
Monitoring Cloud-Native Applications 1

In the process of running your application as a set of microservices, you’ve discovered that your
apps run faster and more reliably. You’ve also discovered that containerizing your app makes it
portable across different cloud environments and that you can run the same container without
having to change a single line of app code.

So you’ve launched your containerized app in the cloud and you want your app to stay up (even
if a single instance or your infrastructure fails) and to scale up incoming requests (and likewise
scale down when not needed). How do you know that this is happening? That’s where monitoring
your container-native environment comes in. By tracking specific metrics, you can be alerted as
to whether your app is up or down, whether it is scaling correctly, and what corrective action(s)
to take.

Monitoring may seem to be only about tracking some key performance indicators (KPIs) on your
system to determine if the performance of your microservices are achieving their goals. While this
may be true for monolithic apps, monitoring microservices in the cloud is totally different animal.

It’s not only about tracking KPIs; it’s about tracking the state of dozens (if not hundreds) of
containers that are created and destroyed every second. It also involved monitoring how your
infrastructure is performing as nodes and pods are automatically scaled up and down. To monitor
these types of dynamic environments effectively, you’ll need specific tools such as Prometheus,
Weave Cortex, or Weave Cloud that are built for container-native environments and that can send
alerts when your system is in trouble.

Monitoring
Cloud-Native
Applications
WHITEPAPER

Monitoring Cloud-Native Applications 2

In this white paper, you’ll learn:

1 How monitoring a cloud-native environment is different.

2 Why different methodologies, metrics and approaches must be used to effectively monitor
microservices (Pro-active Monitoring, RED method, User- Centric Alerting).

3 The concept of Observability and how Monitoring fits into that.

4 Why Prometheus is the best monitoring tool for container-native environments.

5 How Weave Cloud extends Prometheus to provide greater monitoring capabilities
in container-native environments.

6 How Weave Cloud gives app developers a better user experience in monitoring their services
and infrastructure.

The Challenge

STATIC
WEBSITE

Virtual Machine Disaster Recovery

Server Cluster

Developer Laptop Server Data Center Public Cloud

USER DB

QUEUE
WEB FRONT ENDBACKGROUND

WORKERS

ANALYTICS DB

API ENDPOINT

DEVELOPMENT TEST AND QA PRODUCTION SCALE OUT

Monitoring Cloud-Native Applications 3

WHY MONITORING?
Monitoring your microservices and infrastructure is critical to troubleshooting problems that come
up in the production environment. If you don’t troubleshoot your systems quickly, then you risk
not only losing time and incurring more operating expenses, but you also risk poor customer
satisfaction that can result in lost revenue. The goal of monitoring your microservices and
infrastructure is to capture performance bottlenecks and potential issues before they become
problems for the dev team or the end user.

To be clear, the goal of monitoring is NOT about just collecting metrics (which are a collection
of data inputs that capture a value pertaining to your systems at a specific point in time). But
rather, the goal is to convert the metrics you collect into actions you can execute to continuously
improve the end-user experience and ROI. These goals are often defined by your customers as
service-level agreements (SLAs). Without monitoring, you cannot determine whether your app or
service is meeting the SLA agreements.

And in cloud provider environments where your apps or services are running in virtual machines
and containers, you need monitoring software to gather metrics that can inform you about the
health of your running apps or services as well as its underlying infrastructure. And as you’ll learn,
Prometheus is one of the best examples of monitoring software for container-native apps running
in the cloud.

CHALLENGES OF MONITORING
A CONTAINER NATIVE ENVIRONMENT
There are several challenges for monitoring microservices and infrastructure in a
container-native environment:

Blackbox versus Whitebox1
To know how the app and code is running inside the container, you’ll need a monitoring system
that is capable of:

Aggregation of metrics2
The metrics collected from a single container gives you insight into the behavior of the contents
of the container but it does not tell you how the overall microservice or application is performing.
To get at this information, you’ll need a tool that can analyze at metrics aggregated from all
containers that make up a service or application. Examples of aggregated metrics are query
response time, URLs that get the most errors, or a service’s containers that are exceeding their
allocated CPU shares.

WHITEBOX MONITORING
Monitoring based on metrics exposed
by the internals of the system, such as
logs or an HTTP handler that emits
internal statistics.

BLACKBOX MONITORING
Tests externally visible behavior as a
user would see it and is not concerned
with what’s internally happening, such
as tracking the CPU usage of your
host machines.

1 Monitoring distributed systems by Rob Ewaschuk
2 The Five Principles of Monitoring Microservices by Apurva Dave and Loris Degioanni

https://www.oreilly.com/ideas/monitoring-distributed-systems
https://thenewstack.io/five-principles-monitoring-microservices/

Monitoring Cloud-Native Applications 4

Dynamic Environments
The velocity of change in a container-native environment is much greater compared to a
virtualized machine environment. Containers for an app or service get created and destroyed
every second. Along with that, container orchestration software like Kubernetes dynamically
creates and destroys nodes, pods, and replicas to scale with the needs of your service or app or
to “self-heal” any of these components that have failed.

