
sans.org/sec670 • Discover how to take this course: Online, In-Person

SEC670: Red Teaming Tools – Developing Windows
Implants, Shellcode, Command, and Control

Learning how to develop custom-compiled tools for Windows is a skillset that is not being
taught by universities or other academic organizations and, as a result, the cybersecurity
industry has a severe skills deficit that is limiting the overall capability of red team operations.
Defense contractors and industries looking to hire Windows tools developers are facing a severe
shortage of talent and are unable to further hone their defenses.

SEC670 is the first course of its kind, giving students hands-on lab experience creating custom-
compiled programs specifically for Windows using the C/C++ programming languages. Students
will learn the internal workings of existing offensive tools that offer capabilities such as
privilege escalation, persistence, and collection by creating their own tools using Windows APIs.
Windows defenses have become more robust, and cloud-connected AV solutions are making it
more challenging to operate under the radar. In response, this course introduces students to
techniques that real nation-state malware authors are currently implementing in their implants.

The course starts with an introduction to developing Windows Computer Network Operations
(CNO) tools. You will explore current offensive and defensive tools like Moneta and PE-Sieve
that are designed to detect malicious actions. Students will then quickly ramp up to creating
their first compiled program. Students will move through the course learning how to obtain
target information, what operational actions (such as injection and privilege escalation) can
be carried out using this information, and how to take advantage and maintain system access
through persistence. You will also learn how to take shellcode, encrypted or otherwise, and
execute it in a process using the C programming language and leveraging compiler tricks.
Finally, students will learn how to evade AV solutions by bypassing their function-hooking
engine, patching key functions like AmsiScanBuffer and code caves. The course will even discuss
scenarios where going after low-hanging fruit is preferred to dropping more complicated and
sensitive implant capabilities.

SEC670 culminates with an immersive Capture-the-Flag event that will challenge students like
no other event ever has. Students must leverage the tools and capabilities they have built
during the week to solve complex challenges like getting information from a remote process
memory. By the end of the course, students will have built a lightweight Windows implant that
can enumerate the Windows Registry, files, folders, network connections, users, and processes;
bypass UAC and AV products; escalate privileges; persist across reboots; inject into other
processes; and hide from users and other tools.

Author Statement

Penetration testers, red team operators (RTO), exploit developers, and those in the Intel
Community (IC) have all used amazing tools and frameworks to get their jobs done. These
amazing tools have one thing in common: they were developed by an effective team or by one
dedicated individual. The developers are the enablers of operations, and without them we
would not be where we are today. Creating offensive tools is a broad task and can have many
areas of focus. One particularly important area is building implants or agents that are dropped
on a victim computer to establish that shell with an operator. This course will focus on building
implants for Windows targets using the C/C++ programming languages. The course is heavy
on labs and hands-on development, giving you ample time to fully grasp how Windows does
things differently than other operating systems. By the end of the week, you should have a fully
functioning Windows implant that you can continue to tweak well beyond the course.
—Jonathan Reiter

You Will Be Able To
• Create custom compiled Windows

implants
• Collect target information
• Hide processes from user mode tools
• Hook and unhook functions for AV

bypasses
• Generate and execute custom shellcode
• Escalate privileges from medium integrity

levels to high (NT AUTHORITY/SYSTEM)
• Persist across reboots
• Beacon out to configured C2 infrastructure

Prerequisites
It is strongly recommended that students
have experience with developing programs
in C/C++ for either Linux or Windows
platforms. Additionally, students should
have C/C++ experience programming
loops, conditional statements, and switch
statements, creating functions and function
pointers, and using pointers, linked lists,
and type casting.
• Courses that lead into SEC670:
• SEC560: Network Penetration Testing and

Ethical Hacking
• SEC660: Advanced Penetration Testing,

Exploit Writing, and Ethical Hacking
• SEC760: Advanced Exploit Development for

Penetration Testers
SEC670 gives alumni of these courses a
more in-depth look at how the tools used in
them operate. It also shows students how
to make their own tools and add missing
features that other compiled tools might
not have. As an example, in SEC660, there is
a brief mention of tampering with Windows
AMSI and AMSI bypasses. SEC670 will take
you behind the scenes where students will
create their own, fully customized AMSI
bypass.

6
Day Program

46
CPEs

Laptop
Required

https://www.sans.org
https://www.giac.org
https://www.sans.org/cyber-security-courses/red-team-operations-developing-custom-tools-windows/
https://www.sans.org/cyber-security-courses/red-team-operations-developing-custom-tools-windows/

