
Forensics the EZ Way:
With the wealth of data stored on Windows computers it is often difficult to know where to start. If you 
encounter a sizable hard drive, it could be hours or even days before you’re ready to start your investigation, 
never mind reporting the results. Using the EZ tools provides scriptable, scalable, and repeatable results 
with astonishing speed and accuracy. Go from one investigation a week to several per day. This type of 
performance is common with the command line versions of EZ Tools. This poster will show you how.

digital-forensics.sans.orgDFPS_Command-Line_v1.3_09-21

Operating System  
& Device In-Depth

Incident Response  
& Threat Hunting

FOR308
Digital Forensics  

Essentials

FOR498
Battlefield Forensics  
& Data Acquisition

GBFA

FOR500
Windows Forensic  

Analysis
GCFE

FOR518
Mac and iOS Forensic  

Analysis and  
Incident Response

FOR585
Smartphone Forensic  

Analysis In-Depth  
GASF

FOR508
Advanced Incident  

Response, Threat Hunting,  
and Digital Forensics  

GCFA

FOR572
Advanced Network Forensics: 
Threat Hunting, Analysis, and 

Incident Response  
GNFA

FOR578
Cyber Threat  
Intelligence

GCTI

FOR610
Reverse-Engineering 

Malware: Malware Analysis 
Tools and Techniques

GREM

SEC504
Hacker Tools,  

Techniques, Exploits,  
and Incident Handling  

GCIH

Results in Seconds  
at the Command Line

The most trusted source for 
cybersecurity training, certifications, 
degrees, and research

Common CLI  
Options & Switches
Short options (single letter) 
are prefixed with a  
single dash.

Long options are prefixed 
with two dashes.

VSCMount – Volume Shadow Copy Mounter
Type of Artifact
Volume Shadow Copies are created periodically to capture the previous state 
of a system. This means that deleted and wiped files, or even older versions 
of a file or folder, can be recovered from volume shadow copies. VSCMount 
allows an investigator to mount each volume shadow copy.

Basic Usage
Before running the VSCMount tool, an evidence file must itself be mounted 
as a physical drive. Once mounted, note the drive letter. In the example below 
it is drive letter E.

Open an Administrator PowerShell window and run VSCMount. In the example 
command below, the “--dl” switch stands for “drive letter”. This is the drive 
letter from the evidence file mounted above. The “--mp” switch stands for 
“map point”. In this example, the drive letter is “E”. This is the location where 
VSCMount will create the links to all of the volume shadow copies found on 
the mounted evidence. In this instance, the volume shadow copies will be 
mapped to “C:\VSCs”.

.\VSCMount.exe --dl E --mp C:\VSCs

Key Data Returned 
When run, VSCMount maps each 
shadow copy to a separate folder. From 
the example command given above, 
VSCMount found and mapped three 
volume shadow copies.

Inside the map point, there are three 
mapped volume shadow copies from the 
mounted E drive. Each of these can be 
expanded and viewed as needed.

Advanced Usage
PRO TIP: Looking at the mapped 
Volume Shadow Copies, it isn’t 
immediately clear as to when they were 
created. Adding the “--ud” switch to 
the command adds the creation date of 
each mapped Volume Shadow Copy, as 
shown in the example below:

.\VSCMount.exe --dl E --mp C:\VSCs --ud

SQLECmd – SQLite Parser
Type of Artifact
SQLite databases are used to store data for many applications. On a Windows 
computer, the most common use of SQLite is web browser data such as 
history, cloud storage, chat applications, phone backups, etc.

As each SQLite database is different, SQLECmd makes use of custom maps. 
These maps are created to parse specific items. For example, when parsing the 
Google Chrome History database, SQLECmd recognizes the database schema 
(layout) for application and uses the relevant map file to interpret the data 
specific to Google Chrome.

Basic Usage
To parse a single SQLite database, point SQLECmd at a single database file 
using the -f switch.

SQLECmd.exe -f G:\databases\database.db --csv G:\SQLECmd_output

To parse a folder of SQLite databases, point SQLECmd at the folder and use 
the -d switch.

SQLECmd.exe -d G:\databases\ --csv G:\SQLECmd_output

Key Data Returned 
Depending on the database being analyzed, several CSV files may be output. 
In the example of Google Chrome, pointing SQLECmd to the history database 
will result in history, downloads, and keyword search files, each containing 
their respective results.

Advanced Usage
PRO TIP: SQLECmd only parses a database if a map file exists for that schema. 
Due to the large number of SQLite-based applications, it is impossible to have 
maps for every eventuality. However, creating a custom map file is as simple 
as generating a SQL query and adding it to SQLECmd folder.

SumECmd – User Access Log Parser
Type of Artifact
User Access Logs are found in Windows Server operating systems. These logs 
records user requests related to a server. For example, if a user connects to 
a server, the username and client IP address are recorded with associated 
date and time. This can help track a user’s lateral movement through the 
environment.

Basic Usage
SumECmd takes the contents of the C:\Windows\System32\LogFiles\SUM 
folder as input. However, the databases stored in this folder must first be 
repaired by copying the contents of the folder and running the following 
commands on the copied files:

esentutl.exe /r svc /i /o

esentutl.exe /p Current.mdb

esentutl.exe /p SystemIdentity.mdb

esentutl.exe /p <GUID>.mdb

Note that <GUID>.mdb is not actually named this way, the GUID will be 
different on every server. Once the repair is complete, SumECmd can be run. 
In the example below SumECmd is being run against the repaired files in the 
copied folder.

