
the customer
Axel Springer SE is the largest publisher in Europe, with numerous digital
and multimedia news brands, such as Bild, Die Welt, and Fakt. Headquartered
in Berlin, Germany, the company is active in more than 40 countries, employs
more than 15,000 people and has a total revenue in excess of €3.3 billion.

The infrastructure team at Axel Springer is responsible for managing
Kubernetes clusters and its ecosystem of cloud native tools. The team
recently adopted GitOps in combination with GitHub Actions as a way to spin
up fully functional test environments within minutes.

 CASE STUDY

 The benefit of GitOps for us is to get rid of old-fash-
ioned tools like Jenkins, having complex CICD pipelines and
discussions within the teams ‘who is responsible for which part of
this complex CICD platform.” - Andreas Prang, Team Lead
Infrastructure Services, Axel Springer SE

	
Industry: Publishing
Location: Germany

Highlights

•	 Easy set up and maintenance
•	 Streamlined GitOps pipelines
•	 Automatic test environments

key benefits

•	 Modern GitOps tooling for high
performing teams

•	 Automated test and deployment
pipelines

•	 Reduced cognitive load for developers

CHALLENGES
Axel Springer is at the beginning of their cloud native transformation with
approximately 10 EKS clusters running on site and in production. With
multiple teams of engineers rolling out new services and updates to its
digital news assets, the infrastructure team needed an automated and
secure method to test, and review new features and updates before they
get deployed to production. In order to support the speed of changes to the
news portals, the team had to modernize their continuous deployment tools
with a focus on automation and stability of test environments. Both
developers and product owners needed a production like environment to
test and approve new features before deploying them to the live site.

Complex and error prone CICD tools
As the team embraced modern operations with cloud native tools such as
Docker, Kubernetes and Helm, the operations team quickly realized that
delivery lagged behind because of complex, error prone and sometimes
manual workflows. Old fashioned automation and CICD tools like Jenkins
needed to be replaced in order to keep up with the speed of development,
testing and deployment.

www.weave.works

CONTACT US

	
 www.weave.works

	 sales@weave.works

https://www.axelspringer.com/
mailto:https://www.weave.works?subject=
https://www.weave.works
mailto:mailto:sales%40weave.works?subject=

Automate test environment creation
The infrastructure team needed to give developers the
opportunity to run services easily for their individual platform.
That means they had to put guardrails in place so developers
and product owners can easily and independently create test
environments for developing and running acceptance tests
before securely deploying updated Docker images to
production clusters.

Reduce cost overhead
Like most IT organizations, keeping costs down is always an
important consideration. One of the challenges in this case
was to only create test environments when needed, rather than
keeping them running constantly in the background.

Solution
The infrastructure team set up a Kubernetes platform that
allows developers to create test environments on demand.
Using a combination of GitHub Actions, Container Registry, and
GitOps, developers can automatically spin up test
environments in minutes. These automatic instant test
environments are referred to as “Phoenix environments”.

Two main stakeholders depend on the Phoenix environments:
1.	 The developers who want to test their code changes in an

environment that is as close as possible to production.
2.	 The product owners who want to view and approve

(acceptance test) any new features before they go live.

Since all of the infrastructure definitions are kept in Git, and
reconciled with the production clusters on a continual basis
with Flux, the team can use GitOps to create and manage test
environments that are replicas of what is running in production.

On demand test environments identical
to production
The team takes advantage of GitOps and Flux to manage and
initialize a new test environment. When a developer starts a
new feature, the first thing they do is create a new feature
branch in Git. Once the feature branch is created, a GitHub
Action triggers an `onCreate` event.

The GitHub Action event gets the feature branch and the
project name, and then sends that data to a more
centralized GitHub Action. This action pulls the live
environment’s YAML definitions from the Flux repository,
and then copies and updates the definitions with the feature
branch and pushes them back to the Flux repository.

Flux notices the changes and pushes them to a newly
created feature namespace on the cluster. It also sets up
some of the other Kubernetes resources like secrets in the
configuration map. The Helm operator then deploys all the
monitoring and logging services needed to run in this new
test environment within the namespace.

Automating test environments and making them available
when needed avoids the problem of having a bespoke QA
cluster running at all times. Instead, test environments are
created on demand and are available during the
development of the new feature. Once a feature has been
tested by the developer, the product owners are sent a
unique URL to the test environment so that new updates can
be reviewed and approved before going live in production.

In addition to this, after the pull request is merged by the
developer, the branch is automatically deleted and the test
environment is destroyed. This avoids incurring any extra
computing costs.

Results
With less than 200 lines of code, the infrastructure team at
Axel Springer was able to use GitOps with GitHub Actions
to completely automate the creation of test environments.
Developers and product owners can now easily test and
approve new features on a production like environment
before deploying them to the live site.

Reduced cognitive overload
Because GitOps uses familiar tools and workflows, setting
up a new test environment does not require the team to
learn a whole new set of tools and eliminates context
switching. Environments are spun up and torn down straight
from Git making it fast and simple for the development team
to test new features as they are being developed.

Cost reduction
Because Phoenix test environments are fully automated,
environments are spun and destroyed on demand which
saves the costs of running them continuously.

Automated continuous deployment pipelines
Developers increase their productivity with fully automated
pipelines. Once the update or new feature is tested and
reviewed, developers build the Docker image with the new
feature and deposit it to the GitHub Container Registry.

 The end goal is for each environment
to be as close as possible to what’s running
in production. We had considered creating a
new namespace on the cluster to deploy a few
services in order to test its functionality, but
instead chose to create a copy of the live
environment that includes the entire toolchain,
including all monitoring, logging and other
services in place for our production system.”
– Andreas Prang

www.weave.works

mailto:https://www.weave.works?subject=

Flux notices the new image and automatically and securely
deploys it to the production cluster without the developer
having to log into Kubernetes.

It is worth mentioning that this workflow also allows teams
to view the history of all deployments in git and can serve as
an audit trail.

Watch the full talk from GitHub Universe 2020.

www.weave.works

 We achieved a setup with less than 200
lines of code and with this setup which is very
dynamic, we can manage many product projects
and services. It’s completely automated and it’s
identical to production.” – Andreas Prang

https://youtu.be/uYAE-jBBn-I
mailto:https://www.weave.works?subject=

