

A Hybrid Approach to Threat Modelling

Author: Sriram Krishnan, sriram.krishnan@in.pega.com

Date: 25-Febraury-2017

Abstract

Threat Modelling is considered the fundamental approach in identifying security

weakness in software applications during the design phase in Software Development

Lifecycle process. Various techniques have been published for performing threat

modelling including STRIDE, Attack Tree, and Attack Library. Organizations tend to

lean towards a single technique to perform their modelling exercise. Each of these

techniques is weighed down by limitations, hence when implemented individually

impacts the effectiveness and comprehensiveness of the exercise. However, in order to

achieve meaningful output it is imperative to use each of these techniques appropriately

to the corresponding activity in the threat modelling exercise. This paper analyses the

various limitations in each of these techniques and presents a hybrid model that

eliminates these limitations by adopting a structured approach, capturing optimum

details, and representing the data in an intelligible way.

mailto:sriram.krishnan@in.pega.com

A Hybrid Approach to Threat Modelling 2

1. Introduction

The current business world is Information Centric. Information is critical,

information is money and information is at large. All the more, it is transacted over the

internet. It requires no additional motivation for any group to obtain the information to

monetise or use for other purposes that would benefit them. It goes without saying that

it is the inherent responsibility of an organization to provide a secure operating

environment for their customers and employees to protect their interest. At this state it

is an eternal obligation of any organization to look at security just not as a function but

a key business driver.

Threat modelling is the fundamental building block for building secure software.

Unless one understands the threats that they are exposed to in a structured way, it will

not be possible to build a secure operative environment and software. It is needless to

say that threats grow along with evolution of technology and delivery models. A SANS

survey (2015 State of Application Security: Closing the Gap [1]) indicates that threat

assessment (which can also be referred to as threat modelling) is the second leading

application security practise (next to penetration testing) for building secure web

applications. Thus threat modelling is a pro-active security practice that organizations

should adopt.

2. Threat Modelling

2.1 An Overview

Let us assume that an organization is tasked to build a payment processing

application. This application is required to integrate with external applications, transmit

and store sensitive data such as customer’s SSN, credit card and debit card details. One

of the top priorities for the organization is to bake security into the application. Some

of the questions that need to be addressed by the security office upfront are:

 Where to start?

 How to identify the threats?

 What are the targets of an attacker?

 Who could attack and how can they attack?

A Hybrid Approach to Threat Modelling 3

 How should the organization defend?

When any organization plans to build a new application, add features to an existing

application or change their delivery model (move to cloud), their primary objective

should be to build a secure design for the application. Threat Modelling is a technique

that helps achieve this objective in a simplified and structured way.

Following diagram depicts in simple terms what threat modelling is:

In a threat modelling exercise we enumerate the threats, which could be caused

by a vulnerability, which could be realized through an attack, which could be mitigated

via countermeasure.

2.2 Types of Threat Modelling

Threat modelling is a structured procedure for identifying and categorizing

threats, and enumerating threat scenarios require in-depth understanding of the

architecture and underlying technology stack.

At a broad level there are 3 types of threat modelling techniques:

 STRIDE – Spoofing, Tampering, Repudiation, Information Disclosure, Denial-of-

Service, and Elevation of Privilege

 Attack Trees

 Attack Libraries

Threats

Probability of
occurance of an
adverse incident

Vulnerabilities

What is the cause
of attack?

Attacks

How it is going to
happen?

Countermeasures

How to defend /
prevent the attack?

Figure 1 – Threat Modelling

A Hybrid Approach to Threat Modelling 4

2.2.1 STRIDE

The STRIDE approach to threat modelling was invented by Loren Kohnfelder

and Praerit Garg in 1999 [2]. This technique helps in the enumeration of threats based

on attack properties. For each of these attack properties there is set of security themes

violated as illustrated in the following table:

Attack Property Security Theme

Spoofing Authentication

Tampering Integrity

Repudiation Non-Repudiation

Information Disclosure Confidentiality

Denial-of-Service Availability

Elevation of Privilege Authorization

Threats are enumerated by considering each attack property and its

corresponding impacted security theme. Consider a Software as a Service (SaaS)

application that does pay-roll processing for various organizations. The application

transmits and stores sensitive details such as employee’s salary data. The system also

integrates with its customer’s network for authentication and obtaining Human

Resource Management System (HRMS) data for payment processing. Below table

provides an example of threat analysis for this application using STRIDE:

Attack Property Threat Scenarios Security Theme

Spoofing An attacker can hijack a session id of a user and

submit request to obtain the user’s payroll details.