SumECmd.exe -d G:\sum_fixed\ --csv G:\sum_output

Key Data Returned 
A series of files is output from running the command. Perhaps the most 
significant of the files is named ClientDetail. In this file we are provided with 
dates and times of when the activity occurred and Role Description (used to 
identify the service being accessed). In addition, the domain, username, and 
IP address of the incoming access is also recorded.

Advanced Usage
PRO TIP: Looking for domains, users and IP addresses that are not part of  
the organization will help to detect anomalous behavior and gives clues  
about the attacker.

DIGITAL FORENSICS & INCIDENT RESPONSE

Dir to process
File to process
Quiet mode
Custom date/Time format
Higher precision timestamps are displayed and will also be reflected in any exported data
Data can be exported to several formats. You can request multiple formats at the same time. 
Shows debug info during tool execution (more info)
Shows trace info during tool execution (most info) can be run with debug (--debug --trace)
Sync updates from GitHub for KAPE targets & module updates.  For evtxecmd map updates
Process Volume Shadow Copies – Supported in EvtxECmd, MFTECmd, PECmd,and RECmd

-d
-f
-q
--dt
--mp
--csv  --json  --html
--debug
--trace
--sync 
-vss

Options Definition

bstrings – Extract Text From Binary Files
Type of Artifact 
Bstrings can be used to search any type of file for potentially valuable information. 

Basic Usage 
bstrings.exe -f <file> 

Interesting options and switches: 

bstrings.exe -f <file> --ls "password" 

Use the -x and -m switches to set maximum and minimum string lengths. 

Use --off to show the offset for each search hit. 

Advanced Usage 
--lr  Regular Expression searches bstrings and also contains over a dozen 
built-in regular expression patterns for things like credit card numbers, social 
security numbers, IP addresses, email addresses, and more. 

-p shows a list of built-in regular expressions. When using a built-in expression, 
use the value in the Name column. For example, to look for email addresses, 
use this command: 

bstrings.exe -f <some file> --lr email 

bstrings also allows searching for several strings or regular expressions at 
once using the --fr and --fs switches. 

In addition to Unicode strings, bstrings looks for strings encoded using 
Western (1252) code page. Use the --cp switch to search in any other code page 
supported by .net.  

Option/Switch Use Example

Search for string
Search with regular expression
List builtin regular expressions
The XX represents a builtin regex
Read file containing regex’s to use in search
List all options
Use a different ANSI code page

bstrings -f suspect.exe --Is password
bstrings -f suspect.exe --Is (ntos|win32k)
bstrings -p
bstrings -f suspect.exe --Ir ipv4
bstrings -f suspect.exe -fr DFIR_RegExs.txt
bstrings -h
bstrings -f Powershell.evtx --Is download --cp 1201

--Is
--Ir
--p
--Ir XX
--fr
-h
--cp

note: Windows Event Log require the 1201 specific code page for bstrings to find the search string

A full listing of available code pages is available at 
https://goo.gl/ig6DxW

AppCompatCacheParser – Shimcache Parser
Type of Artifact 
Application Compatibility Cache allows for older applications to be 
run on newer versions of Windows. When an executable is found, 
Windows determines how best to run the program and stores that data. 
AppCompatCache can be used to determine what was run.

Basic Usage
AppCompatCacheParser, use the -f switch and point that to the SYSTEM  
registry hive. 

In the example command below, AppCompatCacheParser is run against a 
SYSTEM hive. Output is stored on the G: drive to the “AppCompatCache” folder. 
The AppCompatCacheParser application creates an output file.

AppCompatCacheParser.exe -f E:\Windows\System32\config\SYSTEM 
--csv G:\AppCompatCache

Key Data Returned
The columns of most significance are typically the “Path” (the location and name 
of the executable), “LastModifiedTimeUTC” (the last written time of the executable) 
and “Executed” (whether the executable was run). The most common mistake 
made by forensicators is that they’ll assume that the LastModifiedTimeUTC 
value refers to the execution of the file. Don’t fall into this trap!

Advanced Usage
PRO TIP: Watch for changes at the start of the “Path”. Anything that shows 
“SYSVOL” ran from the host’s OS volume. Other volumes will be recorded by 
their drive letter.

PRO TIP: As a file’s last written time does not change when a file is moved, 
renamed or copied, it may be possible to track the same executable across 
a single or even multiple systems, as a new entry will be created in the 
AppCompatCache when the file is executed from a different location or with 
a different name. The table below shows the same executable being run in 
different scenarios. We know they are all the same executable because they 
share the same last written time.

8/22/2019 11:00:12
8/12/2019 19:21:00

Yes
Yes

SYSVOL\Windows\System32\notepad.exe
E:\TACTICAL Subject\f-response-tacsub.exe

Path Last Modified Time UTC Executed

10/23/2019 14:27:18
10/23/2019 14:27:18
10/23/2019 14:27:18

Yes
Yes
Yes

SYSVOL\Windows\System32\spinlock.exe
SYSVOL\Users\SRogers\AppData\Local\Temp\spinlock.exe
SYSVOL\Windows\prune.exe

Path Last Modified Time UTC Executed

RBCmd – Recycle Bin Artifact Parser
Type of Artifact 
When a user deletes a file, it is sent to the Recycle Bin. During that process, it 
is renamed. For example, if cat.jpg was deleted, the deleted file would have a 
name such as $R7YQ28P.jpg. The $R prefix means that it contains the content 
(Resource) of the original file. In addition to the $R file, a new corresponding 
$I (Information) file is created in the Recycle Bin. The $I file contains the 
information about the original location of the file and the date and time of 
deletion. RBCmd takes this data and presents it in a human-readable format.

Basic Usage
In this example, RBCmd is being run against a single $I (information) file 
on a mounted drive (E:). The output is displayed in the window where the 
command was run.