The challenge of tracking hundreds (if not thousands) of ephemeral containers running in
a dynamic environment demands that your monitoring system be completely compatible
with container orchestration software running in the Cloud. Prometheus was designed from
the ground up to monitor distributed systems in a dynamic cloud environment. In addition,
Prometheus is natively supported by Kubernetes as well. Prometheus and Kubernetes
complement each other because both support service discovery and labels. In particular,
Prometheus uses labels to identify specific time-series data, which gives you the capability to
examine an issue at any point in time.

Why a Time Series Database?
Prometheus is a time-series database monitoring system and is native to a containerized
environment. Prometheus is built to monitor applications and microservices running in containers
at scale. Data that Prometheus scrapes from running services is a time-based data type is
queried via the PromQL language. One of the advantages of querying time-based data with
PromQL is the ability to step back through time and diagnose a problem in situ without having to
independently recreate the issue.

In addition, Prometheus provides these critical monitoring features:

 • Whitebox and blackbox monitoring of containers.

 • Pulls metrics from the containers through its service discovery mechanism.

 • Automatically scales its monitoring based on what the system is doing.

 • Aggregates metrics from multiple containers.

 • Saves metric data as a time series , which can be queried on using PromQL,
Prometheus’ powerful query language.

 • Send automatic alerts to you in Slack, or email when thresholds and other limitations
have been breached.

https://www.weave.works/blog/observability-beyond-logging-for-java-microservices

Monitoring Cloud-Native Applications 5

PRO-ACTIVE MONITORING IS KEY
How you approach monitoring has a big impact on how quickly and efficiently you solve issues
and most importantly, preventing them from occurring in your system.

One approach is to simply wait for the customer to tell you there’s an issue with your services
or application. There’s no overhead on your system for monitoring, however, the customer
experience is not optimal and it could cause you to lose customers and revenue. This approach
is purely reactive.

But what if you monitored for the availability of an app or service (whether it’s running or not)?
This capability allows you to send out “alerts” as to when a service or app is not available.
Definitely better than not monitoring at all.

Monitoring for availability alone doesn’t tell you why a service or app is up or down. To get at
the root cause of a problem, you’ll need to monitor for other information, such as the logs for an
instance of a service and then aggregate those logs to get an overall picture of the health of
your system.

With the aggregated information, you can start correlating the data to pinpoint the source of the
problem. This makes it possible to propose fixes or improvements to the code.

You can take a more proactive stance by automating the remedial actions to take when a
particular issue has been identified. The goal of automation is to ensure the continuity of the
service, that it does not go down even if something is going wrong.

Even better is to use “resiliency” tools (such as the Chaos Monkey service) to attack your own
service. The idea is to detect and prevent issues with your system before the services or apps
are deployed in production.

All of these additional monitoring capabilities constitute a pro-active monitoring approach that
Weaveworks calls the “Monitoring Maturity Ladder” model:

IGNORANCE

THE
MONITORING
LADDER

AVAILABILITY ALERTS

COLLECTION LOGS, FORENSICS

AGGREGATION PERSISTENCE

ANALYSIS

LEARNING ANTIFRAGILE

AUTOMATION 0-IMPACT

PROACTIVITY

0

1

2

3

4

5

6

7

http://skillsmatter.com/skillscasts/10507-making-sure-your-containers-aren-t-on-fire-monitoring-microservices-with-prometheus

Monitoring Cloud-Native Applications 6

METHODOLOGIES FOR MONITORING
CONTAINER-NATIVE SERVICES
Weaveworks recommends that you use the the RED method and the USE method to monitor your
services and infrastructure.

The RED method helps you monitor the user impact of your microservices; whereas USE method
focuses on monitoring the resources that a microservice uses. In this section, we’ll look at how
each method has its strengths and limitations, and how they complement each other.

RED Method
RED stands for “Rate, Errors, and Duration”. These are the standard metrics that Weaveworks
recommends you use for monitoring each microservice that runs. Weaveworks developed the
RED method as the most efficient way to standardize your metrics for each microservice so you
can troubleshoot and remedy issues quickly. NOTE: The RED method is based on the Four Golden
Signals that Google developed.

Here’s the description of each metric in the RED method:

 • Rate is the number of requests per second your services are serving.

 • Errors is the number of failed requests per second. This rate is expressed as a proportion of
the request rate.

 • Duration is the distributions of the amount of time each request takes.

So why use the same metrics to measure every microservice? You might think every microservice
is different and requires different metrics to track them. But using standard metrics gives your
Operations teams the ability to scale up the numbers of services they can monitor.

