocols that operate at the Transport Layer including TCP, UDP (User
Datagram Protocol) and SCTP (Steam Control Transmission Protocol). TCP and UDP
introduce the concept of PORTS that identify unique services on host. When we
combine an IP address with a PORT, our computer can now establish a SOCKET
between two different hosts.

Ports are a bit like doors on a system, providing different services their own door to
use. Ports can also be thought of like apartment numbers within a building, where
the building's street address would be the IP address. Without port numbers, there
would be no way for the operating system to determine which service a given packet
should be sent to. There are 65,536 (216) TCP ports and 65,536 UDP ports, numbered
0-65535 (port 0 is reserved and not generally used). On a server, specific services
"listen" on a pre-defined port number, so that clients know in advance how to reach
it. For example, HTTP (web) servers generally listen on port 80, so web browsers
always connect to port 80 by default. When a port has a service listening on it, it is
called "open". Conversely, a port without anything listening on it is called "closed".
When clients make outbound connections, they send traffic from an ephemeral
(temporary) port, and listen on that same port for the response. This way, the
operating system can keep track of which responses are associated with particular
requests.

IANA, the Internet Assigned Numbers Authority, maintains the official registry of
assigned ports. Maintaining a central list allows all services to know where to find
other services (in fact, a copy of the assigned ports is found in the "services" file in
most operating systems), and also helps prevent conflicts. However, there are many
common services without official port registrations.

Ports 1-1023 are known as "Well-known ports". These are the most widely used core
networking services, such as HTTP, DNS, and SSH. On Unix-like operating systems
(including Linux and Mac OS X), only privileged users can listen on these ports. This is
a security protection that ensures regular users can't set up a rogue service.

Ports 1024-49151 are known as "Registered ports". These are ports that still have
official assignments from IANA, but are not as important (or as old) as the services on
the well-known ports.

Ports 49152-65535 are used as ephemeral ports, and cannot be officially registered
to a service. These are generally used for outgoing connections. However, it should
be noted that this convention is not strictly followed by all operating systems. Some
versions of Linux use the range 32768-61000, and older versions of Windows
(Windows Server 2003 and earlier) use 1025-5000.

Many services use ports that are not officially registered to them. Even services with
official assignments are sometimes found on non-standard ports, either to help
"hide" them from potential attackers (security through obscurity), or simply to offer
similar services (such as a web-based management interface). SSH can often be found
on high-numbered ports to help hide it from automated password-guessing attacks.
Of course, changing the port number alone should not be considered secure; is is
simply one extra layer of security.

Here is a list of a few of the most important port numbers that you should be able to
recognize:

21 FTP: File Transfer Protocol; an unencrypted protocol used to transfer files

22 SSH: Secure Shell; an encrypted protocol used to access remote machines for
system administration, file transfer, creating an encrypted tunnel to another system
or network, etc.

23 Telnet: unencrypted protocol used for remote administration; SSH should
generally be used instead

25 SMTP: Simple Mail Transfer Protocol; used to transmit e-mail across the Internet)

53 DNS: Domain Name System; hostname to IP address resolution (and vice versa)

80 HTTP: Hypertext Transfer Protocol; an unencrypted protocol used to access web
pages

110 POP: Post Office Protocol; one of two primary protocols used to download e-mail
from mail server

135 MSRPC: used for Windows networking (NetBIOS over TCP) and Remote
Procedure Call

139 NetBIOS: used for Windows networking (NetBIOS over TCP)

143 IMAP: Internet Message Access Protocol; used to access e-mail stored on a mail
server

443 HTTPS: HTTP over an encrypted channel using SSL/TLS

445 SMB/CIFS: used for Windows networking (SMB/CIFS over TCP)

TCP carries the majority of the data on the Internet today. TCP adds PORTS to the IP
addresses established at the network layer by IP. TCP uses a "3 way handshake" to
establish a connection between two hosts and provide "reliability" by tracking the
data that flows between the hosts. TCP tracks the flow of data with SEQUENCE and
ACKNOWLEGEMENT numbers on each packet. Sequence numbers and
acknowledgement numbers are like tracking numbers on packages shipped through
UPS. They can be used to detect if packets arrive in the wrong order (which could
happen if packets take different paths on a network), or to detect if certain packets
didn't make it through or got sent more than once. TCP also uses a checksum to
ensure the data integrity of each packet.

TCP is designed more for accurate data transmission than speedy data transmission;
it has a lot of overhead. For applications where timely delivery is more important,
such as video streaming, other protocols may be more appropriate.

The TCP Control Bits (part of the TCP header) help identify the state of the TCP
connection and which components of the TCP connection the given packet is
associated with. There are six traditional TCP Control Bits, with 2 newer extended
ones defined by RFC 3168. Each control bit can have a value of 0 or 1 (each one is just
one bit long). The six traditional control bits include:

• SYN: The system should synchronize sequence numbers. This Control Bit is
used during session establishment.