RBCmd.exe -f E:\$Recycle.Bin\S-1-5-21-718126207-1171771683-
1750804747-1001\$I7YQ28P.jpg

 
 

In the next example, RBCmd is being run against the parent folder of the $I 
file above, thereby parsing all of the $I files. This time, the output is stored 
in a CSV stored in G:\RBFiles with the date and time in the file name. Use 
of the -q switch prevents all of the output from being sent to the window, 
making processing faster.

RBCmd.exe -d F:\$Recycle.Bin\S-1-5-21-718126207-1171771683- 
1750804747-1001 --csv G:\RBFiles -q

Key Data Returned
Processed Recycle Bin data is either output to the screen (if no output file 
is specified). The screenshot below shows an example of the output when run 
against a single file. The source file is shown, as is the file size, original file 
name and location and date of deletion.

 
 

Advanced Usage
PRO TIP: Running RBCmd on a mounted drive will work, but remember that 
when doing so, Windows does not see deleted files, so RBCmd won’t pick them 
up. It is often worth extracting deleted $I files using another tool and then 
running RBCmd over those recovered files.

Source file: .\$IG1VEXX.xls

Version: 1 (Pre-Windows 10)
File size: 16384 (16KB)
File name: C:\Users\Donald\SkyDrive\Documents\WACC Calc Spreadsheet -SECRET.xls
Deleted on: 2013-10-21 18:32:52.5320000

JLECmd – JumpList Explorer Command Line 
Edition
Type of Artifact 
Jumplists store critical information about files and folders that have been used 
in Windows. Among other things, Jumplists contain information about the 
application used to open target files and folders and store metadata specific 
to them. Those metadata contain details such as file name and location, dates 
and times, etc. JLECmd makes parsing this data simple and quick.

Basic Usage
JLECmd takes either a single Jumplist file or a directory of Jumplists as 
input. If parsing a single Jumplist, use the -f option. If parsing a directory of 
Jumplists, use the -d option. It is also suggested that the -q switch be used 
to avoid dumping all results to the screen (which can dramatically slow down 
JLECmd’s execution time).

In the example command below, JLECmd is being run against a single 
Jumplist. Output is stored on the G: drive to the “Jumplists” folder. 

JLECmd.exe -f E:\Users\Donald\AppData\Microsoft\
Windows\Recent\AutomaticDestinations\ff103e2cc310d0d.
automaticDestinations-ms --csv G:\Jumplists -q

In the example command below, JLECmd is being run against all automatic 
jumplist files stored for the user “Donald”. 

JLECmd.exe -d E:\Users\Donald\AppData\Microsoft\Windows\
Recent\AutomaticDestinations --csv G:\Jumplists -q

Key Data Returned 
The JLECmd output contains two important categories of data, evidence of 
execution and evidence of file knowledge. The table below shows some of the 
more significant columns to include in your review.

Advanced Usage
PRO TIP: Watch for changes in the “DriveType”, “VolumeSerialNumber” 
and “VolumeLabel” columns as the data in these columns can indicate 
whether files have been opened from external devices. In the example below, 
the change in these columns shows that a file was opened from the USB 
device named “FILES”.

Additionally, the local path may show the same drive letter for multiple 
removable devices (e.g., F:\) but you should also review the volume serial 
number and the volume label to determine if the drive letter is associated 
with the same or different devices.

Column Name Forensic Value

Human readable name for AppID
Used with MRU to detemine most recentely opened file in the Jump List
Used with DestListVersion to detemine most recentely opened file in the Jump List
Location and name of file opened
Creation Timestamp of file referenced in JL
Modification Timestamp of file referenced in JL

AppIdDescription
DestListVersion
MRU 
Path
TargetCreated
TargetModified

Target  
Modified Drive Type Volume Serial 

Number Volume Label Local Path

Fixed storage media 
(Hard drive)
Fixed storage media 
(Hard drive)
Removable storage 
media (Floppy, USB)
Fixed storage media 
(Hard drive)

7E58AAB0 

7E58AAB0 

B0A9FE90 

7E58AAB0

Windows10_OS 

Windows10_OS 

FILES 

Windows10_OS

C:\Users\srogers\Documents\NETFLIX SEC 
Filings\SEC-NFLX-1193125-12-53009.pdf
C:\Users\srogers\Documents\Netflix 3Q13 
Conference Call Announcement 09 30 13.pdf
F:\Forms\fy08-form-10k.pdf 

C:\Users\srogers\Documents\NETFLIX SEC 
Filings\SEC-NFLX-1065280-13-8.pdf

9/1/2018 
16:53
9/27/2018 
17:42
9/3/2018 
14:13
9/1/2018 
16:43

A mapping of app_ids to app name can be found at
https://for500.com/appid.

SRUMECmd – SRUM Parser
Type of Artifact
SRUM (System Resource Usage Manager) records application usage, network 
usage, power usage, etc. Investigation of this artifact can assist in determining 
what applications were used, while also providing context into the network 
connection (including names of wireless networks) that was in use at the time. 
SRUM can also determine how much data was uploaded and downloaded by 
the application and even whether a laptop was connected to power or running 
on battery at the time.

Basic Usage
SRUMECmd takes a SRUDB.dat database and the SOFTWARE registry hive as input. 
However, the SRUDB.dat file must first be repaired by copying the contents of 
the Windows\System32\sru and running the following two commands in the 
folder containing the copied files:

esentutl.exe /r sru /i /o

esentutl.exe /p SRUDB.dat /o

Once the repair is complete, SRUMECmd can be run. In the example below 
SRUMECmd is being run against our newly repaired SRUDB.dat file. The -r (registry) 

switch points to the SOFTWARE registry hive on a mounted evidence file (E:). The 
results are output to another folder.