The benefits of standardizing the metrics for every service are:

 • Reduces the service-specific training that the team needs.

 • Reduces the service-specific info that the on-call team needs to remember
for high-pressure incidents.

 • Lets you automate more of the common repetitive tasks.

To display these metrics, Weaveworks recommends using Grafana, an open source metric
analytics and visualization suite for visualizing time series data for infrastructure and application
analytics. According to Weaveworks best practices, you could set up your Grafana
dashboard with :

 • One row per service.

 • Two columns with request and error rate on the left and latency on the right. Helps you
display info in dashboards that makes it easier to read for troubleshooting.

The limitations of the RED method is that it’s mainly used for request-driven services.
It’s not for batch-oriented services or streaming services.

http://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
http://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html
http://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html
http://www.grafana.com

Monitoring Cloud-Native Applications 7

USE method
This method analyzes the performance of a system. In cloud computing environments, the USE
method is suited for determining performance issues, errors or system bottlenecks.

The definition of USE is “For every resource, check the Utilization, Saturation, and Errors”

Where:

 Resource is all the physical server functional components (CPU, memory, network interfaces,
I/O of storage devices and their capacity, controllers.

 Utilization is the average time that the resource was busy servicing work or the proportion
of the resource used (such as 100 percent utilization means no more work can be accepted).
Expressed as percent over a time interval.

 Saturation is the degree to which the resource has extra work that it cannot service (i.e. handle)
and the work is often queued. Expressed as the length of a queue.

 Errors is the count of error events. Expressed as a scalar value, which means for each unit of
time, you have a value.

With the USE method, you create an ordered checklist of metrics to look for. You determine the
order of the metrics to look for when troubleshooting and remediating an issue. By defining the
ordered checklist, you can quickly know what you did or didn’t check. Similar to how the RED
method treats the metrics for all services as the same, the USE method helps you to quickly
eliminate root causes of the issue, which helps you focus on the possible subsets of causes. This
is very helpful in high-intensity situations where you don’t have much time to respond to an issue.

Grafana dashboard

http://www.brendangregg.com/usemethod.html
http://www.brendangregg.com/usemethod.html

Monitoring Cloud-Native Applications 8

USER-CENTRIC ALERTING
Having chosen your metrics and instrumented your code for these metrics, how do you know
when the service or system is having a negative impact on the user and needs intervention?

By setting up alerts that trigger when a metric exceeds a certain threshold. The alert should
not only tell you what’s wrong, but it should also tell you what impact the issue has on the user
and what action you need to take to remedy it. Weaveworks calls this approach as “User-centric
Alerting”. This helps on-call DevOps engineers quickly diagnose the issue before customers are
affected.

Let’s look at an example of how a monitoring tool supports User-centric alerting. Prometheus is a
cloud-native monitoring tool that has an “annotation” feature. When creating an alert, annotations
allow you to specify extra information for an alert that gives an engineer an idea of how to react
to it.

In the following example, the ALERT has an ANNOTATIONS section with fields called impact
and description:

The impact field gives information about who is impacted by the issue and the description field
gives you a detailed explanation of the issue. When you use Weave Cloud-hosted Prometheus,
you get built-in “annotations” for an alert (such “No one can log in” or Terminals and other
controls are failing for Weave Cloud users”). This helps your DevOps folks quickly remediate
the issue. For more information about using annotations, see “Monitoring Your Kubernetes
Infrastructure with Prometheus”.

ALERT QueryErrorRate
 IF job:scope _ request _ errors:rate1m{job=”scope/query”}
> 0.1
 FOR 5m
 LABELS { severity=”critical” }
 ANNOTATIONS {
 summary = “scope/query: high error rate”,
 impact = “Users experiencing bugs in Weave Cloud Explore”,
 description = “The query service has an error rate (response

code >= 500) of errors per second.”,
 dashboardURL =
	 	“https://$REDACTED _ INTERNAL _ URL/grafana/dashboard/file/scope-services.
json”,

 playbookURL = “https://$REDACTED _ INTERNAL _ URL/PLAYBOOK.md#query”,
}

http://www.weave.works/blog/user-centric-alerting
http://www.weave.works/blog/user-centric-alerting
http://www.weave.works/blog/monitoring-kubernetes-infrastructure/
http://www.weave.works/blog/monitoring-kubernetes-infrastructure/

Monitoring Cloud-Native Applications 9

MONITORING IS ONE COMPONENT OF OBSERVABILITY
Monitoring is only one technique of an overall approach to help developers and operations
diagnose services or app issues. Tracing, logging, and visualization of the services are the other
techniques for collecting data that indicate the operational wellness of the service (like error
rate, request latency, or queries per second). Together with monitoring, they give “Observability”
to the health of your services. This means that a developer makes their apps or service visible
observable so that their behavior and impact on users can be monitored.