Authentication

Tampering An attacker can intercept and modify salary data

as it is transmitted via SSL v2 which uses weak

algorithms for encryption.

Integrity

Repudiation An attacker who also happens to be an employee

can modify their own salary details by capturing

and replaying the original request submitted by

the organization.

Non-Repudiation

Table 1 – STRIDE Attack Properties

A Hybrid Approach to Threat Modelling 5

Information

Disclosure

An attacker can obtain salary data upon access to

database as they are stored as plain text in the

database.

Confidentiality

Denial-of-Service An attacker programmatically sends a large

number of HTTP GET / POST requests designed

to consume significant amount of the server

resources and result in denial-of-service

condition.

Availability

Elevation of

Privilege

Application is vulnerable to insecure direct object

reference which allows an attacker to manipulate

the parameter value that directly refers to

resources that can only be accessed by accounts

with administrative privilege.

Authorization

 Please note that the above table provides an example of how to use STRIDE to

enumerate threats but does not contain exhaustive set of threats given the context. Each

attack property is mapped to the application functionality to identify the threats. In a

real-world scenario the entire ecosystem of application and its technology stack should

also be taken into consideration during threat enumeration.

 STRIDE approach has two variants: STRIDE-per-Element and STRIDE-per-

Interaction.

STRIDE-per-Element [3] [4]: STRIDE-per-element strives to achieve defence

in depth. Table 2 provides a simplistic way to represent threat scenarios based on the

attack properties. However, development teams typically sketch architecture diagrams

or Data Flow Diagrams (DFD) based on the nature of the application being developed.

These diagrams (when developed in an appropriate manner) would serve as snapshot

of the application’s ecosystem, indicating the different elements that interact with the

application. Elements in a DFD are as follows:

External Entity: Represents the source from which the data is sent to the application or

destination to which the application sends the data.

Data Flow: Represents the data flow from and to the application.

Data Store: Represents the data at rest (database).

Table 2 – Threat Enumeration using STRIDE

A Hybrid Approach to Threat Modelling 6

Process / Business Logic: Represents an action, activity or logic that transforms or

operates on the data.

This technique should be used when the team is motivated to find additional or

intricate threats (on top of already identified threats) specific to these elements. This

method could be perceived as one which is tightly-coupled with such elements. An

organization should identify elements that need further threat analysis. Continuing with

the payroll application example, consider the following DFD:

The above diagram illustrates two basic functions of the application:

 Admin uploads bulk of employee salary data

 Employee requests to view his salary details

 From the DFD it is evident that confidential data is transacted between user

(admin and employee) and application, and that XML is used for transporting the data.

Also, the application parses XML data before storing the values in the payroll details

table. Another key point to note is that XML can present an attractive target for

adversaries as it has been widely used and susceptible to different types of attack. Thus

data flow becomes one of the elements that need additional focus. To break down, let

us consider the following two points to decide whether an element represented in the

DFD requires additional focus:

 Criticality of the function from the perspective of confidentiality, integrity, and

availability (business risk should also be taken into consideration)

Figure 2 – DFD Diagram Payroll Application

A Hybrid Approach to Threat Modelling 7

 Degree of weakness or strength and the options available in the underlying

technology to protect itself from security attacks

Below table represents threat enumeration by adopting STRIDE-per-element:

Elements Threat Scenario S T R I D E

Data Flow An attacker will include nested entity expansion to

produce amplified XML output that will crash

processor's CPU/memory (XML Entity Expansion

Attack)

 ×

Data Flow An attacked will include an URI in the entity that will

contain malicious code to read sensitive data from the

application server (XML External Entity Injection

Attack)

 ×

Data Flow An attacker is able to forge or alter the data by

inserting malicious element in the XML (XML

Signature Wrapping Attack)

 ×

Data Flow An attacker is able to forge or alter XML data by

removing the Signature element (XML Signature

Exclusion Attack)

× ×

Since the focus is related to data flow via XML, various threats relating to

XML are enumerated so that defence in depth can be achieved.