SRUMECmd.exe -f G:\sru_fixed\SRUDB.dat -r E:\Windows\System32\
config\SOFTWARE --csv G:\SRUM_output

Key Data Returned 
Several CSV files will be output 
from running the command. 
Each CSV represents a different 
aspect of SRUM, including 
application resource usage, 
energy usage, network usage, 
network connections, etc. Each 
table is named and formatted according to the data contained therein. Note 
that the results are provided in time segments of 30 to 60 minutes.

Advanced Usage
PRO TIP: As SRUM is recorded in 30-to-60-minute segments, the data can 
be opened in Excel and a graph plotted to show specific bandwidth and/or 
application usage over time. The graph output can then be used in reports to 
provide a clear visual of activity.

sansforensics@sansforensics dfir.to/MAIL-LIST

sans.org/eztools

https://digital-forensics.sans.org
https://www.sans.org/cyber-security-courses/digital-forensics-essentials/
https://www.sans.org/cyber-security-courses/battlefield-forensics-and-data-acquisition/
https://www.sans.org/cyber-security-courses/windows-forensic-analysis/
https://www.sans.org/cyber-security-courses/mac-and-ios-forensic-analysis-and-incident-response/
https://www.sans.org/cyber-security-courses/advanced-smartphone-mobile-device-forensics/
https://www.sans.org/cyber-security-courses/advanced-incident-response-threat-hunting-training/
https://www.sans.org/cyber-security-courses/advanced-network-forensics-threat-hunting-incident-response/
https://www.sans.org/cyber-security-courses/cyber-threat-intelligence/
https://www.sans.org/cyber-security-courses/reverse-engineering-malware-malware-analysis-tools-techniques/
https://www.sans.org/cyber-security-courses/hacker-techniques-exploits-incident-handling/
https://digital-forensics.sans.org
https://digital-forensics.sans.org/community/downloads/digital-forensics-tools


This poster was created by Mark Hallman and  
Lee Whitfield with support from the SANS DFIR Faculty

©2021 Mark Hallman and Lee Whitfield. All rights reserved.

WxTCmd – Timeline Explorer
Type of Artifact
The 1803 update of Windows 10 introduced the Timeline feature. This keeps 
a record of the last 30 days of applications and files opened by a given user. 
The data for this are also synchronized from other computers where the user 
has logged in with their Microsoft account. 

Basic Usage
WxTCmd takes a single ActivitiesCache.db file as input. Output for this 
command is not output to the screen, so a CSV needs to be specified.

In the example command below, WxTCmd is being run against 
the ActivitiesCache.db file. Note that the subfolder named 
“a3936c317ac1474e” is not consistent. An equivalent, differently named 
folder will be present for other users.

WxTCmd.exe -f E:\Users\srogers\AppData\Local\
ConnectedDevicesPlatform\a393c317ac1474e\ActivitiesCache.db

Key Data Returned 
There are several columns of potential interest in a forensic investigation. The 
“Executable” column provides the name and the path of the executable in use. 

For example, “Program Files x86\Adobe\Acrobat Reader DC\Reader\
Acrord32.exe” would show that Acrobat Reader was opened. “Display Text” 
provides information regarding the content opened and the application used. 
For example, “Tax Documents.pdf (Acrobat Reader DC)” would indicate that 
the file “Tax Documents.pdf” was opened using Acrobat Reader. “Content 
Info” provides information relating to the location of the item that was opened. 
Following the same example as above, “C:\Users\lee _ w\Desktop\Tax 
Documents.pdf” would indicate the location of the file that was opened. 
There are also various dates and times recorded in the Timeline. “Start Time” 
indicates the first time, in the last 30 days, that this specific activity occurred.

Advanced Usage
PRO TIP: Among the parsed data provided by WxTCmd is the column named 
“Content Info”. As described above, this column contains the location 
and name of the opened file or resource. However, it also contains another 
valuable piece of information. In the example below, a file was opened 
from a “D:” drive. This ActivitiesCache.db file contains information 
for all computers synchronized to this Microsoft account, so several linked 
computers could have a “D:” drive. The example below provides the GUID 
(Global Unique Identifier) for the volume that stores that file. This means that 
the file can be tied back to a specific volume on a specific device.

D:\Files\Cat.jpg (file:Unmapped GUID: //D:/Files/Cat. 
jpgVolumeId={A98818E7-5868-4C06-807E-0F24C9746829}&ObjectId= 
{AE26BE95-ACAC-11E9-B3FB-60F6770E22E2})

LECmd – LNK File Explorer
Type of Artifact
Shortcut files (*.lnk) are not entirely human-readable. Lnk files are most 
frequently created when a user opens a non-executable file by double-
clicking. These shortcut files are stored under the user profile that opened the 
file and contain information relating to the opened target file. This includes 
information such as the target file dates and times, file name and path, the 
drive type, volume serial number, volume label and more. LECmd takes this 
data and presents it in a human-readable format.

Basic Usage
LECmd takes, as input, either a single lnk file or a folder containing several 
such files. 

In the example command below, LECmd is being run against a single lnk file. 
When running this command the output is shown in the window running the 
command (command line window or PowerShell).

LECmd.exe -f E:\Users\srogers\AppData\Microsoft\Windows\
Recent\Peggy.jpg.lnk

In the next example, LECmd is being run against a folder of lnk files. This time, 
the output is stored in a CSV stored in G:\LnkFiles.