A system is observable if developers can understand its current state from the outside. Making
an application or service observable means they can be in charge of monitoring their app’s
behavior and impact on their app’s users. For further details about observability, see Alexis article
‘GitOps Part 3 - Observability’.

PROMETHEUS IS THE SOLUTION
FOR MONITORING MICROSERVICES
Prometheus is an open source monitoring system that was designed and built from the ground
up for monitoring and alerting of container, microservice-based architectures.

Prometheus has these built in features that allow you to retrieve metrics within a
container-native environment:

 • Pull-based model for obtaining metrics, which means the monitoring system discovers
and pulls the metrics from the container instead of pushing metrics

 • Collects monitoring data and saves it in a time-series database that can be queried
with PromQL.

 • Designed for reliability so that if the other parts of the infrastructure are down you can still
access the monitoring data

 • An alert manager that handles alerts from Prometheus and routes the alerts to the
correct receiver

However, there are several limitations to be aware of with the open-source version of
Prometheus:

 • It runs as a single binary and works on a local, single machine. In other words, you cannot
scale Prometheus to have multiple instances of it for a service or application.

 • If Prometheus fails on the host, you’ll have to perform manual data retrieval.

 • By itself, Prometheus does not offer authentication and access control to its data in the
monitoring system. You must build it yourself or provide a 3rd-party alternative.

 • There is no built-in storage service for your monitoring data. By default, all data resides on a
local disk. To store data externally, you must integrate with a 3rd-party service.

http://www.weave.works/blog/gitops-part-3-observability

Monitoring Cloud-Native Applications 10

WEAVE CLOUD PROVIDES
A BETTER MONITORING EXPERIENCE
Prometheus is an integral part of Weave Cloud, a SaaS operations platform for app developers
or development teams who are building containerized applications.

Weave Cloud extends Prometheus by providing a distributed, multi-tenant, horizontally scalable
version of Prometheus. We host the scraped Prometheus metrics for you, so that you don’t have
to worry about storage or backups.

Weave Cloud Monitoring provides the following benefits that the standalone version of
Prometheus does not:

 • Run on multiple hosts. Without any manual configuration, it can horizontally scale. For
example, you can run multiple instances of Prometheus for a large application.

 • Prometheus has been rebuilt with a microservices pattern in Weave Cloud. This means there
are separate services for each feature such as query, ingest, alerting rules, and recording
rules services.

 • Provides a replicated set of ingesters so that the failure of one ingester does not mean data
loss. The backup ingester automatically handles the data in case of failure.

 • Secure access to the monitoring data through a reverse proxy server that is integrated with
the Weave Cloud user management service. This provides easy access to the Prometheus
and Grafana dashboards for monitoring the data from anywhere on the Internet.

 • A built-in storage service that allows you to store time series data from Prometheus. In
contrast, the single host version of Prometheus does not automatically provide a storage
service.

 • A custom user interface for submitting ad hoc Prometheus queries, which includes an auto-
complete feature so users can define their desired tracking metrics faster, minimizing the
effort for querying time series data.

PROMETHEUS MONITORING IN WEAVE CLOUD OVERVIEW

https://www.weave.works/product/cloud/

Monitoring Cloud-Native Applications 11

Weave Cloud is a Complete Solution for Monitoring
The Monitoring feature of Weave Cloud is closely integrated with its continuous delivery
(Deployment), and visualization and troubleshooting (Visualization) tools. Weave Cloud provides
dashboards for these tools so you can easily act on the data presented by the Monitoring feature.
In other words, the integration of Deployment, Visualization, and Monitoring lets you ship features
faster and fix problems quicker.

Along with monitoring the current status of your apps and services, you can also easily view
historical data with Weave Cloud’s Time Travel tool and you can check that deployments will not
break your running application. This allows you to view the state of your system at any point in
time and also allows you to examine how the service or system has changed over time.

CONCLUSION
The important lessons learned about monitoring apps in a container-native environment are:

 • Requires tools that are built specifically for monitoring dynamic environments.

 • Needs whitebox monitoring to see what’s going on inside the containers.

 • Needs blackbox monitoring to see how users are affected.

 • Use both the RED and USE methods to troubleshoot how your services are performing and
how well the infrastructure resources are being used.

 • Prometheus is the best tool for monitoring a dynamic container-native environment.

 • Weave Cloud extends Prometheus by making it scalable and by providing an easy-to-use UI
to perform queries with PromQL on the data that Prometheus is pulling and to alert you when
any of those data thresholds have been met.

 Try Weave Cloud for FREE

Weave Cloud Monitoring Dashboard

http://www.weave.works/blog/time-travel
http://www.weave.works/blog/promql-queries-for-the-rest-of-us/
http://cloud.weave.works