STRIDE-per-Interaction [5]: STRIDE-per-Interaction is the other variant of

STRIDE that attempts to further simplify threat modelling. This does not mean that

STRIDE-per-Element is complicated or STRIDE-per-Interaction will allow threat

modellers to identify more threats. All techniques can be used in conjunction to arrive

at the best possible result. The Approach to Threat Modelling section will cover this

aspect of threat modelling.

A dictionary meaning of Interaction is a mutual or reciprocal action. In the

context of threat modelling, this represents the flow of data between entities involved

in the application. Understanding each interaction and application flow provides much

needed insight for threat modellers to enumerate threats applicable to that interaction.

Thus addressing threats for each application workflow serves as an enabler in

developing a more secure application. Such an approach will deeply benefit the

Table 3 – STRIDE-per-Element

A Hybrid Approach to Threat Modelling 8

software developers as the threats will be documented as scenarios specific to that

interaction. Continuing with the same example, let us further simplify the threat model:

Elements Interaction Threat Scenario S T R I D E

Data Flow Admin ->

Application

Interface for

bulk upload

An attacker can send malicious XML

document that would contain nested

entities expansion to produce amplified

XML output that will crash processor's

CPU/memory (XML Entity Expansion

Attack), as the application allows the use

of DTD.

 ×

Data Flow Employee ->

Application

interface to

view employee

details

An attacker can exclude the XML

signature from the message to send

arbitrary request and invoke functions for

obtaining salary details of the employees.

× ×

In this example, a column named “Interaction” is added to the threat modelling

table. This enables threat modellers to document the specific interaction of the overall

functional flow and facilitates representation of the threats in much more eloquent way.

It is possible to capture “what could go wrong” in that specific interaction and arrive at

effective countermeasures.

Another advantage of this technique is it permits grouping of threats for which

the countermeasures are similar (many to one) – this is immensely beneficial for the

developer community. For example, the countermeasures prescribed for XML Entity

Expansion Attack is also applicable for XML Entity Injection Attack. This attack occurs

when the XML message contains a reference to an external entity which can execute

an arbitrary function to obtain confidential data from the server. Therefore, the XML

processor should be configured to use only a local static DTD and disallow any declared

DTD in the XML document. Grouping of threats with similar countermeasures helps

developers to plan and prioritize the efforts during their implementation. This simplifies

the whole exercise both from threat enumeration and mitigation standpoints.

Table 4 – STRIDE-per-Interaction

A Hybrid Approach to Threat Modelling 9

Limitations of STRIDE: The STRIDE technique helps enumerate threats

relating to the elements and functional flow of an application; however the essence of

‘how to mitigate’ the threats cannot be addressed. To achieve completeness, threat

modelling must identify and design strong countermeasures for the identified threats.

Taking this a step further, documenting the appropriate implementation

countermeasures (secure coding guidelines) is not a feature of this technique.

2.2.2 Attack Tree

Attack tree is a conceptual representation of possible attacks against an

application through which threats are ascertained. According to Bruce Schneier,

“Attack trees provide a formal, methodical way of describing the security of systems,

based on varying attacks. Basically, the attacks against a system are represented in a

tree structure, with the goal as the root node and different ways of achieving that goal

as leaf nodes” [6] [7]. It is a model that enables threat analysis from an attacker’s

perspective.

In the attack tree, the ultimate goal of the attack is the root node, while the

children and leaf nodes represent the sub goals. In the tree, nodes can be either

represented as “AND” or “OR” nodes. Let us consider the following diagram:

 “AND” represents different or multiple steps required to achieve the goal. In figure

3 the goal is to modify the /etc/passwd file. Without legitimate access to the server

Figure 3 – Attack Tree

AND

OR OR

A Hybrid Approach to Threat Modelling 10

an attacker must gain access to the server (remote login) AND escalate to root

privilege.

 “OR” represents different ways to achieve the goal. In figure 3, an attacker can

either exploit the vulnerability of the webserver OR SSH service to establish remote

login or access to the server. Similarly, to escalate to root privilege, an attacker can

either exploit linux-kernal vulnerability OR a vulnerable service that runs as root.