Who Should Attend
• Red Team operators
• Exploit developers
• Penetration testers
• Linux computer network

operations developers
• Windows developers
• AV/EDR developers

Section Descriptions

SECTION 1: Windows Tool Development
The course begins by introducing students to Windows Internals, starting
with a high-level overview and gradually diving deeper into some of
the core mechanisms that make the Operating System tick. We will
discuss key differences between offensive and defensive tools as well
as the need for them. Equipped with a solid understanding of Windows
programming, students can choose to create offensive or defensive
tools for Windows. However, the course will only focus on creating
offensive cyber capabilities using the C/C++ programming languages. Key
differences between Linux and Windows are important and help to ease
the transition from Linux to Windows. The C programming language has
core data types, but Windows introduces its own data types, which are
presented in this course section. Students will be introduced to calling
conventions and how Windows brought its own into the programming
arena. At the end of the section, we will present the Windows Application
Programming Interface (API) more formally by having students use key
Windows APIs in a lab to bring it all together.
TOPICS: Developing Offensive Tools; Developing Defensive Tools; Setting
up Your Development Environment; Similarities and Difference with *Nix
Dev; Windows Data Types; Call Me Maybe; SAL Annotations; Windows API

SECTION 3: Operational Actions
Section 3 focuses on actions that can be taken after initial access. Red team operators
typically leverage process injection to execute desired actions. This section will teach
students how to programmatically implement those capabilities, starting with a deep
dive into the format of the Portable Executable (PE) header. Students will learn how to
parse important sections of the PE header, which is a valuable skill that will allow them
to create their own version of Windows APIs such as GetProcAddress. After mastering
the PE format, we will look at the internals of Threads, their structure, and how they are
created. The section will also explore how Asynchronous Procedure Calls can be queued
to a Thread to aid in process injection. We will cover several process injection methods,
including the classic DLL injection where we force a Thread to load our malicious DLL in a
target process. Another action is to escalate privileges to enable an operator to be more
effective on target, so students will programmatically create privilege escalation modules
for their implant and test them out on their target system.
TOPICS: Understanding the PE Format; Creating Custom Equivalents to Win32 APIs;
Exploring Thread Internals; Exploring Process Injection Methods; Programmatically
Interacting with Remote Processes; Creating Custom Tools for Privilege Escalation

SECTION 5: Enhancing Your Implant: Shellcode, Evasion, and C2
This course section will cover more advanced techniques that developers must master
to be successful. One great feature for implants is the ability to execute position-
independent shellcode. The shellcode can come from existing tools like msfvenom, donut,
or shellter, or it can be hand-crafted using the C programming language. Students will
explore in detail how to execute shellcode locally in their own process as well as remotely
across process address space boundaries. Since shellcode can be caught quickly unless
it is obfuscated or encrypted, students will learn how to decrypt shellcode right before
execution. Another implant capability is evading AV products. Evasion can be done via
several methods, but this course section will focus on unhooking functions, restoring
system calls, and implementing our own hooks. Executing shellcode and lowering AV
detection rates are great, but they can be useless if there is no method of collecting
information from the target machine. Students will explore how implants can send back
information to an operator for offline analysis and accept tasking for what to do next.
TOPICS: Shellcode Generation and Execution; Hiding Processes; Doppelganging;
Unhooking Hooks; Code Caves; AV Product Bypasses; Calling Home; Writing Shellcode in C

SECTION 2: Getting to Know Your Target
Section 2 introduces students to the art of on-target
reconnaissance. One of the first actions red team
operators might take after gaining initial access is to
conduct in-depth enumeration, or recon, against the
target. This step is often overlooked, since it can take a
while to perform and it is not as glamorous as using a
0-day to exploit something. However, it is vital to know
what type of environment you are on and what you can
do next. Students will learn how to programmatically
survey the lay of the land using a detailed approach, then
prepare a final product to obtain information about the
operating system version build, patches, and processes,
installed applications, the filesystem, users and groups,
the network, services, tasks, the registry, and more.
TOPICS: Gathering Operating System Information; Service
Packs/Hotfixes/Patches; Process Enumeration; Installed
Software; Directory Walks; User Information; Services and
Tasks; Network Information; Registry Information

SECTION 4: Persistence: Die Another Day
Section 4 focuses exclusively on various methods to achieve
persistence by surviving reboots. Gaining initial access is a great
place to start, but steps must be taken to maintain that access
in the event something unforeseen happens like a loss of power,
unscheduled reboots, the initial access process dying, etc. Typically,
operators will use persistence methods baked into existing tools or
frameworks, but those tools had to have been developed at some
point. During bootcamp challenges in this course section, students
will programmatically implement persistence tools and then test the
compiled products against their Windows 10 Test VM to see if access is
maintained after a reboot.
TOPICS: In-memory Execution; Dropping to Disk; Binary Patching;
Registry Keys; Services Revisited for Persistence; Port Monitors; Image
File Execution Options

SECTION 6: Capture the Flag
This Capture-the-Flag event involves solving an array of hands-on
challenges that mimic real-world events. Students play the role of
senior developers as part of a nation-state team to create cyber
capabilities to leverage against their targets. The challenges will
require students to apply everything that they learned during the week.
However, that foundation of skills will be just the starting point. Since
not every target will be the same, students will have to take their initial
access to a target and then expand on that access using only tools that
have been custom developed for that specific target.
TOPICS: Target Survey and Recon; AV Bypass; Privilege Escalation;
Persistence; Hooking; Code Injection

https://www.sans.org
https://www.giac.org

