
Welcome to Cyber Aces, Module 3! This module provides an introduction to the
latest shell for Windows, PowerShell.

This training material was originally developed to help students, teachers, and
mentors prepare for the Cyber Aces Online Competition. This module focuses on the
basics of what an operating systems is as well as the two predominant OS's, Windows
and Linux. In this session we will provide a walkthrough of the installation a Windows
VM using VMware Fusion (MacOS) and VMware Player (Windows & Linux). These
sessions include hands-on labs, but before we begin those labs we need to install the
operating systems used in those labs. We will be using VMware to virtualize these
operating systems. You can use other virtualization technologies if you like, but
instruction for their setup and use are not included in this training.

The three modules of Cyber Aces Online are Operating Systems, Networking, and
System Administration.

For more information about the Cyber Aces program, please visit the Cyber Aces
website at https://CyberAces.org/.

Is this section, you will be introduced to PowerShell and some basic syntax.

Originally codenamed Monad (or Microsoft Shell or MSH), it was designed as a new
approach to managing Windows systems via the command line. PowerShell was
originally a separate download for Windows XP, Vista, Windows Server 2003, and
later for Window Server 2008 (R1), but it is not supported on Windows 2000 or older.

PowerShell version 2.0 was integrated into Windows 7 and was released at the same
time as Windows 7. Windows Server 2008R2 also came with PowerShell v2.0
installed. Separate installs were made available for previous versions of Windows.
The Windows 10 family includes PowerShell v5.

Prior to PowerShell, all major shells used text as input and output. As we'll see, the
use of objects allows structured data to be used as input and output which allows for
simpler manipulation of data via the command line.

PowerShell uses cmdlets (pronounced command-lets) to accomplish tasks and are
very similar to commands used by other shells and operating systems. The cmdlets
often expose more options than are available via the GUI (Graphical User Interface)
and are generally the recommended approach for adjusting advanced features of
many server packages that support PowerShell.

Read more about PowerShell:

http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

https://en.wikipedia.org/wiki/Windows_PowerShell

http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx
https://en.wikipedia.org/wiki/Windows_PowerShell

PowerShell uses a verb-noun pair for cmdlet names. For example, Get-Date would
"get" the current "date." The verbs are standardized by Microsoft
(http://msdn.microsoft.com/en-us/library/ms714428(v=vs.85).aspx) to make
memorization easier and to ensure consistent use of names. This standard ensures
that cmdlet developers all use the verb "Add", instead of a seemingly random
assortment of "Append", "Attach", "Concatenate", or "Insert".

Families of commands are grouped by nouns. It is quickly apparent that "Get-
Service", "Start-Service", "Stop-Service", and "Restart-Service" are all related. As such,
these cmdlets accept a similar set of parameters and return a similar set of objects.

1) Adhering to the Microsoft standard, which of the options below would be the
best name for a cmdlet that retrieves information on the Network Configuration?

Retrieve-Network_Configuration

Get-Network_Configuration

Get-NetworkConfiguration

Retrieve-NetConf

Get-NetConf

2) Which of these is a standard PowerShell Verb?

Clear

Unmark

Unset

Erase

Release

6

1) Adhering to the Microsoft standard, which of the options below would be the
best name for a cmdlet that retrieves information on the Network Configuration?

Get-NetworkConfiguration

Cmdlets are named Verb-Noun and the noun is the full name without
underscores between words

2) Which of these is a standard PowerShell Verb?

Clear

Only "clear" is in the list of standard verbs

7

Most cmdlets take additional parameters (or arguments). Parameter names are
preceded by a dash (-). One such parameter, used by the cmdlet "Get-Service", is
"Name". The command "Get-Process -Name svchost" will "get" the objects
representing each "process" with the "name" "svchost". Some cmdlets accept
positional parameters, meaning a parameter name is not required since it is assumed
from its position on the command line. "Get-Service's" "Name" is such a parameter,
and the above command can be shortened to "Get-Process svchost". It is pretty
convenient that cmdlets can be shortened and some parameter names can be
dropped.

8

In Bash and cmd.exe scripting, you often spend a great deal of time interfacing
between applications. In other words, you capture the output of one command,
parse out the pieces of data that you need (such as an IP address), and then pass that
information on to the next command. Wouldn't it be nice if each command
automatically understood the output of the other? Besides being easier to read, it is
much easier to write.

Well, as you probably guessed, that is one of the benefits of the object-oriented
nature of PowerShell. In PowerShell, every "cmdlet" has an understanding of the
output from other cmdlets, and they can be tied together with powerful results. The
objects returned from each cmdlet are understood by other cmdlets. A simple glance
at the command reveals which property is being used, and it doesn't require extra
effort or intimate knowledge of the output in "field 2."

For example, it isn't immediately clear what is being done in the command below (it
gets a list of the process ID's for each running process).

$ ps aux | cut -d' ' -f2

While the equivalent PowerShell command is much more readable.

PS C:\> Get-Process | Select ID

A new object type (or set of objects) may be encountered for the first time and you
may not know what properties and methods are available to interact with the object.
How do we know which properties and methods are available? The cmdlet "Get-
Member" can be used to show available properties, methods, and events as shown
above (the output has been modified for brevity).

We can kill a process by calling the Kill method.

PS C:\> $a = Get-Process spoolsv

PS C:\> $a.Kill()

Or more tersely:

PS C:\> (Get-Process spoolsv).Kill()

The real "power" in PowerShell is using the objects with the pipeline. This pipeline
takes the output objects from one command and sends it as input to the next
command. Simply use the pipe character ("|") to link our two commands. Here is a
real-world example of the use of the pipeline:

PS C:\> Get-Service | Where-Object { $_.Status -eq
"Running" } | Sort-Object -Property Name

This command will return all the services, filter for the running ones, and sort them
by name. Don't worry about the syntax of "Where-Object" for now, that will be
covered in a bit.

While this is highly dangerous, we could even use this same syntax to stop all running
services (don't try this at home!):

PS C:\> Get-Service | Where-Object { $_.Status -eq
"Running" } | Stop-Service

All sorts of commands can be chained together to create some really powerful and
flexible commands.

1) PowerShell's cmdlets are aware of the data passed from other cmdlets. This is
because PowerShell is _______ based.

text

object

interpreter

scalar

compiler

2) Tab Completion can be used to increase typing efficiency and accuracy. Which
benefit does it NOT provide?

Tab complete cmdlet names

Cycle through cmdlet names

Tab complete parameter names

Cycle through parameter names

Tab complete parameter values

Answers

1) PowerShell's cmdlets are aware of the data passed from other cmdlets. This is
because PowerShell is _______ based.

Object

The objects allow all the properties to be passed to cmdlets further down the
pipeline, allowing other cmdlets to access the objects themselves instead of
just text output from other commands.

2) Tab Completion can be used to increase typing efficiency and accuracy. Which
benefit does it NOT provide?

Tab complete parameter values

The values are an arbitrary value selected by you, but the parameter names and
cmdlet names are limited and known by the shell.

Exercise Complete

This portion intentionally left blank.