 Once the possible attacks against an application have been modelled in a tree

structure, one can assign attributes to those attacks. Following are the attributes that can

be applied:

 Probability of an attack with a standard categorization - for example High, Medium,

Low

 Cost of an attack considering the tools / software required to perform the attack

 Competency required to perform the attack – for example, script kiddie, basic

working knowledge, expert or specialist

 Impact to business – for example, reputation damage, financial loss, non-

compliance to regulatory requirements and privacy violation

 Other than considering the attacker’s goal, an attack tree can be built based on:

 Attack patterns such as injection attacks, Man-in-the-Middle attacks, Denial of

Service, and Advanced Persistent Attack (Malware).

 Attacks specific to protocols - application security researcher Ivan Ristic performed

an interesting threat model exercise focusing on the SSL protocol [8].

 Building An Attack Tree: Following are the 3 simple steps to construct an

attack tree:

STEP-1: Identify the goals – each goal can be a separate attack tree, in case of large

attack vector even sub-goals can be represented in separate tree structures.

STEP-2: Identify the various categories of attacks required to accomplish the goals.

STEP-3: If a generic attack tree library exists, it can be plugged into the attack tree

being constructed.

A Hybrid Approach to Threat Modelling 11

 Consider a scenario where attacks against administrative credentials and

functions have to be explored. This being the overall goal, it can be further broken down

into two separate sub-goals:

 To obtain admin credentials

 Perform administrative function without appropriate authorization

Following representations depict the attack tree for these sub-goals:

Figure 4 – Attack Tree to obtain Admin credentials

Figure 5 – Attack Tree to obtain Administrative Functions

A Hybrid Approach to Threat Modelling 12

Limitations of Attack Tree: Upon identification of the attacks to accomplish

the goal, attributes of the attacks have to be considered. As mentioned earlier, details

such as probability of the attack, cost of the attack, and countermeasures have to be

documented to achieve the completeness of the exercise. However, it is impossible to

capture all those details, and adding such information will complicate the tree structure

at the expense of readability. Instead these attacks have to be assigned a reference

number and their attributes must be documented against their corresponding attack in a

separate table. Moreover, this model is suited to providing a high-level representation

of the attacks, but does not suit modelling of threats at a more granular level. The attack

tree when used independently as a threat modelling technique does not yield the best

result.

2.2.3 Attack Library

Attack Library is a collection of attacks for finding threats against the

application being developed [9]. This is another type of threat modelling technique

available to identify threats by looking from an attacker’s perspective. The idea is to

provide as much details as possible for an attack type (for example code injection) to

help threat modellers or the developer community to understand the landscape of

threats. Any threat modelling technique adopting the attacker’s perspective is more of

a checklist model, i.e. traverse the library of attacks applicable in the context of the

application, analyse whether the threats are handled, and identify countermeasures.

An attack library can be constructed based on the following:

 List of possible attacks against the application

 List of potential vulnerabilities in the application

 List of software weakness (programming errors) introduced in the application

 Before proceeding, let’s review the difference between a software vulnerability

and a weakness. Software weaknesses can be viewed as programming errors that may

lead to potential vulnerabilities in the application, while a software vulnerability is a

flaw in the application that can be used by an attacker to gain access or deny service.

Hence both of these aspects should be considered in the attack library.

A Hybrid Approach to Threat Modelling 13

 Organizations can either develop their own library or leverage formal lists or

dictionaries published by the security community or consortium such as Open Web

Application Security Project (OWASP), Common Weakness and Enumeration (CWE),

and Common Attack Pattern Enumeration and Classification (CAPEC). Let us look at

each of these libraries:

 OWASP [10]: Open Web Application Security Project is an open community

dedicated to enabling organizations to conceive, develop, acquire, operate, and

maintain applications that can be trusted. They create best practices methodologies,

documentation, articles, and tools to ensure development of secure applications.

