
Welcome to Cyber Aces, Module 3! This module provides an introduction to the
latest shell for Windows, PowerShell.

This training material was originally developed to help students, teachers, and
mentors prepare for the Cyber Aces Online Competition. This module focuses on the
basics of what an operating systems is as well as the two predominant OS's, Windows
and Linux. In this session we will provide a walkthrough of the installation a Windows
VM using VMware Fusion (MacOS) and VMware Player (Windows & Linux). These
sessions include hands-on labs, but before we begin those labs we need to install the
operating systems used in those labs. We will be using VMware to virtualize these
operating systems. You can use other virtualization technologies if you like, but
instruction for their setup and use are not included in this training.

The three modules of Cyber Aces Online are Operating Systems, Networking, and
System Administration.

For more information about the Cyber Aces program, please visit the Cyber Aces
website at https://CyberAces.org/.

In this section, we use the knowledge we gained in some practical scenarios.

Say we have a network, where we would like to lookup the name of each device on
the network. We can use the "Range" operator in conjunction with our "ForEach-
Object" loop to pull this off.

PS C:\> 1..254 | % { Write-Output "192.168.0.$_" }

192.168.0.1

192.168.0.2

192.168.0.3

...

The "Range" operator is just a quick way of counting. The results are piped into our
"ForEach-Object" loop where we display, via "Write-Output", the string. Instead of
just printing the IP address, we could ping every IP address.

PS C:\> 1..254 | % { ping "192.168.0.$_" }

We could just as easily replace "ping" with "nslookup" or numerous other network
commands. The possibilities are endless.

Note: This command will also work without using quotes, but will not work with
single quotes.

4

This is the proverbial, "I brought you into this world, and I'll take you out." First, we
need to bring a process into this world.
Start-Process notepad

That was easy, but we could have just typed "notepad" and accomplished the same
thing. But we can do something cooler; we can use Notepad to open a file and
maximize the window.
Start-Process notepad -ArgumentList myfile.txt
-WindowStyle Maximized

Using the alias, positional parameters, shortened parameter names, and shortened
options we can squish the command to this:
start notepad myfile.txt –win max

What if we wanted to print the file? We can do that too, and we can use the viewer
associated with the file. It is as if we right clicked on the file and selected "Print."
Start-Process myfile.pdf -Verb Print

Ok, so starting processes isn't so neat, but killing them is. We can use "Stop-Process"
(alias "kill") to stop processes. We can kill based on the Process Id...
Stop-Process 1337

...or the process name:
Stop-Process -Name cmd

What if we have a user on the system named "E. Phil", and E. Phil is evil. What if he is
running executables from his desktop and we want to kill them?
ps | ? { $_.Path -like "C:\Users\ephil*" } | kill

This command gets all the processes, filters for executables originating from E. Phil's
user path, and then kills them. We have successfully defeated E Phil, and the world is

now a safer place for shells.

1) The Blah Company is using 256 networks with a /24 CIDR mask, 10.0.0.X/24
through 10.0.255.X/24. On each network, they have a network gateway and its IP
address ends in .254 (i.e. 10.0.0.254, 10.0.1.254...). Write a command to ping
each gateway.

2) Which command will NOT kill all processes with "bad" in the process name?
a. ps -name *bad* | kill
b. ps | ? { $_.Name -like "*bad*" } | kill
c. Get-Process | Where-Object { $_.Name -contains

"*bad*" } | Stop-Process
d. kill -name *bad*
e. Get-Process -Name "*bad*" | Stop-Process

1) The Blah Company is using 256 networks, 10.0.0.X/24 through 10.0.255.X/24. On
each network, they have a network gateway and its IP address ends in .254 (i.e.
10.0.0.254, 10.0.1.254...). Write a command to ping each gateway.

One possible answer:
0..255 | % { ping 10.0.$_.254 }
This is very similar to the earlier example, the only difference is the octet

2) Which command will NOT kill all processes with "bad" in the process name?

c. Get-Process | Where-Object { $_.Name -contains
"*bad*" } | Stop-Process

The -contains operator won't work here as it is used to search an array/collection
for a matching item, not for finding a string in another string. The -match and -like
operators are used to search strings using regular expressions and wildcards
respectively.

Before we iterate through all the files in a directory, we need to figure out how to
filter out directories. Let's start by looking at a regular directory listing:
PS C:\> ls
Directory: C:\
Mode LastWriteTime Length Name
d-r-- 1/3/2011 7:14 AM Program Files
d-r-- 12/8/2010 8:56 AM Users
d---- 1/3/2011 9:58 AM Windows
-a--- 6/10/2009 4:42 PM 24 autoexec.bat
-a--- 6/10/2009 4:42 PM 10 config.sys

It looks like all the files have the "a" bit set, but that isn't a guarantee to find only
files. The "a" stands for "Archive", meaning the file has been modified since the last
backup. We need another option. We could filter out anything with the "d" bit set.
That works, but it is still a little cheesy. The best option is to look at the properties of
the objects to see if there is a better option.
PS C:\> ls | gm

If you run the command (output not shown here as it is too long), the best option is
"PSIsContainer", since it is Boolean and doesn't require string comparison of the
"mode" property, so it is faster. Directories are containers and files are not. We can
use this property with "Where-Object" (alias "?") to quickly get all the file objects.
Also, Get-ChildItem doesn't return hidden items, but we can use the "-Force" option
to find those files as well.
PS C:\> ls -fo | ? { !$_.PSIsContainer }
Directory: C:\
Mode LastWriteTime Length Name
-a--- 6/10/2009 4:42 PM 24 autoexec.bat
-a--- 6/10/2009 4:42 PM 10 config.sys
-a-hs 1/3/2011 7:36 AM 1073741824 pagefile.sys

Ok, so now we have only files. Let's do something with them.