LECmd.exe -d E:\Users\srogers\AppData\Microsoft\Windows\Recent 
--csv G:\LnkFiles -q

Key Data Returned 

Advanced Usage
PRO TIP: Taking the data from key columns not only tells a forensic 
investigator when the file was opened, but may also provide details about 
the number of times a user accessed a file with that name. In the table 
below, the first row of results indicates that the file was only opened once, 
as SourceCreated and SourceModified contain the same time. The 
second instance indicates that the file has been opened at least twice, as the 
SourceCreated occurred around seven hours before the SourceModified. 
We also see that the Target dates are identical, suggesting that the file has 
not been changed since it was created. The last row indicates that the file 
was only opened once, since the Source entries are identical, However, the 
TargetModified precedes the TargetCreated, indicating that the file has 
been copied to the F: drive from another location.

 

PRO TIP: LNK facts to keep in mind:

•   The target file name extension is not always provided in the LNK name.

•   The LNK file points to the last file of that name.  Meaning, if there were two 
files named exactly the same, the link files point to the last one opened. 

Source  
Created

Source  
Modified

Target  
Created

Path  
(Combined from Local Path and Common Path)

9/1/2018 
16:53
9/27/2018 
17:37
9/3/2018 
14:13

8/27/2018 
09:24
9/27/2018 
10:28
9/3/2018 
14:11

C:\Users\Donald\Documents\NETFLIX SEC Filings\
SEC-NFLX-1193125-12-53009.pdf
C:\Users\srogers\Documents\Netflix 3Q13 
Conference Call Announcement 09 30 13.pdf
F:\Forms\fy08-form-10k.pdf

9/1/2018  
16:53
9/27/2018  
10:42
9/3/2018  
14:13

Target  
Modified
9/6/2018 
14:43
9/27/2018 
10:28
9/1/2018 
18:19

Column Name Forensic Value

Human readable name for AppID
Used with MRU to detemine most recentely opened file in the Jump List
Used with DestListVersion to detemine most recentely opened file in the Jump List
Multiple Path Columns: Location and name of source and target files
Creation Timestamp of the LNK itself
Modification Timestamp of the LNK itself
Creation Timestamp of target file the LNK points to
Modification Timestamp of target file the LNK points to
Network, fixed loal, ior Removable
MFT Entry Number
MFT - Seg nbr - If present then Voluome is NTFS

AppIdDescription
DestListVersion
MRU
Path
SourceCreate
SourceModified
TargetCreated
TargetModified
DriveType
VolumeSerialNumber
MFT Nbr & Seq nbr

sans.org/eztools

AmcacheParser – Amcache Parser
Type of Artifact
Amcache is part of the Application Experience Service in Windows. As such, it 
stores information about what application was run and a hash value of the 
executable.

Basic Usage
AmcacheParser takes the Amcache.hve registry hive as input. 

In the example command below, AmcacheParser is being run against 
an Amcache.hve registry hive. Output is stored on the G: drive to the 
“Amcache” folder. 

\Programs\Amcache.hve --csv G:\Amcache

Key Data Returned 
The columns of most significance are typically the “FileIDLastWriteTimestamp” 
(the first time the executable was run), “SHA1” (the SHA-1 hash of the file being 
executed) and FullPath (the location and name of the executable ran). Other 
data of potential interest include the Volume ID (used to determine from 
which volume the executable was run), MFT Entry number and Sequence 
numbers (used to determine if the executable was run from an NTFS volume) 
and information about the internal metadata of the executable itself.

Advanced Usage
PRO TIP: Watch for changes in the VolumeID, as these can be indicative 
of applications being run from external devices. In the example below, the 
VolumeID is different for each executable run, meaning that they were all run 
from different volumes even though two entries reference the E:\ drive.

 

PRO TIP: Looking for something specific in the Amcache? You can use the 
switches -b (blacklist) or -w (whitelist). Blacklisting will include only those 
Amcache entries that match the SHA-1 hashes specified in the file, while 
whitelisting will exclude those Amcache entries that match the SHA-1 hashes. 
In the example below, we’ve provided SHA-1 values in the Blacklist.txt, 
meaning that the output CSV will contain items that are only responsive to the 
SHA-1 values in the text file.
AmcacheParser.exe -f E:\Windows\AppCompat\Programs\Amcache.hve -b 
G:\Blacklist.txt --csv G:\Amcache

Volume ID File ID Last-Write 
Timestamp SHA1 Full Path

10/23/2013 3:09 

10/22/2013 21:42 

10/13/2013 9:42

f107ec56d650bf2cb00b186cbfbd202f66209ecf 

ca5fd519a43ff95d1ec0bbdf3533e9392109af74 

9fef303bedf8430403915951564e0d9888f6f365

E:\FTK Imager\FTK Imager.exe 

E:\TACTICAL  
Subject\f-response-tacsub.exe
C:\Windows\System32\ 
notepad.exe

abcd082d-3b8e-11e3-
be8d-24fd52566ede
afd25598-3b2c-11e3-
be8c-24fd52566ede
dbcc2aeb-5826-41c0-
8011-f0153438122b

MFTECmd – MFT Explorer 
Type of Artifact
MFTECmd parses a number of different files from NTFS-formatted drives. At 
a high level, MFTECmd parses each of these internal NTFS System files. At a 
lower level, the application dives deep into NTFS and helps uncover much 
data of interest.

Basic Usage
MFTECmd takes a $MFT, $J, $SDS, $Logfile or $Boot as input. 
These input files can be in the form of an exported copy of the file(s) or by 
referencing them from within a mounted image. The example command below 
shows MFTECmd being run against a $MFT file that has been exported from an 
evidence file.

MFTECmd.exe -f 'G:\Exports\$MFT' --csv G:\MFT_Output

In the next example MFTECmd is run against a $MFT file. 