Periodically they release a list of the top ten web application vulnerabilities to educate

developers and security professionals about the most important web application

security weakness and its consequences. For each of these vulnerabilities, OWASP

provides detailed threat agents, attack vectors, security weaknesses, technical impact,

business impact, countermeasures, and examples of attack scenarios. OWASP proposed

security practices and methodologies are widely used for web application projects,

hence it is be suitable to an exercise such as threat modelling.

 CAPEC [11]: It is a publicly available, community-developed list of common

attack patterns along with a comprehensive schema and classification taxonomy. Attack

patterns are descriptions of common methods for exploiting software systems. It

describes how an adversary can attack the vulnerable system and common techniques

used to tackle these challenges. These patterns also help categorise the attacks and teach

the development community to better understand and effectively defend against the

attacks. CAPEC are well structured with a total of 504 attack patterns grouped into 16

mechanism of attacks (as per version 2.8). This is available in this link

https://capec.mitre.org/data/definitions/1000.html

 CAPEC provides exhaustive details about the attacks : summary of attack,

attack execution flow, attack prerequisites, typical severity, typical likelihood of

exploit, methods of attack, examples – instances, attacker skills or knowledge required,

resources required, probing technique, indicators-warnings of attack, solution and

mitigation, attack motivation – consequences, injection vector, payload, activation

A Hybrid Approach to Threat Modelling 14

zone, payload activation impact, security requirements, CIA impact, and technical

context. Although this list is rich with information, how much of these details are

necessary for performing an effective threat modelling exercise?

 Any organization or team new to threat modelling can be overwhelmed with

information and miss out on important aspects to consider. Even experienced threat

modellers may find this method more time consuming and thus adversely affecting

productivity.

 CWE [12]: It is a formal list or dictionary of common software weaknesses that

can occur in software architecture, design, code or implementation that may lead to

exploitable security vulnerabilities. In common terms, CWE has identified critical

programming errors that may lead to software vulnerabilities. CWE serves as a standard

measuring parameter for software security tools targeting these weaknesses. The

purpose is to provide a common baseline standard for weakness identification,

mitigation, and prevention efforts. As per version 2.9 there are in total 1004 CWEs

which can be grouped based on various criteria. Each of the primary clusters have

secondary clusters. Like CAPEC, the primary cluster is to categorize software weakness

for better understanding. Details provided in each CWE include: description, applicable

platform, common consequences, demonstrative example, observed examples, and

related attack patterns.

 Procedure of using Attack Library technique in a threat modelling exercise

is simple:

STEP 1: Build an attack library or identify an existing library that can provide

information about attack patterns.

STEP 2: Identify the area (based on the development scope or project) for which threat

modelling exercise is applicable.

STEP 3: Review the application that was developed against each of the attack /

vulnerability / weakness in the attack library

STEP 4: Document the potential threats and countermeasures.

 Let us consider a scenario where a threat modelling exercise using Attack

Library technique is performed for an application. Key focus areas relating to web

application security, at a broad-level, can be categorized into the following:

A Hybrid Approach to Threat Modelling 15

 authentication

 authorization

 cryptography

 session management

 data validation

 secure configuration

 logging

 error handling

 Each of the above categories is considered in relation to the relevant references

in the attack library. The following represents the references in the library for

Authentication:

Weakness Vulnerability Attack

o CWE-287: Improper

Authentication

o CWE-288: Authentication

Bypass Using an Alternate Path

or Channel

o CWE-289: Authentication

Bypass by Alternate

o CWE-290: Authentication

Bypass by Spoofing

o CWE-307: Improper Restriction

of Excessive Authentication

Attempts

o CWE-308: Use of Single-factor

Authentication

o A2-Broken

Authentication and

Session Management

o CAPEC-114:

Authentication Abuse

o CAPEC-115:

Authentication Bypass

o CAPEC-49: Password Brute

Forcing

o CAPEC-302:

Authentication Bypass by

Assumed-Immutable Data

o CWE-305: Authentication

Bypass by Primary

Weakness

o CWE-308: Use of Single-

factor Authentication

 By creating a library for each of the application security schemes, it is possible

to iterate each of these entries against the application design and identify issues. The

coverage and depth of the attack library should depend on the context and criticality of

the application. For example, a multi-factor authentication mechanism should be

considered for an internet banking application, but the same may not be required in an

online accommodation / travel application.

