
Welcome to Cyber Aces, Module 3! This module provides an introduction to the Bash
Scripting. In this session we will be discussing Flow Control.

This training material was originally developed to help students, teachers, and
mentors prepare for the Cyber Aces Online Competition. This module focuses on the
basics of system administration and scripting. . This session is part of Module 3,
System Administration. This module is split into three sections, Bash, PowerShell, and
Python. In this session, we will continue our examination of Bash.

The three modules of Cyber Aces Online are Operating Systems, Networking, and
System Administration.

For more information about the Cyber Aces program, please visit the Cyber Aces
website at https://CyberAces.org/.

These operators are usually used in a branching mechanism, so that code is executed
only if certain conditions are true.

Not only can you compare numbers, but strings (text) can be compared as well.

Description Number Operator String Operator
Greater Than -gt >
Less Than -lt <
Equal To -eq ==
Not Equal To -ne !=
Less or Equal -le
Greater or Equal -ge

The map of output for a logical AND given inputs of A and B is:
A B Output
True True True
True False False
False True False
False False False

The map of output for a logical OR given inputs of A and B is:
A B Output
True True True
True False True
False True True
False False False

The conditional operators "&&" and "||" allow you to evaluate multiple logic tests
surrounded by square brackets. "&&" is a logical "AND" while "||" is a logical "OR".
For example, the following section of pseudo-code will only evaluate if both tests are
true:

if [$today == "Sunday"] && [$month == "April"]
then

echo "It is a Sunday in April!!"
fi

This section of pseudo-code will execute if either test evaluates to true:
if [$today == "Sunday"] || [$month == "April"]
then

echo "It is a a Sunday in any month OR it is
ANY day in the Month of April!!"

fi

Consider the following script named "addnums.sh"
#!/bin/bash
a=$1; b=$2
let c=$a+$b
if [$c -eq 10]
then

let c=500
fi
if [$c -gt 400] && [$c -lt 600]
then

let c=1000
fi
echo $c

1) What is the output of addnums 4 9

2) What is the output of addnums 400 90

Consider the following script named "addnums.sh"
#!/bin/bash
a=$1; b=$2
let c=$a+$b
if [$c -eq 10]
then

let c=500
fi
if [$c -gt 400] && [$c -lt 600]
then

let c=1000
fi
echo $c

1) What is the output of addnums 4 9

Answer: 13

2) What is the output of addnums 400 90

Answer: 1000

The example For loop will read each word of command output or a series/sequence
of numbers. In the example above, the file names are consumed by the For loop. The
variable $FILE will contain each filename, one at a time. This loop simply prints the
file names.

The curly braces ({}) are used to create a sequence. The second loop will count from 1
to 5 by 1. The sequence operator will also take a "step" option, so to count from 0 to
10 by 2 the proper input would be: {0..10..2}.

The two For loops are represented in two different ways. The first has each command
on a separate line. The second options allows all the commands to be entered on the
same line where each command is separated by a semicolon (;).

The example While loop will read a number from a file and increment it until it equals
20. In each iteration of the loop it prints the number on the screen. If the initial
number read from the file is greater than 20 then the loop will never be entered and
there will be no output.

There are several ways to capture and process the output of a command or the
contents of a file. We will talk about two methods here. The first method allows you
to process one word at a time separated by spaces. The second method will process
an entire line at a time marked by a line feed. Before we can process the output, we
need to capture the output. We already talked about one of these methods when we
discussed the use of variables. We can capture the output of one command in a
variable with inline process execution. Let's suppose that we want to capture a listing
of all the files in the current directory and then process that listing repeatedly. We can
capture a directory listing to a variable then process those results several times.
Consider the following bash script that will "cat" every file in the directory, printing its
contents to the screen:

#!/bin/bash
Above is the 1st line of all bash scripts and specifies the interpreter
Executes ls using the backtick. Results stored in DIRLIST variable
DIRLIST=`ls`
The echo command prints the value of DIRLIST for the For loop
Each time through the loop $i will contain one of the lines from the
directory listing
for i in `echo $DIRLIST`
'do' marks the beginning of the block of code to execute in our FOR loop
do

#Block contains one line that prints the contents of each file
cat i

#done marks the end of our FOR loop
done

But this processes each word separated by spaces in the output. If you want to parse
an entire line, you can use the while loop with the "read" command, which will assign
a full line to a variable as demonstrated in the second script above.

You can run several commands on the same line by separating them with a semicolon
(";"). For example:

$ cd ~; ls -la ; cd /var/log; cat messages

This would change to your home directory, list the files, change to the "/var/log"
directory and print the contents of the "messages" file to the screen.

As mentioned earlier, conditional operators can also be used between commands on
the command line. With "&&", the second command will only be run if the first
command succeeds, and with "||" the second command will only be run if the first
command fails. For example, the following line will print an error if there is a problem
reading the "messages" log:

$ cat /var/log/messages || echo "Error reading messages"

This functionality is due to the "short-circuit" nature of Linux logic. For example, with
the Logical AND the result will be False if any of the input is False, so it will stop
evaluating input once it reaches the first False result. Similarly, a Logical OR will return
True if any input evaluates to True. Once it encounters the first True input it can stop
evaluating the inputs.

$ echo test write > /etc/testfile && rm /etc/testfile &&
echo Everything Worked

This command has three parts and each piece will execute if the previous was
successful. If the creation of /etc/testfile works then, and only then, will the file be
deleted. Only if the deletion was successful (the first command would have to have
been successful as well), would the words "Everything Worked" be output.

Congratulations! You have completed the session on flow control in Bash.

In the next session, we will discuss parsing and searching using Bash.