MFTECmd.exe -f 'E:\$MFT' --csv G:\MFT_Output

Note the command line syntax for referencing the alternate data streams 
$UsnJrnl and $Secure.

MFTECmd.exe -f 'E:\$Extend\$UsnJrnl:$MFT' --csv G:\USN_Output

MFTECmd.exe -f 'E:\$Secure:$SDS’ --csv G:\SDS_Output

Key Data Returned 
The columns of most significance are highly dependent on the type of 
investigation and the reason for parsing the files in the first place. For 
example, the dates and times in the $MFT could provide an indication as to 
the copying of files from external devices. If the written/modification time 
precedes the creation time, there is a high degree of probability that the file 
was copied from another volume.

In the example below, the $MFT has been parsed to CSV and loaded into 
Timeline Explorer. In each row the Last Modified time precedes the 
Created time. This is a clear indication that these files were copied from 
another volume.

 
 

The processed $J data can be used to determine the date and time that 
specific actions were taken on a file. These actions include (but are not limited 
to) creating a new file, making changes to a file, deleting a file, overwriting 
a file, and renaming a file. The $LogFile tracks changes to the information 
found in the MFT such as timestamps and other metadata. In the example 
below follow the flow of activity the files recorded in $J. The first entry is for 

the creation of a file named $IT74KUZ, then data is added to the file before it is 
closed. Immediately afterwards, the file sdelete64.exe is renamed to $RT74KUZ 
before also being closed. This all happens within the same hundredth of a 
second as sdeleted64.exe being sent to the $Recycle.bin  

A few moments later, both files are deleted as the $Recycle.bin is emptied.

The $SDS file allows us determine file ownership.  For example, in the first 
screenshot below we see output from the parsed $MFT loaded into Timeline 
Explorer. Looking at the NTUSER.DAT entry we can see that the Security ID for 
this file is 8271.

If we then go to the $SDS output 
and search for that same Security 
ID, we find that the NTUSER.DAT file 
is owned by the user with the Relative ID of 1001. If needed, we can take the 
SID and tied it to a username via the SAM Registry Hive.

 

Advanced Usage
PRO TIP: It is important to remember that NTFS stores two sets of dates and 
times in each $MFT entry. These are known as the Standard Information 
Attributes (SIA) and the FILENAME attributes. This means that each 
file and folder will have timestamps in both groups. These dates and times 
behave differently and can indicate when a file was truly created, not just 
what Windows reports. For example, in the table below we see a number of 
files stored under the Windows directory. The Created0x10 is the created 
date and time as stored in the SIA and Created0x30 relates to those stored 
in the FILENAME attributes.

As can be seen in the table, both dates and times are the same for the first 
two entries, but the third entry shows a FILENAME creation date that is 
much later than the creation date stored in the SIA. This may be an indication 
of manipulation of the SIA timestamp for the syncmon.exe file and would 
warrant further investigation.

 

PRO TIP: When an evidence file is mounted as a drive MTFECmd can also dive 
into the volume shadow copies and retrieve previous versions of the $MFT, the 
$J and $SDS files. This can be done by virtue of the switches --vss and --dedupe 
as demonstrated in the command below. The --vss switch tells MFTECmd to 
search in the volume shadow copies and the --dedupe switch stops MFTECmd 
from reporting duplicate entries found in the volume shadow copies.

MFTECmd.exe -f 'E:\$Extend\$UsnJrnl:$J' --csv  
G:\MFT_Output --vss --dedupe

File ContentsDescription

File name timestamps, and other metadata
Volume serial nbr, volume signature, nbr of sectors
Contains a list of all the Security Descriptors on the volume
Transaction log of all changes to a file  
(write, delete, rename, etc.) (file change journal)
Used by NTFS to maintain the integrity of the filesystem in 
the event of a crash (metadata change journal)

Index of each file and folder on volume
Volume boor record
File ownership
USN Journal 

Transaction Log File

$MFT
$Boot
$SDS
$J 

$Logfile

Created0x10 Path (combined from Parent Path and File Name)Created0x30

C:\Windows\System32\cmd.exe
C:\Windows\System32\mountvol.exe
C:\Windows\System32\syncmon.exe

3/18/2019 09:17
3/18/2019 09:18
8/18/2019 01:12

3/18/2019 09:17
3/18/2019 09:18
3/18/2019 09:19

RECmd – Registry Explorer Command Line Edition
Type of Artifact 
This command line tool is used to access, search and recover, and export any 
data found in the WIndows Registry. To grasp why this tool is so powerful, just 
think about searching and exporting registry in a consistent output format. It’s 
no big deal to do this with other tools until you have to do exactly the same 
thing across tens, hundreds, or thousands of machines.

Basic Usage
Search NTUSER.dat for the key name that contains “Dropbox”

RECmd.exe -f "C:\Temp\NTUSER.dat" --sk Dropbox

Search UsrClass.dat for the key value that contains “Dropbox”

RECmd.exe -f "C:\Temp\UsrClass.dat" --sd Dropbox

Search the directory registry_files for the key value that contains “Dropbox”. 
The last write time is >= Startdate, and the value name contains 
either “AppName” or “DisplayName”, so don’t recover deleted keys and don’t 
process log files.

RECmd.exe --d "C:\Temp\registry_files" --sk "Dropbox" 
--StartDate "11/13/2014 15:35:01" --RegEx --sv "(App|Display)
Name" --recover false --nl

RECmd will replay and apply all registry hive logs automatically. Use --nl to 
suppress this.