 Limitations of Attack Library: There are some significant limitations in this

technique:

 Suitable as a check-list model, hence cannot be applied during the design phase.

A Hybrid Approach to Threat Modelling 16

 Information rich and needs referencing which may lead to time consuming and a

tedious exercise (trade-off between exhaustive details vs productivity).

 Countermeasures suggested in the attack library (OWASP, CAPEC, CWE) are

abstract or at high-level, and may not align to programming language or framework

used in the organization.

 This technique helps to think from attacker’s perspective, but poses a challenge to

structure a way to address the defence against these attacks.

2.3 Hybrid Model – An Effective Approach to Threat Modelling

As discussed in the previous sections, there are limitations when each of these

threat modelling techniques are implemented independently. When implemented as

separate techniques, some of the key aspects required for threat modelling may be

missed, thus impacting the productivity and comprehensiveness of the exercise.

Therefore the optimal approach is to adopt a hybrid model drawing from the best of

each of these techniques.

 To perform a productive and comprehensive threat modelling, include the

following three aspects:

 Structured approach

 Optimum detail

 Readability

 Structured Approach: A successful process must be schematised and should

adopt a procedure. It enables establishment of the objective, capture of appropriate

details, and implementation of the agreed procedure to achieve the set objective. For

example, a software development team adopts a suitable software development

lifecycle model such as agile or waterfall so that objectives are clearly understood and

translated into desired software products in a timely manner. Similarly, threat

modelling should embrace a structured approach so that desired outcomes can be

achieved from the exercise.

 Optimum Detail: Providing information that can be easily interpreted and acted

upon serves as a critical factor to the successful outcome of a process. The consumers

A Hybrid Approach to Threat Modelling 17

of this exercise are mostly software developers / architects / testers who might not

necessarily be security experts. Hence providing either excessive information or

minimal details will not only impact the result of the exercise but also the security of

the software application. Therefore publishing the optimum amount of detail will

immensely contribute to the successful outcome of the exercise.

 Readability: It is not adequate if the exercise has a structured approach and

contains optimum details alone. Representation of data in the best possible way

guarantees the completeness of the exercise. In software development, the best way to

represent complex information or work flow within an application is via a data flow

diagram (DFD). A flow chart may not suit this scenario. Likewise in threat modelling

the data should be presented in a readable format, contributing to the overall

simplification of the exercise. The threat modelling process can be represented as

follows:

 Design Analysis: The first step is the study of DFD or architecture diagrams to

obtain knowledge about the data flow in the application component. If required the

Figure 6 – Threat Modelling Process

A Hybrid Approach to Threat Modelling 18

areas that may require further consideration from the application security context

should be marked.

 Threat Identification: To identify the threat or what could go wrong, the following

elements are considered:

o Establish Trust Boundary: Trust boundary is a line beyond which the web

application will not have control over the data. This indicates that any data sent

from elements beyond this line should always be validated before being

processed. The objective of establishing a trust boundary is to define the

potential threat actors i.e. users who can launch an attack against the application.

In a diagram, the trust boundary is often depicted as dotted lines representing

trust for components within the lines. Any component beyond this boundary

should be treated as unknown and should be scrutinized.

o Identity Threat Actors: Once a trust boundary is established the threat modellers

will know the entities whose request or input should always be validated.

Anyone who poses a threat to the web application can be classified as a threat

actor. This can include legitimate users of the application or adversaries (not

having approved access to the web application) on the internet trying to attack

the web application. While analysing complex enterprise applications that

contain multiples user roles with varying privileges, it is often essential to create

a list of threat actors. Defining these threat actors is completely based on the

criticality and business context of that web application.

o Identity Attack Surface: Attackers may launch their payload from various entry

points in the application and ultimately impact the business. Threat actors define

Figure 7 – Trust Boundary

A Hybrid Approach to Threat Modelling 19

“who will attack” whereas attack surface indicates “from where will the attack

originate”. While examining the DFD, the points where data transacted from

untrusted sources are identified and marked as potential entry points. For

example, a web application authentication page where users submit credentials

(username and password via input fields) to access protected resources. This

can be an entry point for the attacker to conduct a brute-force attack or SQL

injection attack via these input fields. Identifying the attack surface completes

the process of threat enumeration, as one would have adequate information on

the trust boundary, potential adversaries, and the point from where the attack

will be launched.