• ACK: The Acknowledgment field is significant. Packets with this bit set to 1
are acknowledging earlier packets.

• RST: The connection should be reset, due to error or other interruptions.
• FIN: There is no more data from the sender. Therefore, the session should

be gracefully torn down.
• PSH: This bit indicates that data should be flushed through the TCP layer

immediately rather than holding it and waiting for more data.
• URG: The Urgent Pointer in the TCP header is significant. There is

important data there that should be handled quickly.
Note that this list doesn't show the Control Bits in the order in which they appear in
the packet. Instead, we have sorted them in a more memorable fashion. The two
additional control bits are CWR and ECE, which are:

• CWR: Congestion Window Reduced, which indicates that, due to network
congestion, the queue of outstanding packets to send has been lowered.

• ECE: Explicit Congestion Notification Echo, which indicates that the
connection is experiencing congestion.

Each of these control bits can be set independently of the others. Thus, we can have a

single packet that is simultaneously a SYN and an ACK.

Every legitimate TCP connection begins with the TCP three-way handshake, which is
used to exchange sequence numbers so that lost packets can be retransmitted and
packets can be placed in the proper order.

If machine A wants to initiate a connection to machine B, it will start by sending a TCP
packet with the SYN Control Bit set. This packet will include an initial sequence
number (which weʼll call ISNA because it comes from machine A), which is 32-bits
long and typically generated in a pseudo-random fashion by the TCP software on
machine A. The ACK number (another 32 bits in the TCP header) is typically set to
zero, because it is ignored in this initial SYN. Some operating system variants may
make this ACK number non-zero. Either way, it is ignored by the destination machine.

If the destination port is open (that is, there is something listening on that port), it
must respond with a SYN-ACK packet back (a packet that has both the SYN and ACK
Control Bits set at the same time). This packet will have a sequence number of ISNB, a
pseudo-random number assigned by machine B for this connection. The SYN-ACK
packet will have an acknowledgment number of ISNA+1, indicating that machine B
has acknowledged the SYN packet from machine A.

To complete the three-way handshake, machine A responds with an ACK packet
which has a sequence number of ISNA+1 (itʼs the next packet, so the sequence
number has to change from the value in the original SYN packet). The
acknowledgment number field is set to ISNB+1, thereby acknowledging the SYN-ACK
packet.

We have now exchanged sequence numbers. All packets going from A to B will have
increasing sequence numbers starting at ISNA+1, going up by a value of 1 for each
byte of data transmitted in the payloads of A to B packets. Likewise, all responses
back from B will have sequence numbers starting at ISNB+1 and going up for each

During the 3-way handshake, the client and server synchronize their sequence
numbers (note that they don't use the same sequence numbers, they simply
exchange sequence numbers so they can keep track of each other). From that point
on, the sequence number is increased by 1 for each byte of data sent by a host. So,
for example, if host A sends 5 bytes of data and has a sequence number of 30, the
next packet host A sends will have a sequence number of 35. Meanwhile, for each
packet of data received, the receiving host responds with a packet with the ACK bit
set, and the acknowledgement number increased by the number of bytes received. In
the previous example, the host receiving 5 bytes of data with a current
acknowledgement number of 1 would reply with an acknowledgement number of 6.
By comparing these numbers, both sides of the connection are able to know if any
data was lost, if packets were received in the wrong order, etc. Finally, when the
exchange is over, the server will send a packet with the FIN and ACK bits set to let the
client know that it is done transmitting data. The client will reply with an ACK,
followed by its own FIN/ACK. Then, the server will reply with an ACK, and the
connection is closed.

Here is a simple TCP transaction, as illustrated by Wireshark's "Flow Graph" tool. Each
line represents a single packet. The client that initiated the connection is on the left,
and the server is on the right. Packets flowing from the client to the server are
represented by an arrow pointing to the right, and packets flowing from the server to
the client are represented by an arrow pointing to the left. Note that Wireshark
displays relative sequence and acknowledgement numbers by default, to make it
easier to follow a series of packets.

The first three packets are the TCP 3-way handshake. The client (10.10.10.11) sends a
TCP packet with the SYN bit set from port 1164 to the server (10.10.10.2), port 80
(meaning this is likely an HTTP request), with a sequence number of 0. The server
then replies with the SYN and ACK bits set, with its own sequence number (shown as
zero since it's relative) and an acknowledgement number of 1 (since it's
acknowledging the first packet). Then, the client complete the handshake by replying
with just the ACK bit set, increasing its sequence number to 1 and keeping its
acknowledgement number at 1.

The fourth packet is the beginning of the data transfer. The client sends a request to
the server that is 567 bytes long. This packet has the PSH and ACK bits set, and still
has a sequence and acknowledgment number of 1 (since no other data has been
exchanged since the handshake). The server then responds with the ACK bit set, and
an acknowledgement number of 568, which serves to acknowledge that it has
received the first 567 bytes. Since the packet it received had the PSH bit set, it
processes it right away, and then sends a response. The response also has the PSH
and ACK bits set, has a length of 1154, and still has the sequence number set to 1
(since this is the first data it has sent since the handshake) and acknowledgement
number set to 568 (since that is still how much data it has received so far from the
client).