Search
• StartDate  Start date: last write timestamps (UTC) 
• EndDate  End date: last write timestamps (UTC) 
• MinSize  Find values with data size >= MinSize (specified in bytes)
• sk  Search for <string> in key names
• sv  Search for <string> in value names
• sd   Search for <string> in value record’s value data
• ss   Search for <string> in value record’s value slack
• Regular expressions must of course be valid .net regular expressions
• If either the key or value has spaces in them, enclose in quotes 
• To get default values, use a value name of “(default)”
• “--sX” are search options; they use the “contains” logic
• -sd will convert the compare values to ASCII and Unicode before doing 

comparison unless the”--l” literal switch is used
In the example command below, we are looking for large registry key (1MB and 
base64 encoded) that often contain malware. Deleted keys are also retrieved 
and parsed.

RECmd.exe -d "C:\Temp\registry_files" --minsize 1M --Base64 
--recover true

To search for binary data in value data, simply string together the hex 
characters you want to find, separated by dashes (04-00-EF-BE, for example). 

RECmd.exe -hive "C:\Temp\registry_files" --sd"

Batch Mode
By default, batch mode utilizes the same plugins as found in Registry Explorer 
and works the same way. When used by RECmd, the data from the plugin will 
be normalized into a standard format for CSV output. When a plugin is used 
to process a key or key/value, the data generated by the plugin are also saved 
out to a CSV. In this way, it is very similar to exporting the data from Registry 
Explorer (albeit to Excel vs. CSV).

Batch File

Header

• Description: A general description of what this batch file is going to find

• Author: Name of this batch file (can be more, too, like contact information)

• Version: A version number that should be incremented as changes happen

• Id: A unique (across all other batch files) GUID (Global Unique Identifier) that 
identifies this batch file

Keys collection – Each entry consists of:

• Description: A user-friendly description of what this key will find. Can be 
anything from the key name to a friendlier description of what it means, etc.

• HiveType: The type of hive this entry corresponds to. Valid choices 
are NTUSER, SAM, SECURITY, SOFTWARE, SYSTEM, USRCLASS, 
COMPONENTS, BCD, DRIVERS, AMCACHE, SYSCACHE

• KeyPath: The path to the key to look for

• ValueName: OPTIONAL value that, when present, is looked for under 
KeyPath

• Recursive: Whether or not to process KeyPath recursively 

• Comment: Like Description in that you can add various things here that end 
up in the CSV

HiveType determines which kind of hive the entry corresponds to. This saves 
time in that RECmd won’t search a SOFTWARE hive for keys that won’t ever 
exist (because they are NTUSER-specific, for example).

Batch File Example   

  
 

Wildcards are supported in the KeyPath within the batch file. Example: 
SOFTWARE\Microsoft\Office\*\*\User MRU\*

To use batch mode, supply the file to the --bn switch, along with --csv to tell 
RECmd where to save results:

•   Export UserAssist data via RECmd batch file that uses a Registry  
Explorer plugin

RECmd.exe --bn .\BatchExamples\BatchExampleUserAssist.reb -f  
C:\Temp\NTUSER_dblake.DAT --nl --csv C:\Temp

•   Export Registry many of the Registry Explorer Plugin CSVs using a batch file

RECmd.exe --bn .\BatchExamples\RECmd_Batch_MC.reb -d G:\blake\
Registry\E --nl --csv g:\blake\recmd_out

PRO TIP: Be as specific as possible about the directory to process as it can 
have a significant impact on performance. These two commands generate the 
same results but the second one runs much faster. 

This is much slower because the RECmd has to process the entire drive.

RECmd.exe --bn "C:\Forensic Program Files\ZimmermanTools\
RegistryExplorer\BatchExamples\UserActivity.reb" -d G:\blake\
Registry\E --nl --csv g:\blake\registry\recmd_out

This is much faster because RECmd is only processing a single user directory

RECmd.exe --bn "C:\Forensic Program Files\ZimmermanTools\
RegistryExplorer\BatchExamples\UserActivity.reb" -d G:\blake\
Registry\E\Users\Donald --nl --csv g:\blake\registry\recmd_out

PRO TIP: A RECmd batch file can contain instructions for processing different 
Hives & Keys. Using the -f option allows you to target a specific hive instead, 
if desired, all hives mentioned in the batch file.  

When RECmd runs in batch mode, several files will get generated in the --csv 
directory (see the example below).

Detailed, fully functional example batch files can be found in 
the ZimmermanTools\RegistryExplorer\BatchExamples folder.

PECmd – Prefetch Parser
Type of Artifact
Prefetch provides evidence of execution. Prefetch files are created or updated 
in the C:\Windows\Prefetch folder when a program attempts to run. 
Prefetch files are not automatically deleted if the related program is deleted 
and therefore can be a source of historical information.

Prefetch is limited to 128 files, meaning that older files may be overwritten 
when that limit is reached. The creation time of a prefetch file is typically done 
so 10 seconds after first run.

Basic Usage
Process a single Prefetch files and send results to screen

PECmd.exe -f C:\Windows\Prefetch\CMD.EXE-8E75B5BB.pf

Process a directory of Prefetch files and send results to a CSV file named prefetch.
csv. The --csvf allows you to provide the name of the prefetch output csv.

PECmd.exe -d C:\Windows\Prefetch\ -q --csv G:\Prefetch --csvf 
prefetch.csv

Process a directory of Prefetch files, including VSS, and send the results to a 
CSV file named prefetch.csv and higher precision timestamps

PECmd.exe -d C:\Windows\Prefetch\ -q --csv G:\Prefetch --csvf 
prefetch.csv --vss --mp

Key Data Returned 
PECmd, in csv mode, will output two CSV files, one of which is a timeline. The 
Timeline csv will have “_Timeline” in the file name. The main Prefetch ouptut 
file will contain important information such as:

•  Executable name and full path from which it was executed

•  Volume name and serial number from which the program ran

•   Run Count – the number of time that the program was run, from that 
location

•  Timestamps (UTC)  for the last eight executions 

•  Volumes, files and directories accessed during execution.