 Threat Categorization: The objective of threat categorization is to frame the

countermeasures for the given scenario. There are bound to be challenges while

categorizing, especially when threats overlap multiple categories. In such situations,

mark the threats in the applicable categories, but use the primary attack objective to

help identify the countermeasures. For example, consider a threat scenario where a

session id is not well protected (uses weak hashing algorithms). An adversary

attacks and obtains a valid session id, while either at rest (cached in web browser)

or in transit, and then uses it to impersonate a legitimate user. A typical dilemma

may be to categorize it as either information disclosure, spoofing, or both. In this

case, the objective of the attack is to obtain the exposed session id while the result

of the compromise may lead to spoofing. Because the attack objective relates to

information disclosure, categorized the threat as information disclosure and

document the associated countermeasure: create session ids using strong

cryptographic algorithms and transmit values over secure communication channels.

 Threat Mitigation: The following points have to be addressed to arrive at an

effective threat mitigation plan:

o Countermeasures: This is a set of actions taken to defend the attack for the

given threat scenario. In this section, threat modellers should provide both

conceptual and technical details to secure the web application. For example,

the countermeasure for SQL Injection Attack: using of parameterized

queries, stored procedures, and whitelist input validation must be explained

conceptually for the software developers to understand the approach for

defending against such an attack.

A Hybrid Approach to Threat Modelling 20

o Reference to Best Practices: A guide for implementing the identified

countermeasures should be presented as references to well-known standards

such as OWASP and CWE or secure coding notes built in an organization

that contain a summary about the attack and compliant code snippets, in the

programming language used in the organization.

The following representation depicts mapping of the appropriate threat modelling

technique to the threat modelling activity:

 As indicated in the above diagram, the STRIDE technique should be used for

threat identification and threat categorization, and attack library for threat mitigation.

Attack tree should be used to provide an abstract view about attacks against a particular

feature or component of an application. The following points provide the rationale

behind this mapping:

 STRIDE (per-element and per-interaction) will provide the required context, in

terms of the elements involved and specific interaction or flow for a feature in the

application, enabling threat modellers to cogitate upon the potential threats and

develop threat scenarios.

 Threats are then categorized by considering each of the attack properties in STRIDE

and marking the most appropriate one for the given threat scenario.

 Threat mitigation will be formulated by analysing the possible attacks for the threat

scenario from rich information contained in the Attack library / reference.

 The threat modelling exercise has to be documented so that software developers

use the data while developing the application and also for future reference. Hence it is

imperative to develop a suitable template to gather and represent the data by adopting

Figure 8 – Threat Modelling Hybrid Model

A Hybrid Approach to Threat Modelling 21

the hybrid model covering the key aspects of a structured approach, optimum details

and readability. The template is divided into two parts:

 For capturing data for scoping

 For capturing data relating to activities in threat modelling

Template for capturing the scoping details:

Table-1: The first four rows capture the summary about the specific area selected for

threat modelling, details about the team and references to the design that will be

analysed.

Table-2: Various users of the application and even external web services or systems

interacting with the application are mentioned along with their scope to the trust

boundary.

Table-3: Threat actors: potential threat agents or entities who can harm the application

are documented.

Table-4: Attack surface: different entry points by which the threat actors can launch

their payload and gain illegitimate access to the application.

Table-5: Threat consideration: threat modellers can highlight the schemes that are

considered as part of this threat modelling exercise, as it provides a nice overview and

understanding about areas covered in this exercise.

Template to capture the data pertaining to threat modelling:

Figure 9 – Threat Modelling Template for scoping

A Hybrid Approach to Threat Modelling 22

Col-1: Ref No: a nomenclature to uniquely identify a threat scenario. This can be

subsequently mentioned in various stages in the SDLC process to ensure the threat has

been adequately handled.

Col-2: Elements: indicates the element (external entity, data flow, data store, and

business logic) to which the threat is mapped. This aids consideration of the threats

specific to those elements.

Col-3: Interaction: The specific flow in the application to which the threat scenario will

be addressed.