To search a file for a specific string, we can use "Select-String". This cmdlet is similar
to Linux's "grep".

PS C:\> Select-String -path *.txt -Pattern password

user1.txt:1:my password is P@ssw0rd1

user3.txt:1:my password is blank

...or shorter:

PS C:\> Select-String password *.txt

user1.txt:1:my password is P@ssw0rd1

user3.txt:1:my password is blank

The "Select-String" cmdlet searches the file for the search pattern. The pattern can
even be a Regular Expression. One notable limitation of "Select-String" is its inability
to recursively search the filesystem. To do the recursive search, we have to use "Get-
ChildItem" in conjunction with "Select-String". We can use the -fi[lter] option to
only look in .txt files, -r[ecursive] to walk the file system, and -fo[rce] to look in
hidden files and directories.

PS C:\> ls -fi *.txt -r -fo | select-string password

user1.txt:1:my password is P@ssw0rd1

user3.txt:1:my password is blank

\Users\john\Desktop\p.txt:1:my password is 4dm1n1st4t0r

Import-CSV is an extremely powerful cmdlet. It is used to read all sorts of input. Many
times output from other programs is saved in a CSV format where each field is
separated with spaces, commas, or tabs. This command will quickly import the data
and allow you to use cmdlets to filter, format, and process the data.

Let's say we have a text file containing these three lines of text that we want to
manipulate with PowerShell:

John Doe 90
Jane Doe 89
Freak Bean 97

Before we can use the data, we need to parse it. We could do it manually, but Import-
CSV is much easier. Commonly, a .csv file contains a header and the fields are comma
(or tab) delimited. We can tell the cmdlet to use a different delimiter character and
we can provide header information.
PS C:\> Import-Csv -Delimiter " " -Path scores.txt -

Header "First", "Last", "Score"
First Last Score
----- ---- -----
John Doe 89
Jane Doe 90
Frank Bean 97

Now that the data has been objectified, we can use other cmdlets to sort, parse,
manipulate, or measure the data.

Let's take the data and sort it by the score:
PS C:\> Import-Csv -Delimiter " " -Path scores.txt -

Header "First", "Last", "Score" | sort -
Property Score -Descending

First Last Score
----- ---- -----
Frank Bean 97
Jane Doe 90
John Doe 89

Once the data is converted to objects, PowerShell can be leveraged to perform
statistics or other operations on the data. The Measure-Object cmdlet is just one of
many options.
PS C:\> $scores = Import-Csv -Delimiter " " -Path

scores.txt -Header "First", "Last", "Score"
PS C:\> $scores | Measure-Object -Property Score -Ave

-Min –Max
Count : 3
Average : 92
Sum :
Maximum : 97
Minimum : 89
Property : Score

Exercise

1) Which command could produce the following output?

The file aaa.txt has a length of 12 bytes.
dir | % { "The file $_ has a length of $Length bytes." }

dir | % { "The file $_ has a length of `$_`.Length bytes." }

dir | % { "The file $_ has a length of $_.Length bytes." }

dir | % { "The file $_ has a length of $($_.Length) bytes." }

dir | % { "The file $_ has a length of ($_.Length) bytes." }

2) Which filter can be used with the "Get-ChildItem" cmdlet (alias "ls", "dir" and
"gci") to find all files modified in the past day?
? { $_.LastAccessTime -ge (Get-Date).AddDays(-1) }

? { $_.LastAccessTime > (Get-Date).AddDays(-1) }

? { -not $_.PSIsContainer && $_.LastAccessTime > (Get-Date).AddDays(-1) }

? { -not $_.PSIsContainer && $_.LastAccessTime -ge (Get-Date).AddDays(-1) }

? { -not $_.PSIsContainer -and $_.LastAccessTime -ge (Get-Date).AddDays(-1) }

Answers

1) Which command could produce the following output?

The file aaa.txt has a length of 12 bytes.

dir | % { "The file $_ has a length of $($_.Length) bytes." }

In a string you have to use the sub-expression operator to expand the object and its
property

2) Which filter can be used with the "Get-ChildItem" cmdlet (alias "ls", "dir" and "gci")
to find all files modified in the past day?
? { -not $_.PSIsContainer -and $_.LastAccessTime -ge (Get-Date).AddDays(-1) }

This is the only option using the correct Logical AND (-and) and the correct
comparison operator (-ge)

We've learned about the newest shell in Windows, how to interact with it, and basic
scripting. This shell is the most advanced method of interacting with Windows and
Windows Server Software and being skilled in its use will provide a distinct advantage
in the real world vs. those "stuck" with the GUI.