Netstat is a very useful command-line tool that shows the current status of TCP and
UDP connection on your computer. By default, it shows established (or active)
connections (and on Linux, it will show a ton of information on sockets). The "-a"
option tells Netstat to show all activity, including which ports are open with services
listening on them. This is useful for determining what systems your computer is
communicating with, and what network services are listening on your computer. The
"-n" option is commonly used to show IP addresses instead of hostnames (without "-
n", Netstat will attempt to do reverse DNS lookups of each IP address). On Windows,
the "-o" option can be used to show the process ID (PID) number of the process (or
program) on the system owns a connection. The "-b" option shows the name of the
owning process. On Linux, the "-p" option shows similar information.

On your own computer, open a Command Prompt, and type the command "netstat -
nob", but don't press enter yet. Open a web browser and surf to the site
https://isc.sans.org/. Now, while the page is still loading, quickly go back to the
command prompt and press enter. You should see some output similar to the above,
showing multiple established connections to port 443 on the isc.sans.org server
(204.51.94.153). In the example above, the ephemeral ports used on the local system
began at 49907 and were incremented sequentially for each individual connection to
the web server. The different connections seen above are likely due to some content
being delivered using content delivery networks and cloud-hosted storage. These
connections are all associated with "MicrosoftEdgeCP.exe."

The three packets (in order) responsible for establishing a connection over TCP are:
• FIN, FIN-ACK, ACK
• SYN, ACK, SYN-ACK
• SYN, SYN-ACK, ACK
• SYN, FIN, ACK

Valid TCP ports are within the range:
• 1-1024
• 0-65535
• 1-65635
• 0-1048576

The three packets (in order) responsible for establishing a connection over TCP are:
• SYN, SYN-ACK, ACK

Valid TCP ports are within the range:
• 0-65535
• There are 65,536 valid TCP ports, because the TCP and UDP headers allow

for a 16 bit port number (216). Port 0 is technically a valid port, though it is
considered reserved and generally not used.

UDP operates at the same level as TCP. UDP also assigns ports to distinguish between
different services but it does not use the 3 way handshake or Sequence and
Acknowledgement numbers to track packets. As a result, UDP is lightweight and
faster than TCP. The speed is gained at the cost of reliability. UDP is a "best effort"
protocol: the sender transmits their packets and just hopes that they reach the
destination. There will be no indication if a packet doesn't make it, or comes in the
wrong order, and there is no mechanism for retransmission of lost or damaged
packets (though there is a checksum). There is also no mechanism for congestion
avoidance (such as slowing transmission for a slow or congested network link).
Rather, the application itself is responsible for ensuring data integrity. For this reason,
UDP is sometimes referred to as the "Unreliable Datagram Protocol".

UDP is great for applications such as DNS where only a single packet is transmitted in
each direction. If I send a single packet DNS request out and don't get a response, I
know the sender didn't get it. If I get a response, they did receive my request. So for
single packet transmissions, the overhead of session tracking is unnecessary. UDP is
also very good for data that will be interpreted by the human brain. With audio and
video transmissions, the human brain will compensate for small gaps in the data, so it
is much better to allow for them rather than trying to retransmit lost packets. Other
common applications and protocols that operate over UDP include RIP (Routing
Information Protocol), DHCP, NTP (Network Time Protocol), and TFTP.

Which of the following is NOT a good application for the UDP protocol?
• Watching videos on Youtube.com
• Listening to a live broadcast of the SecurityWeekly.com podcast
• Single Packet In, Single Packet out applications like DNS queries & response
• Managing a server over SSH

Select the following statement that is true:
• Transferring data over UDP is more reliable than over TCP.
• Transferring data over UDP is less reliable than over TCP.
• Transferring data over UDP has the same reliability as over TCP.
• It is inappropriate to compare the reliability of UDP and TCP regarding data

transfer.

Which of the following is NOT a good application for the UDP protocol?
• Managing a server over SSH
• Managing a server over SSH requires a reliable connection, which is much

better suited to TCP. All of the other options don't require the reliability
and overhead that TCP supplies.

Select the following statement that is true:
• Transferring data over UDP is less reliable than over TCP.
• UDP does not perform error checking, packet retransmission, etc.

Read more about these topics online:

TCP Sequence prediction:

https://www.redsiege.com/ca/tcp-sequence-prediction

Layer 3 and Layer 4 protection mechanisms:

https://www.redsiege.com/ca/network-infrastructure-defense

This concludes the discussion about Layer 4, the Transport Layer. In the next tutorial
we'll discuss the next two layers layer in the OSI model, the Session and Presentation
Layers.

In the next session we discuss Layers 5 and 6.