Col-4: Threat scenario: captures “what could go wrong” considering the element

involved and specific flow in the application.

Col-5 to 10: STRIDE: these columns are used to categorize the identified threat. As

mentioned earlier, the threat can be categorised in more than one attack property which

will help in determining precise countermeasures.

Col-11: Countermeasures: conceptual details about the security controls that needs to

be implemented to tackle the identified threat scenario. The countermeasures need to

be effective in order to ensure that the threats are not realized.

Col-12 to 14: Attack library: illustrates the best practices by providing a description of

the possible attacks, and secure coding practises to prevent the same. This serves as a

guideline for software developers while implementing the countermeasure for the threat

scenario. It is in the best interest of the organization to develop their own attack library

or secure coding guidelines as it will be aligned to their technology stack (programming

language and development frameworks). Solutions provided in CAPEC or CWE may

be abstract and not in the programming language adopted by the organization. However

the intention is to provide a direction for the software developers on secure coding

practices which will result in developing secure applications.

A Hybrid Approach to Threat Modelling 23

3. Conclusion

 In the face of increasing attacks at the application layer and enterprise

applications moving towards the cloud, security is viewed as a key business

requirement. Understanding the threat landscape is a perquisite for building secure

applications. Threat modelling helps organizations realise their own threat landscape

and detect and mitigate flaws early in the development process.

 There are various techniques published for conducting a threat modelling

exercise. The most common techniques such as STRIDE, Attack Tree, and Attack

Library are discussed in this paper. Organizations tend to be prejudiced towards a

particular technique while performing the exercise. However this approach will be

detrimental to the objective of performing an effective and comprehensive exercise.

The STRIDE technique may be good in enumerating the threats however does not aid

in developing countermeasures / mitigation plan. Attack Tree provides an overview

about the attack surface at some level of abstraction which results in not capturing data

essential for understanding the threat scenario. Finally Attack Library may provide

information about the attack vectors and be suitable as checklist model, it may not

contribute to the completeness we expect in the exercise.

 To reap the complete benefit from the exercise we have to utilize a combination

of each of these techniques to perform the various activities in the threat modelling

process. Critical success factors for the threat modelling exercise lies in adopting a

structured approach, providing optimum details and readability. Hence this paper

proposes a hybrid model that would implement the techniques that best suit each of the

activities in threat modelling.

Acknowledgments

I wish to thank Mr. Marty Solomon - Senior Director Software Security Architecture

and Mr. Tom Connor – Director Software Engineering, Pegasystems Inc. for providing

their valuable feedback and being of support.

A Hybrid Approach to Threat Modelling 24

References

[1] Bird, J., Johnson, E., & Kim, F. (2015, May). 2015 State of Application Security: Closing

the Gap. Retrieved from https://www.sans.org/reading-room/whitepapers/analyst/2015-

state-application-security-closing-gap-35942

[2] Shostack, A. (2014). In Threat Modeling Designing for Security (p. 61).

[3] Shostack, A. (2014). In Threat Modeling Designing for Security (p. 78).

[4] Osterman, L. (2007, September 10). Threat Modeling Again, STRIDE per Element.

Retrieved from https://blogs.msdn.microsoft.com/larryosterman/2007/09/10/threat-

modeling-again-stride-per-element/

[5] Shostack, A. (2014). In Threat Modeling Designing for Security (p. 80).

[6] Shostack, A. (2014). In Threat Modeling Designing for Security (p. 87).

[7] Schneier, B. (1999, December). Attack Trees. Retrieved from

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

[8] Ristic, I. (2009, September 09). SSL Threat Model. Retrieved from

https://blog.ivanristic.com/2009/09/ssl-threat-model.html

[9] Shostack, A. (2014). In Threat Modeling Desiging for Security (p. 101).

[10] OWASP Top 10 Vulnerabilities. (2013). Retrieved from

https://www.owasp.org/index.php/Top_10_2013-Top_10

[11] CAPEC: Mechanisms of Attack. (2015, December). Retrieved from

https://capec.mitre.org/data/definitions/1000.html

[12] CWE: Software Fault Pattern. (December). Retrieved from 2015:

https://cwe.mitre.org/data/graphs/888.html