Advanced Usage
KEYWORDS: Using comma-separated list of keywords will cause any hits to be 
shown in red. 

PECmd.exe -d C:\Windows\Prefetch\ -q --csv G:\Prefetch --csvf 
prefetch.csv -k "system32, downloads, fonts"

PRO TIP: PECmd can extract and process Prefetch files from Volume 
Shadow Copies by using the “--vss” option. This will process Prefetch 
from ALL Volume Shadow Copies. The output files will be separated by 
individual VSS numbers.

PECmd.exe -d C:\Windows\Prefetch\ -q --csv G:\Prefetch --csvf 
prefetch.csv --vss

The most trusted source for 
cybersecurity training, certifications, 
degrees, and research

SBECmd – Shellbags Explorer
Type of Artifact 
Every time Windows Explorer interacts with a folder, an entry is created in the 
user’s Shellbags. Folders also include other “Explorer Like” items like the 
Control Panel, zip files, ISOs, and mounted encrypted containers. The simple 
existence of a directory in Shellbags is evidence the specific user account 
once interacted with that folder. Shellbags may persist long after the original 
directories, files, and physical devices have since been removed.  

ShellBags are a set of Windows Registry keys located in NTUser.dat and 
USRClass.dat Registry hives (primarily USRClass.dat) that maintain viewing 
preferences of folders when using Windows Explorer. We used to say the 
Shellbags tracked folders that a user opened. 

Basic Usage
SBECmd uses -d for a directory to recursively process user registry hives. There 
is no -f option for SBECmd.  

To process a single user’s ShellBags data, use the following command:

SBECmd.exe -d E:\Users\nromanoff --csv G:\temp\sbe_out

PRO TIP: If you need to process several users ShellBags data,  you might 
consider exporting their data first and then processing just folder containing 
the exported data. This is a performance decision. Recursively processing 
many user folder and be very slow. 

To process all Users in the Users folder, use the following command. 

SSBECmd.exe -d E:\Users --csv G:\tmp\sbe_out

Key Data Returned 
File system dates and times for target folders and first and last folder 
interaction times. The Bag Path, Slot, Node Slot, and MRU position for each 
entry are also shown. These can initially be confusing to decipher in table 
form. Using the GUI verion of ShellBags Explorer to see the table view 
translated in a hierarchal tree format can be very useful.

Timestamps Shown in SBECmd output:

Because of the nature of how registry key timestamps have only a single last 
update value for each key, the hierarchal data in the BagMRU registry key can 
become stale. This means that there may be a value in the key but it could 
be outdated. Therefore if SBECmd is not positive that a date is current and 
accurate, that date will not be shown in the output. This why you will often 
see that an entry has a Last Interacted Timestamp an no First Interacted 
Timestamp. The First Interacted Timestamp is stale and can’t be relied upon.

You will also notice that SBECmd will only show Last Interacted Timestamps 
for MRU values.

Advanced Usage
PRO TIP: SBECmd can pull data from a live system. This make for a great 
learning and testing feature. Pull some baseline Shellbags data, run a test like 
navigating into a folder, pull the data again and compare. See what you own 
activity does to the Shellbags data. 

EvtxECmd – Windows Event Log Parser
Type of Artifact 
There are many Event Logs in the evtx folder, some aimed at system-wide 
events like Security.evtx, System.evtx and Application.evtx. Others may 
contain more specific events. All Event Logs are stored in the same format but 
the actual data elements collected varies. It is this variation of data elements 
that makes correlation of Event Logs a challenge. This is where EvtxECmd 
shines. All events are normalized across all event types and across all Event 
Logs file types! 

The EvtxECmd parser has custom maps and locked file support. EvtxECmd has 
a unique feature, “Maps,” that allows for consistent output.  

Event Log Location: Event Logs for Windows Vista or later are found in  
%systemroot%\System32\winevt\logs  

Parsing all events could end in millions of results. Using EvtxCMD's maps can 
help target specific artifacts.

Basic Usage
Recursively parsing a directory of event logs is probably the most efficient way 
to use EvtxECmd. To parse a directory, copy Event Logs to a temporary directory 
and use the -d option. Additionally, use the --inc option to only include 
specific Event _ IDs in the processing. 

You have extracted the Event Log to a folder named e:\evtx\logs and now you 
want to process all those logs in a single command.

EvtxECmd.exe -d E:\evtx\logs --csv G:\evtx\out --csvf 
evtxecmd_out.csv 

Process all event logs and only include event_id specified by the --inc option

EvtxECmd.exe -d E:\evtx\logs --csv G:\evtx\out --csvf 
evtxecmd_out.csv --inc 4624,4625,4634,4647,4672  

Exclude specific event_id’s by using the -exc option

EvtxECmd.exe -d E:\evtx\logs --csv G:\evtx\out --csvf 
evtxecmd_out.csv --exc 4656,4660,4663  

Key Data Returned 
Events without maps are still processed, but output format will vary. The 
normalized Event Log output makes it possible to analyze many different types 
of Event Logs in a single view. Timeline Explorer is perfect for this analysis.

Advanced Usage
PRO TIP: Process only the Event Logs and Event IDs that are relevant to your case.

Check out this PowerShell script that copies out the 
relevant Event Logs and processes only specific Event 
IDs (your list of relevant logs and Event IDs may vary). 
https://for500.com/evtx2process

https://digital-forensics.sans.org/community/downloads/digital-forensics-tools

